
Intelligent Services Development

John Sum
Institute of Technology Management
National Chung Hsing University

Taichung 402, Taiwan

September 8, 2020

Contents

1 Introduction 4
1.1 Brief Concept on Service Development 4
1.2 Service Engineering . 4

2 Driving Forces for a New Service 4
2.1 Desire-Driven . 6

2.1.1 Steve Jobs . 6
2.1.2 Jerry Yang . 7
2.1.3 Larry Page and Sergey Brin 8
2.1.4 Mark Zuckerberg . 8

2.2 Technology-Driven . 9
2.2.1 CommerceOne . 9
2.2.2 Ariba . 10
2.2.3 PaySafe . 10

2.3 Customer-Driven . 11
2.3.1 Network Security System 11
2.3.2 Airline Check-In System 11
2.3.3 No New Technology Developed 11

3 System Analysis 12
3.1 Requirement Analysis . 12

3.1.1 Understand the Customers of Your Customers 12
3.1.2 Requirement Gathering 13
3.1.3 Time Taken . 13

3.2 Technological Feasibility Analysis 13
3.2.1 Technology Available . 14
3.2.2 Technology Unavailable 14
3.2.3 Talent and Budget . 14

3.3 Economical Feasibility Analysis 14

1

3.3.1 Cost of Development and Maintenance 14
3.3.2 Operational Cost Reduction 15
3.3.3 Revenue Generated . 15

3.4 User Interface Design . 16
3.5 Documentation with Exceptional Handling 16

4 System Design 17
4.1 Program Structure and System Architecture 17

4.1.1 Single Program . 17
4.1.2 Program with Downloadable Software 18
4.1.3 Interact with Cloud Services 18
4.1.4 Intelligent Information System 20

4.2 Interaction Design . 20
4.2.1 Intelligent Service App . 21
4.2.2 Intelligent Information System 23
4.2.3 System Design . 23

4.3 Programming Language . 24
4.3.1 Intelligent Service App . 24
4.3.2 Intelligent Information System 24

4.4 Environment Design . 25
4.5 System Testing Design . 25

4.5.1 Program/Module Level Testing 25
4.5.2 System Level Testing . 25
4.5.3 Part of System Design . 25
4.5.4 Automated Testing . 26

4.6 Document . 26
4.6.1 For Coding and Maintenance 26
4.6.2 Communication Gap . 27

5 User Manual and Maintenance Manual 27
5.1 User Manual . 27
5.2 Maintenance Manual . 27

6 Decisions Interdependency 28
6.1 Programming Language vs Architectural Design 28
6.2 Budget vs Programming Language 28

7 Just Do It Methodology 28

8 Tools for Intelligent Services Development 29

9 Conclusions 29

2

List of Figures

1 Conceptual framework of service system engineering. 5
2 Self-developing everything and putting them in a single program. 18
3 Available softwares are downloaded and used. 19
4 Interacting with a remote Cloud for the intelligence services. . . 19
5 An intelligent information system with two big modules. 20
6 Sequence diagram for photo search use case. 21
7 Sequence diagram for location search (Chinese) use case. 22
8 The voice2text system consists of five programs to be developed. 23

List of Tables

1 Desire-driven new prodcut/service development. The desire gen-
erator is also a developer of the new product/service. 6

2 Roles and responsibilities of the four parties. 13
3 Types of testing programs. 26
4 Exemplar libraries for intelligent services development. 29

3

1 Introduction

To develop an intelligent service, it implies the application of various technolo-
gies (either intelligent or non-intelligent) in the service. In contrast to a core
AI/ML technology development which is basically a research project, an intel-
ligent service development is an application system development project. In
computer science terminology, it is also called a software engineering project.
Starting from the imagination on the use of a future service, the software engi-
neers eventually make the system working just like the imagined system.

1.1 Brief Concept on Service Development

Here, I would like to stress that the meanings (resp. concepts) of service de-
velopment, service system engineering, system development, system engineering
and software engineering are all the same. They are the frameworks (methodol-
ogy) outlining the step-by-step of how to make a thing work. These frameworks
are more or less the same a five-stage model, including (1) analysis, (2) design,
(3) implementation, (4) testing and (5) maintenance & review.

1.2 Service Engineering

Figure 1 illustrates the idea behind this five-stage model for developing a so-
phisticated service system. Like auto pilot system, the intelligent service system
is just a part of it. Intelligent control system would be another part. It is a tool
to be built to work together with the intelligent service system. The pilots are
the members of the team to interact with this auto pilot system.

For a simple intelligent service, the framework could be re-stated as another
five-stage model – (1) analysis, (2) design, (3) coding, (4) testing and (5) mainte-
nance & review. If you already have an idea of the use of the intelligent service,
the framework will be reduced to a four-stage model – (1) design, (2) coding,
(3) testing and (4) maintenance & review. No matter under the five-stage or
four-stage model, the analysis and design stages are the most important
stages in the framework. In the rest of the chapter, the key concepts behind
each of these stages will be elucidated. Before that, let me introduce driving
forces for a new service.

2 Driving Forces for a New Service

If we do not talk about making money, there are two main driving forces behind
the development of a new service – a personal desire and an attempt of the
application of the new technology. One more driving force for a new product or
a new service is for fun. All around the world, there are many technical gurus
who are leading programmers. Sometimes, they would develop some services
for the public to download. Some of them are games. Some of them are simple
AI services, like online chatbot.

4

(a) Service Science & Software Engineering

(b) Service Management

Figure 1: Conceptual framework of service system engineering.

5

Table 1: Desire-driven new prodcut/service development. The desire generator
is also a developer of the new product/service.

Person Desire Product (Release)
Henry Ford Affordable car Moel T (1908)
Steve Jobs Affordable computer Apple I (1976)
Steve Jobs GUI-command of an OS Mackintosh (1984)
Tim Berners-Lee Information sharing HTTP (1990)

HTML (1990)
Web Browser (1990)
WWW (1991)

Linus Torvalds Portable OS Linux (1991)
Jerry Yang Directory for web sites Yahoo (1995)
L.Page & S.Brin Better searching engine Google (1998)
Steve Jobs Good music-listen experience iPod/iTune (2001)
Steve Jobs Self-developed web browser Safari (2003)
Steve Jobs A device can do many things iPhone (2006)
Mark Zuckerberg A platform to see friends Facebook (2006)
Steve Job Hands-free iPhone Siri (2011)

2.1 Desire-Driven

For instance, my assistant Jorman who is able to make hypothesis and conduct
research by himself. This is my desire on Jorman who should do those things
for me or for himself. Development of a desire-driven new service normally
involves a number of core technologies to be developed. That is to say, to
develop a desire-driven new service could foster the development of other core
technologies. These new services, in the end, will lead to other technology firms
to develop similar services. Here, I can give you a few examples from Apple,
Yahoo, Google and Facebook the products/services they developed are entirely
based on someone’s desires. Table 1 depicts some notable products or services
their developments were initiated by personal desires.

2.1.1 Steve Jobs

Apple has been developing many phenomenal products/services along this line
– should be based on the personal desires of Steve Jobs. The Mackintosh with a
graphical user interface-based for commanding the MacOS is one breakthrough
product Steve Jobs would like to have. Afterward, Bill Gates copied the idea
and then developed the Windows Operating Systems.

The functionalities of a iPod with the iTune platform for music download
and the new payment scheme for song listening in the music industry eventu-
ally revolutionized the music industry and song listening in the early 2000s.
Afterward, other tech firms copy the model and develop similar platforms. One

6

example is KKBox.
iPhone, a phenomenal product integrating multiple functions in one device,

is definitely another product to be mentioned. Telephone call becomes a service
in the device. The browser becomes a service for Internet access. Song listening
in the same manner as using iPod becomes another service. Once iPhone was
released in 2006, android phones and other smartphones were developed.

Siri, likely is from the desire of Steve Jobs, is another phenomenal product.
It allows the user to interact with the phone by voice, instead of text and click.
The use of the iPhone can be hands free.

2.1.2 Jerry Yang

For every graduate student in computer science, he/she has certainly to conduct
an independent research and then compile a master thesis or PhD dissertation
for graduation. Here is a story about Jerry Yang, a co-founder of Yahoo. I do
not know how true it is. While Jerry Yang was a graduate student in the
Department of Computer Science at Stanford, he would need to conduct search
as other graduate students. The first step to conduct a research is clearly to
conduct survey on the technical reports in an area, say AI.

In the early 1990s, web search engines were not so mutual1. Nevertheless,
many computer science departments archived their technical reports in FTP
servers for download. The list of technical reports was included as a brows-
ing paper on a platform called Gopher2. Gopher platform is a predecessor of
departmental web pages for releasing department information. As the use of
Gopher is rather technical, almost only a department in the school of science or
engineering would prepare Gopher platform for the department.

To browse and download relevant technical reports, one needed to visit every
department in the Gopher system, browsed the list of technical reports and then
downloaded the relevant reports. Clearly, it was not that convenient and time
consuming. Thus, Jerry Yang developed a searching engine with a directory
indexing those pages. Once a user has keyed in a keyword, the system get all
the relevant information (i.e. reports) from the indexed pages. The motivation
to develop the searching engine is based on the desire of Jerry Yang.

Later, the searching engine was not limited to search for technical reports.
The engine could search for webpages over the Internet. Afterward, a number
of search engines were developed in accordance with the functions. As far as I
remember, there were at least search engines available in the middle of 1990s.
In the middle of 1990s, it was known that the performance of each of these
search engines was doubtful. A large amount of irrelevant pages were listed.
Even meta-search engine had been developed in that period of time, it did not
improve much.

1https://en.wikipedia.org/wiki/List_of_search_engines.
2https://en.wikipedia.org/wiki/Gopher_(protocol).

7

2.1.3 Larry Page and Sergey Brin

In the end, the co-founders of Google Larry Page and Sergey Brin, while they
were PhD students in Stanford, developed a new searching engine with a new
page-rank algorithm. Before that, the calculation of the relevancy of a web
page to the keyword was based on the occurrence of the related words in a
page. Then, the pages were ranked by their relevancies. In the end, many
search engines reported millions of pages. Many pages listed on top were higher
irrelevant.

Thus, PageRank was proposed. It demonstrated that the algorithm could
improve significantly the relevancies of the search results as compared with
Yahoo and other searching engines in that period of time3. The name of the
algorithm is called the PageRank [1, 2, 3]. Clearly, their motivations are similar
to the motivation of Jerry Yang – to get a better search results for researches.

The idea of PageRank algorithm is rather simple. It just involves a problem
to solve a matrix equation. However, realization of PageRank to thousands
of millions of webpages is a difficult. To rank thousands of millions pages, the
algorithm needs to calculate the inverse of a matrix of size Np×Np, where Np is
the total number of pages (i.e. thousands of millions). The run-time complexity
for getting the inverse of this matrix is in the order of O(N3

p). One can imagine
how complex the problem is. No other choice, a distributed computing platform
with lot of computers is needed. So, a side product of this PageRank algorithm
is the advancement on the distributed computing technology.

Nevertheless, the design of the web server to support huge amount of user
requests is another terrible problem. Once the Google search engine has been so
popular, the web serve has to handle thousands of millions of searches within an
hour or even a minute. In this regard, a network of servers is the only solution.
For a tech giant, this problem can readily be solved by buying more comput-
ers to build the network of servers. Google took the same idea but different
approach. Google bought second-handed computers instead of new computers.
So, Google engineers needed to solve one problem – how to ensure that the
computers while connected together will perform without any problem. In the
end, many server clustering technologies and fault-tolerance computing
technologies were developed.

So again, a simple personal desire changes the world of technologies develop-
ment. Not just the service can be delivered for the users without problem, but
also the new technologies developed to support the service change the world.

2.1.4 Mark Zuckerberg

Mark Zuckerberg would like to know how his friends (resp. ex-friends) are living
recently. Because of certain reasons, one might deny to make a phone call or
send an email to them. Without having direct contacts, like making phone
calls and sending emails, In the end, he developed the social network platform
’Facebook’. Social network application was not new in his time of development.

3https://en.wikipedia.org/wiki/List_of_search_engines.

8

However, his Facebook changed the world in connecting peoples. No doubt, it
becomes the platform with the largest number of members as compared with
other social network platforms.

Note that Facebook is the first social network platform in the history. There
are many. Some of them were developed even far earlier than Facebook4. Some
of them focus on certain target groups. Some of them are popularized in certain
countries. Some of them have no registration fee. Some of them have. Only
very few of them could now compete with Facebook.

2.2 Technology-Driven

Some other products/services in the last decades were developed due to new
technologies appeared in the market. The developers (resp. the technical firms)
simply assembled the technologies together with the existing technologies to
deliver new services. The e-commerce website development and the application
services development were two notable examples in the 1990s. The developers
did not know much about how the customers accessing the website and how
the clients accessing the application services. In the end, many startups were
bankruptcies or acquired followed by the dotcom bubble.

Here lists a few exemplar dotcoms which were finally bankruptcy or being
acquired by other giant tech firms. They had foreseen the advance in Internet
technology and the web technology, and thus developed applications accordingly.

2.2.1 CommerceOne

CommerceOne was used to be a superstar e-marketplace for a merchant to
search for a supplier to outsource the product manufacturing. The platform
provided a number of functions for merchants and suppliers, like supplier search,
request-for-quota (RFQ) & contract signing, supply chain management (SCM)
and customer relationship management (CRM). Moreover, CommerceOne had
many hubs around the world. In the late 1990s, CommerceOne had been put
as a case study in almost every e-commerce textbook.

This Internet technology-driven platform ended up with failure. There are
a few possible reasons for its failure.

• One reason is that CommerceOne focused on developing application sys-
tems for its clients. CommerceOne did not develop core technology for
its application systems. Thus, its model could easily be replicated and its
market share dropped as the rivals came.

• CommerceOne did not realized the actual practice in B2B business. Com-
merceOne did not know what its clients want. So, the functionalities of
the application systems might not fit for the clients’ needs.

• While a number of firms in the automobile industry had partnered with
CommerceOne to build a procurement platform, this platform could soon

4https://en.wikipedia.org/wiki/List_of_social_networking_websites.

9

be obsoleted as the automobile giants could developed the same platform
for themselves. As a result, the value of CommerceOne will definitely
drop.

• Once a merchant has contacted a reliable supplier, the merchant and the
supplier will abandon the use of the platform for further connection. In-
stead, they will arrange physical contact for the future collaborations.

Today, many giants like Apple and BMW have already developed their own
platforms for SCM and CRM. Many application services providers (ASPs), like
CommerceOne, were failed during the dotcom bubble.

2.2.2 Ariba

Ariba is another technology-driven tech firm founded in the 1990s. It was a
rival of CommerceOne in the 1990s. It has developed may application systems
for SCM and CRM. It was also an e-marketplace for matching merchants and
suppliers. Ariba had any new technologies developed to support such mix-and-
match application. However, Ariba faced the same problems as CommerceOne.

Ariba core skill lies in the application systems development. These systems
were expected to be useful for a large size of clients. Here is a dilemma. If a
system is developed for a large size of clients, the system can never
fit for any one of them. Nevertheless, Ariba did not realize the practices
of the merchants and suppliers. Once a merchant has contacted a reliable sup-
plier, the merchant and the supplier will abandon the use of the platform for
further connection. Instead, they will arrange physical contact for the future
collaborations.

Thus, the application systems developed by Ariba could have the highest
values if they were customized to a few big merchants, but not the small and
medium size enterprises (SMEs). Finally, it was acquired by SAP in the 1990s.
Now, it is a division of SAP.

2.2.3 PaySafe

PaySafe is a Taiwan-based on-line payment service provider. It is a team under
the Taishin International Bank5. The key technology of the on-line payment
was a self-developed secure electronic transaction system. This on-line payment
system was integrated with the Taishin backing system. Generally speaking,
it was a reliable on-line payment system and it should attract large amount of
on-line shopping merchants to subscribe the service. So, PaySafe could generate
revenue from the on-line payment transactions in on-line shopping.

In the end, it failed. One reason, similar to that of CommerceOne and
Ariba, is that PaySafe did not know what the customers’ needs. The customers
needed more than the on-line payment service, even it was developed by using
top-notch technologies. They needed to know how to use the service to do

5https://en.wikipedia.org/wiki/Taishin_International_Bank.

10

businesses with their customers. In this point, different merchants could have
different practices for their customers. So, the actual needs of one merchant
could be very difference from the other. A single platform with fixed number
of services could hardly make every merchant satisfy. PaySafe did not know
the needs of the customers of its customers.

2.3 Customer-Driven

It is also an important driving force for a new service development. However,
in term technological niche, the new system normally has little or no niche as
compared with the existing systems.

2.3.1 Network Security System

For instance, a firm would like to upgrade the network security system. The firm
simply calls for a tech firm to provide solution. The solution is an already made
network security system. Customization might have to be done to integrate
the new system to the existing servers connecting to the local area network.
Note that customization has nothing to do with technological advancement.
The developer of a customization project does not have to do any technological
advancement.

2.3.2 Airline Check-In System

Let me have another example. An airline would like to have a new global
check-in system to streamline the check-in process. The system is able to
let the customer to self check-in through the Internet. The system is able to
streamline the check-in process, so as to relive the workload of the ground crew.
The administration staffs in the office could monitor the global check-in status
through the system.

For this project, the developer will have to contact a French-based airline
check-in system vendor for the system, the backbone system. The developer
has also to understand how the customer, the ground crew and the administra-
tion staffs use the new system. The second task is quite airline specific.

Today, we can do the check-in at the airport by ourselves. If we do not have
any luggage to be checked, we can simply walk to a check-in kiosk, show the
passports and select the seats. The kiosk will then print the boarding passes.

2.3.3 No New Technology Developed

The above examples are going to highlight one point. Usually, a customer-driven
project is a system integration project with customization. Developer does not
have to introduce new technology in the application system. Moreover, scale
of a customer-driven project is usually quite large. Take the airline check-in
system for instance, the project has to take years to complete, from analysis to
testing. The budget for sure is very high.

11

3 System Analysis

No matter which force driving the development of a new service, the first ques-
tion needed to answer is about the requirement specification of the new
service or new system. The second question to be asked is about the tech-
nologies requirements. The third question is about the budget.

3.1 Requirement Analysis

If the system is developed for someone’s desire, it is normally a relatively simple
project as the desire generator can tell what are the requirements of the system.
If the desire generator gets involved in the development, system development
would be easier.

The most difficult part is how to get the system requirements from the cus-
tomers. If the system is proprietary, the system requirements can be gathered
by a number of meetings with the client firm. If the system is developed for
more than one customers, like the application services platform, getting system
requirements will be even difficult. The developers have to imagine how the
future customers are going to use this system. To get the requirements for a
system of this type is even difficult.

3.1.1 Understand the Customers of Your Customers

Before the dotcom bubble, many application services providers (ASPs) devel-
oped application services to be deployed for the small and medium size enterprise
(SME) sector. During the dotcom bubble, almost all of them de-functioned. The
others were acquired by giants. In that period, some people blamed the eco-
nomic crisis in 2000. However, it is not the only reason. From my point of
view, another possible reason is that many ASPs had overlooked the following
principle.

Principle 1 A tech firm needs to know (i) the needs (resp. computer compe-
tencies) of the customer and (ii) the needs (resp. computer competency) of the
customers of that customer.

Most failure tech firms are suspected that they never concerned on the needs
of the customers of their customers. Nevertheless, they ignored the computer
competencies of their customers, and the customers of their customers. As the
application services were delivered for a customer to streamline his/her business
operations, the customers of the customer would also the users of the services.
A system developer needs to help them to identify what they need. Moreover,
the developer has to help them to identify what their customers need.

However, many ASPs simply marketed their so-called high-tech services to
the potential customers. The actual needs of the potential customers and their
customers were always missed.

12

Table 2: Roles and responsibilities of the four parties.

Job Airline USA India Philippine
Contract Yes Yes – –
Requirement Yes – Yes –
System Design Yes – Yes –
Coding – – Yes Yes
Testing Yes – – Yes
Maintenance Yes – – –

3.1.2 Requirement Gathering

Thus, one task to be accomplished in system analysis is to get the system
requirements. If the system is initiated by a desire generator, getting the re-
quirements is easier. If the system is a kind of technology-driven, getting its
requirements will be complicated. If the system is customer-driven, getting the
requirements will be even complicated and timely.

Like the airline check-in system, the time to gather the requirements is in
term of months, not including the time spent on requirement specification re-
vision during the design phase. The project involved four parties, the airline,
an US tech firm, an Indian tech firm and a Philippine tech firm, see Table 2.
In each development phase, two parties were involved in the corresponding task
to be accomplished. After the contract had been signed, the airline and the
Indian firm worked together for the system requirement. In the first meeting,
the requirements were outlined and an important constraint was stated. The
check-in system has to be built on top of the latest French system.

3.1.3 Time Taken

Then, the developers in the Indian firm needed to figure out the new functions
provided by the latest French system before the second meeting. After a cou-
ple of meetings, the requirement specification had eventually settled. One can
imagine that the number of meetings for the requirement specification is not
small. Every two meeting might be separated by weeks or months. That is the
reason why getting the requirements for the airline check-in system took a long
time.

3.2 Technological Feasibility Analysis

Technological feasibility is an important analysis to supplement the requirement
analysis. The key problem stems on the availability of a technology. Its analysis
result could affect the requirement specification.

13

3.2.1 Technology Available

Technology availability is one concern to be investigated during the analysis. For
the services provided by the application service providers (like CommerceOne,
Ariba and PaySafe) and the systems to be built by a tech firm (like network
security system and the airline check-in system), the technologies being used
were either available on the market or easy to be developed in-house. These
systems would have no problem in the selection of technologies. Still, a problem
comes up.

Problem 1 After releasing the service for a period of time, say one year, one
of the technologies is upgraded to a new version.

For this version problem, the client firm normally will opt to not to upgrade
the system immediate after the new version has been released. Reasonably, the
client firm would wait until the system has to be upgraded to the next version.
Upgrading technologies would be considered.

3.2.2 Technology Unavailable

It could happen that the service or product to be developed requires a special
technology. This technology has not yet been developed. It always happens in
Apple products development.

Problem 2 The required technology has not been developed.

For the above problem, there are two solutions – (1) in-house development of
the technology and (2) refine the requirement specification.

3.2.3 Talent and Budget

Therefore, the purpose of the technological feasibility analysis is to figure out
what technologies should be used and where they should be got. Two factors
to be considered are the talents in the development team and the budget.

3.3 Economical Feasibility Analysis

Economical feasibility analysis concerns on the factors related to the economic
value of the new service, new product or new system. The factors include (1) the
development cost and maintenance cost, (2) the operational cost reduction and
(3) the revenue generated by the new service or new system.

3.3.1 Cost of Development and Maintenance

Cost of development and maintenance is also called the investment cost, in
the context of software engineering. This cost is the end result after bargaining
between the budget allocated from the firm and the quotation from the developer
vendor. If the firm has talent with knowledge (resp. experience) about the cost
of the technologies to be used and the labor cost in system development,

14

the bargaining process would be easier and the time spent in bargaining would
be shortened.

3.3.2 Operational Cost Reduction

Operational cost is another factor to be considered. If the new system could
reduce the head count, it is definitely a benefit to the firm. If the new system
is able to reduce the completion time of a job, it will be an additional benefit.

For instance, handling a customer service call is always time consuming. If
an AI customer service assistant is implemented, many customer service staffs
could be laid off. If the AI assistant is talent enough to recognize the mood of a
customer, the AI assistant could react appropriately to the customer and then
reduce the time in handling the customer service call.

Another instance could be found from the order fulfillment process. Once a
customer has placed an order, the order fulfillment center will have to handle
the order, like items collection and packaging. The order is thus delivered to the
customer by 3PL. The task of items collection and packaging is normally done
by human workers. Imagine that a robotic system, like the one in Amazon or
Alibaba fulfillment center, is built. Not just the head count could be reduced,
the completion time for items collection and packaging could be reduced. Fur-
thermore, human error could be eliminated.

3.3.3 Revenue Generated

For a new service or a new product, the revenue refers to the revenue generated
by selling the service or the product. For instance, the revenue generated by
selling the new iPhone is to be analyzed. The revenue generated by subscription
of a new service from YouTube is another example to be analyzed. For Google
Cloud, the revenue generated from the subscription fees of the Cloud services is
the third example.

The analysis of this type is relied on the so-called market survey. So, it
comes to a problem.

Problem 3 Market survey has shown that the new service or the new product
will gain a large market share. Is it trustable?

For the airline check-in system, there is an intangible revenue. A check-
in system is normally integrated with the flight ticket purchasing system. It
is so convenience for a customer to search for a flight and purchase a flight
ticket (e-flight ticket). Before departure, the customer could on-line check-in
through the system. So, the new check-in system could be designed along the
user experience design from the flight ticket purchasing system. If this over user
experience design is better than the system provided by other airlines, this new
system would able to attract more customers to use the system to buy flight
tickets. The revenue could thus be raised.

Again, before the system is implemented, no one knows what the additional
revenue will be. So, market survey is a common practice to predict the future
revenue and the market share.

15

3.4 User Interface Design

Apart from the above analysis, the procedure of how a user interact with the
system is also included. In other words, the procedure describes how a user uses
the system. If the system provides more than one functions, there will be more
than one procedure to be described. These procedures are usually illustrated
in diagrams, like flowcharts or sequence diagrams. Finally, the graphical user
interface (GUI) for each interaction in the procedure is further shown in a figure.

3.5 Documentation with Exceptional Handling

Once the system analysis has been completed, a system analysis report de-
lineated all the above analysis results has to be compiled. System requirement
specification is the key, in which the functions to be delivered could also be
called the use-cases. One function corresponds to one use-case. This specifica-
tion could be compiled as a document below.

==

Functional Specification

==

<USE CASE 01: Photo search>

User: Photo taken on July.

App: Show the photos.

*** Possible Error ***

1. Photo file corrupted

2. Creation date missing

<USE CASE 02: Location search (English)>

User: Search for TC Hospital

App: Show the map with direction.

*** Possible Error ***

1. Wrong name

<USE CASE 03: Location search (Chinese)>

User: Search for TC Hospital

App: Show the map with direction.

*** Possible Error ***

1. Wrong name

==

It could also be a text description with diagrams. In UML, the use case diagram
is a good tool for drawing such diagrams.

Here, the description for Function (Use) in each use case specifies what
function is it and how the user can use this function. The description in Pos-
sible Error is the anticipated error the user might committee during the use
of the function. If it happens, what the system has to do will be specified in
here. The solution for handling these erroneous situation is called exceptional

16

handling. This report is thus passed to the system design team to design the
system for other teams to do coding and testing. As the system has to handle
the anticipated exceptional cases, the actual size of the system to be built is
larger than the size of the system with the initial list of requirements.

4 System Design

Once the system design team has received the system analysis report, the
design team will have to design (1) the program structure, (2) the system ar-
chitecture, (3) the programming languages for coding the programs, (4) the
interaction among the users and the system, (5) the finalized user interface de-
sign, (6) the environment for running the system and (7) the testing cases for
unit test and system test.

Thus, system design is of paramount important as it elucidates every tech-
nical aspect of the system. Missing any one design, the system will not be
workable. Recall that partial workable is not acceptable in system development.

Principle 2 System development is an all-or-none game. Only a system with
all functions workable is accepted. A system with 99% functions workable is not
acceptable.

Here, I simply outline some ideas behind the system design. If you would
like to know more, a practical example could be found in a master thesis from
my former master student [4]6.

4.1 Program Structure and System Architecture

To start with, let me have a simple App development. The App is going to
delivered simple intelligent services with NLU capability – using voice command
to search for a location on a map. Later, the same principle on system design
for an information system will be introduced.

4.1.1 Single Program

One approach is to develop everything in a single program which composed
of four major modules – user interface module, NLU module, MAP module
and system testing module, as shown in Figure 2. Note that the user interface
module, the NLU module the MAP module are designed in accordance with the
system requirement – the function core and the exceptional handling. The user
interface module is the main program which interacts with the NLU module
and the MAP module.

System testing module is an additional module to be used for testing if
the system is running correctly. As the overall system is designed as a single
program, the design of the testing module is relatively simple. The system
testing module interacts with all other three modules. System testing module

6The thesis is available online at http://web.nchu.edu.tw/~pfsum/papers/MyNext.pdf.

17

Figure 2: Self-developing everything and putting them in a single program.

is only invoked if necessary. In Figure 2, it is assumed that every module is
built in-house, including the NLU module and the MAP module. This design
is rather straight forward.

4.1.2 Program with Downloadable Software

A common design approach for the App is to use available software. If the NLU
module and the MAP module could be downloaded and used, we could have
the program structure like Figure 3. Similarly, the user interface module is the
main program which interacts with the NLU module and the MAP module.
The system testing module interacts with all other three modules. It is only
invoked when it is needed.

4.1.3 Interact with Cloud Services

The three design approach appears when the NLU module and the MAP module
cannot be downloaded but available as services on a Cloud. In such case, the
program structure will look like Figure 4. This system architecture could be
treated as a simple two-tier architecture, in which the App is a tier and the
cloud is another tier. The programs to be developed for the App are called
client-side programs. If the server side is not a cloud but a dedicated server
developed by the developer, the programs to be developed and running in the
server are called server-side programs.

The App provides services to the user. The intelligent services on the Cloud
provide services for the App to deliver services to the user. This design approach

18

Figure 3: Available softwares are downloaded and used.

Figure 4: Interacting with a remote Cloud for the intelligence services.

19

Figure 5: An intelligent information system with two big modules.

is called service-oriented architectural design. The system architecture is a
service-oriented architecture (SOA). Pretty clear, the Cloud will charge the
developer (not the user) for the use of the intelligent services as the registered
user for the use of the services is the developer.

4.1.4 Intelligent Information System

For an intelligent information system with two modules (or two servers), as
shown in Figure 5, the program design will be a way more complicated and the
system architecture is usually a multi-tier architecture. The number of programs
to be developed for each module is not small.

4.2 Interaction Design

Interaction design is not just about user interface design, it is also about the
interface among different sub-systems and the remote servers like Cloud. It
details the step by step how a user can use the system. As the system can provide
more than one service, each use case will have to compile one interaction design
diagram. Sequence diagram7 is a good tool for showing the interaction among
different modules and the interface design for a use case.

7One point to be noted. In the area of service management or service marketing, ser-
vice blueprint is a diagram for the service encounter design. In essence, the service
blueprint and the sequence diagram are the same diagram.

20

Voice2Text OS Photos

'Request'
Text Command

Text Command

No. of Photos

No. of Photos

'Two Photos'

Text2Voice

(Voice)

(Voice)

Figure 6: Sequence diagram for photo search use case.

4.2.1 Intelligent Service App

Figure 6 shows the sequence diagram for the Use Case 01: Photo Search as
mentioned in Section 3.5. Figure 7 shows the sequence diagram for the Use
Case 03: Location Search (Chinese) as mentioned in Section 3.5. All the use
cases are to be delivered by the App in Figure 4. In both sequence diagrams,
the OS is put in the diagrams for clarification. In fact, OS is omitted. The
sequence diagram shows (1) all the modules involved in delivering the service,
(2) the sequence of the interactions and (3) the message to be generated by a
module and which module should the message be sent to.

For the photo search use case as shown in Figure 6, two modules are involved.
One is the module for voice2text and text2voice. The other is the photo module.
Once a voice command has been received, the voice2text converts the voice to
a text message. Then, the module invokes the photo module with the text
message. The invoked photo module then process the request based upon the
information in the text message. A text message is generated upon completion
of the process. At the same time, the photo module invokes the text2voice
module with the text message. The text2voice module then generates a voice
message and the sound is generated for the user.

From this simple application, three (complicated) programs have to be built
– voice2text, text2voice and photo-search. The first two programs are included
in one module and the last one is included in the photo search module. Here,
I call them three programs just for simplicity. One be bare in mind that each
program is basically a system. For instance, the voice2text program (equiva-

21

Voice2Text

Text2Voice

OS Map App Map Server NLU Server

Chinese
Voice Chinese Text

Chinese Text

English Text

Text Command

Text Command

Results

Result

English Text

Chinese TextChinese Text

Chinese
Voice

Figure 7: Sequence diagram for location search (Chinese) use case.

22

Noise Cancellation

Voice to Words

Semantic Processing

Sentence Reconstruction

Text Generation

Speech

Text Message

Figure 8: The voice2text system consists of five programs to be developed.

lently system) consists of five sub-programs (equivalently programs) as shown
in Figure 8. So, the actual number of programs to be developed is much more
than three.

For each program, the event driven the running of the program has to be
stated clearly. The pseudo-code of the program has to be described in detail.
Its interaction with which programs have to be stated. Finally, the end result
is sent to the user. If the return result must be in the form of voice, the user
will hear a voice reply. If the return result is a map, the Map App will show
the map to the user. These user interface designs have to be defined.

Problem 4 Should the programs voice2text, text2voice and photo-search be bun-
dled to be single module, two modules or three modules? If they are bundled to
two modules, which programs should be bundled together?

For the location search use case as shown in Figure 7, two modules are
involved. One is the module for voice2text and text2voice. The other is the
MAP module. Both modules have also been designed to interact with remote
servers for the NLU and MAP services.

4.2.2 Intelligent Information System

For the intelligent information system as shown in Figure 5, all the programs
are developed in-house. No external service is used. In such case, the scale of
a sequence diagram for a use case could be very large. Thus, multiple levels
of sequence diagrams would be needed. In principle, the logic of the interface
design is the same as for the intelligent service App.

4.2.3 System Design

In Figure 4, the overall system is simply shown as a single system called the
Main Program. Now, one should understand that this main program has many

23

programs indeed. Partitioning the system into three modules is just one system
design. The programs for voice2text are grouped as one module. The programs
for text2voice are grouped as the second module. The programs for photo-search
are grouped as the third module. However, this three-module design might not
be the best system design.

Principle 3 Interactions (equivalently communications) among modules should
be as minimal as possible.

While the system is in use, it might have a lot of interactions among the
modules. Each interaction is realized by message transfer from one module to
another. Operating system will then be involved to co-ordinate this interaction.
Delay will likely be happen and memory space is needed.

Suppose that an information system consists of multiple modules. Some
modules are running in different machines. This overhead will even be more.
Interaction between two modules which are installed in two different servers
causes much longer delay, as the interaction has be realized through the network.

4.3 Programming Language

Now, the system design team has to decide which programming languages have
to be used to write which programs. The decisions are determined by many
factors. Operating system and the supporting systems like DBMS are two com-
mon factors which influence the selection of the languages. The programming
skill of the developer is another considering factor.

4.3.1 Intelligent Service App

For the photo search and location search applications, the programs are running
in a smartphone. So, the programming language for developing such programs
has to be compatible with the OS running in the smartphone.

OS Programming Languages
iOS C#, C++, HTML5, Objective-C, Python, Swift
Android C#, C++, Corona, Java, Kotlin, Python

There are two other factors determining the selection of a programming language
for App development. First, the interaction between the App and the operating
system. Second, the API provided by a Cloud provider.

4.3.2 Intelligent Information System

For the intelligent information system as shown in Figure 5, selection of pro-
gramming languages for the development of the programs will need to consider
a few more factors. For instance, the database management system to be used
and the platform (either Windows OS or Linux) for delivering email related
services.

24

4.4 Environment Design

Environment refers to the environmental conditions for running the App or
the system. Common conditions for a system running in a computer include
(1) the operating system (with version), (2) the database management system
(or database server), (3) the web server, (4) the browser, (5) the specification
of the CPU and/or the GPU, (6) the size of the RAM and (7) the size of the
main memory.

4.5 System Testing Design

Once the programs, the system design and the programming languages have
been determined, the system can now be developed – coding.

Problem 5 What if the system is assigned to a team of developers? Two devel-
opers (say A & B) are responsible for the voice2text module. Two developer (say
C & D) are responsible for the text2voice. One developer (say E)is responsible
for the photo-search.

4.5.1 Program/Module Level Testing

Each developer is clearly to code the programs assigned to him/her. Before all
the programs of the module voice2text have been coded, developer A (resp. B)
would need to find a way to test if the programs (not just one program) can work
together correctly. Thus, developer A (resp. B) has to create a testing program
(yet another additional program) to test the correctness of the programs he/she
developed. For the same principle, developers A & B have to work together to
create a testing program to test the correctness of the module voice2text.

Developer C (resp. D) has to create testing program for the programs he/she
developed. Afterward, developers C & D have to create testing program for the
module text2voice. Developer E will have to create the testing programs for the
programs in the photo-search module and the testing program for the module.

4.5.2 System Level Testing

Finally, the development team will have to work together to create a big testing
program to test all the functions to be delivered by the system. That is to day,
the testing program is going to check if the user cases specified in the require-
ment specification have been completed. The types of testing programs to
be designed and created are depicted in Table 3. In technical terms, unit test
refers to the testing of a module. System test refers to the testing of the overall
functionalities of a system. The cases to be tested are called the testing cases.

4.5.3 Part of System Design

Normally, the set of testing cases can be designed once the program design, the
architecture design, the system design and the programming languages have

25

Table 3: Types of testing programs.

Level of Testing Examples
Program Noise Cancellation

Voice to Words
Semantic Processing
Sentence Reconstruction
Test Generation
· · ·

Module voice2text
(Unit Test) text2voice

Photo Search
System App
(System Test) Information System

been determined. Therefore, system testing design is part of the task to
be accomplished in system design instead of waiting for the coding team to
design.

4.5.4 Automated Testing

One additional advantage of the testing programs is that these programs can be
used for self-testing. Suppose the system has been in use. Owing to whatever
reason, the system has been accidentally shut down. Once the system is up
again, these testing programs can thus been invoked to check the condition of
the programs, the modules and the system making sure that the system will be
functioning correctly. In case the system shut down is due to file corruption,
the testing programs can be used for diagnosing the problematic module or
program.

4.6 Document

The final task to be done in system design is clearly to compile a document
including everything delineated in the above sub-sections. The document will
be served as the key document for the coding team to code and test the system.

Principle 4 Programmers have no need (equivalently no such talent) to under-
stand why the system is designed in that way. They simply do the coding and
testing in accordance with the design specification.

4.6.1 For Coding and Maintenance

Another important use of the documents is that they serve as the basis for the
future development team to understand the overall design of the system. In

26

case there is any system upgrade, such as adding new modules for new uses, the
future development team could have these documents as reference to figure out
how to modify the system.

Fact 1 The developers involved in the future development team are unlikely the
same as the developers in the current development team. The staff in charge of
the system maintenance could be changing over time.

If there is any unclear in the use and maintenance of the system, these doc-
uments will be served as the foundation for the staff to search for the technical
details.

4.6.2 Communication Gap

One major problem in passing the documents to the coding team is that the
programmers in the coding team might not be able to understand the ideas
behind the system analysts and the system designers. This is what I refer to
the problem of communication gap. It appears almost in every where in the
world and in every moment in our living, not limited to system development.
Thus, documentation has to be compiled with clear diagrams and descriptions
so as to reduce the communication gap.

5 User Manual and Maintenance Manual

Once the development project has been completed, two manuals will have to be
compiled – the user manual and the maintenance manual.

5.1 User Manual

Clearly, the user manual is compiled for all the users of the system. It
describes the detail how the users can use the system. If there are multiple user
types, the user manual will have to include for each type of user the information
in particular to the user type. That is to say, the user manual will contain five
dedicated information for five types of users. Normally, the content from the
user interface design will be extracted and added in the user manual.

5.2 Maintenance Manual

The maintenance manual is compiled for the system administrator. It in-
cludes the detail information about the configuration of the machines, both
hardware requirement and software system requirement for running the system.
The requirement on the networking capability might have also included. More-
over, the steps for installation of the system and then testing the system are
described. Anticipated problems that the system might appear during running
are listed. Solutions for these problems are delineated. In simple words, the
maintenance manual can let the system administrator to fix the system if there
is any technical problem appeared during the system is in use.

27

6 Decisions Interdependency

To make a workable intelligent systems, many decisions have to be made, like the
system design and the selection of programming languages as mentioned above.
These decisions are always interdependent. System architecture could affect the
partition of a system into various modules. The programming languages selected
for developing those modules would affect the recruitment of programmers to
build the modules.

6.1 Programming Language vs Architectural Design

Programmers with different programming language skills could be charged dif-
ferently. For example, a programmer with knowledge in network program-
ming and system programming is usually higher paid than a programmer
with knowledge in application programming and database system pro-
gramming only. It is because the number of programmers with knowledge in
network programming and system programming is fewer than the number
of programmers with knowledge in application programming and database
system programming. Moreover, many programmers with knowledge in net-
work programming and system programming are also with knowledge in
application programming and database system programming.

6.2 Budget vs Programming Language

From the above explanation, one should see that the budget allocated for a
system development project would affect the recruitment of programmers. So,
the decision on the programming languages is not just determined by the system
design but also the budget. In the end, the budget would affect the system
design. If the system design is changed, the sequence diagrams for the use cases
will have to be modified.

Therefore, multiple reviews and meetings are inevitable to let the analysis
team and design team have a complete system analysis and system design,.

7 Just Do It Methodology

For a simple service, there is always a simple methodology for the development.
Technically, it is called the agile methodology. In layman term, it is called
just-do-it. Normally, it is applicable to skillful programmers. Once the system
requirement has been identified, the programmers simply do the coding and
testing. System analysis and system design are skipped in the first place. Only
when the system has been built and tested successfully, the developers come
back and put every detail in documents.

28

Table 4: Exemplar libraries for intelligent services development.

Firm Library Languages
Berkeley Caffe Python, Matlab, C++
François Chollet Keras Python, R
Google TensorFlow Python
MathWorks DL Toolbox Matlab
Microsoft CNTK Python, C++

8 Tools for Intelligent Services Development

Today, a number of tools have been ready for intelligent services development.
Specifically, the tools are called libraries. Each library has a collection of pro-
grams for call. For instance, the TensorFlow is a library developed by Google
for Python developers. Matlab NN Toolbox is developed for Matlab develop-
ers. Table 4 lists a few exemplar AI/ML libraries. Some of these libraries even
provide pre-trained models for the developers to build their intelligent services.

Clearly, developers could build their intelligent services from scratch. Using
the programs and the pre-trained models available in these libraries, the time
to build an intelligent service could largely be reduced. The shortcomings are
(1) the program might not be easily modified to solve specific problems and
(2) the pre-trained model might be problematic.

9 Conclusions

In this chapter, the major concepts in system development are delineated. One
should realize that the most intellectual burden in a system development project
is in the system analysis and design. Once the requirement specification
and design specification have been compiled, the work to be done in coding
and testing becomes relatively easy.

Clearly, problem might still exist during the coding and testing period. The
requirement specification and design specification only include those ex-
ceptional conditions that are anticipated. It could have missed some conditions
that are discovered by the programmers. In such circumstance, the require-
ment specification and design specification will have to make modification.

While the above analysis-design-coding-testing-maintenance model for sys-
tem development has been elucidated in this chapter, there is no guarantee (no
silver bullet) that a system can be successfully development. Without following
any model for system development, the situation will be even worst.

29

References

[1] S. Brin, R. Motwani, L. Page, and T. Winograd, “What can you do with a
web in your pocket?” IEEE Data Eng. Bull., vol. 21, no. 2, pp. 37–47, 1998.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
algorithm: bringing order to the web,” in Proc. of the Seventh conference
on the World Wide Web, Brisbane, Australia, 1998.

[3] ——, “The pagerank citation ranking: Bringing order to the web.” Stanford
InfoLab, Tech. Rep., 1999.

[4] D. C.-C. Tsai, “MyNext: A collective intelligence enabled system for cross-
checking entrance exam results,” Master’s thesis, Institute of Technology
Management, National Chung Hsing University, Taiwan, 2012.

30

