A Little C Primer

PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Tue, 20 Nov 2012 09:20:33 UTC

Contents

Articles

Wikibooks:Collections Preface

Introduction to C; Functions; Control Constructs

A Little C Primer/An Introductory C Program
A Little C Primer/C Functions in Detail

A Little C Primer/C Control Constructs

C Variables, Operators & Preprocessor Directives

A Little C Primer/C Variables, Declarations and Constants
A Little C Primer/C Operators

A Little C Primer/C Preprocessor Directives

C Input & Output

A Little C Primer/C Console 10
A Little C Primer/C File-10 Through Library Functions
A Little C Primer/C File-10 Through System Calls

C Library Functions & Other Comments

A Little C Primer/C Math Library

A Little C Primer/C Standard Utility Library & Time Library

A Little C Primer/The C sprintf Function

A Little C Primer/C String Function Library

A Little C Primer/C Character Class Test Library

A Little C Primer/C Command Line Arguments

A Little C Primer/Pointers to C Functions

A Little C Primer/C Dynamic Memory Allocation & Deallocation

A Little C Primer/Common Programming Problems in C

C Quick Reference

A Little C Primer/C Quick Reference

Comments and Revision History

A Little C Primer/Comments and Revision History

Resources and Licensing

A Little C Primer/Resources

13

20
20
32
35

37
37
44
50

53
53
54
56
57
62
63
67
68
69

72
72

77
77

78
78

A Little C Primer/Licensing

References

Article Sources and Contributors

Image Sources, Licenses and Contributors

Article Licenses

License

78

79
80

81

Wikibooks:Collections Preface

Wikibooks:Collections Preface

This book was created by volunteers at Wikibooks (http://en.wikibooks.org).

What is Wikibooks?

Started in 2003 as an offshoot of the popular Wikipedia project, Wikibooks is
a free, collaborative wiki website dedicated to creating high-quality textbooks
and other educational books for students around the world. In addition to
English, Wikibooks is available in over 130 languages, a complete listing of
which can be found at http://www. wikibooks. org. Wikibooks is a "wiki",

which means anybody can edit the content there at any time. If you find an
error or omission in this book, you can log on to Wikibooks to make
corrections and additions as necessary. All of your changes go live on the

website immediately, so your effort can be enjoyed and utilized by other WI KI BOOKS

readers and editors without delay.

Books at Wikibooks are written by volunteers, and can be accessed and printed for free from the website. Wikibooks
is operated entirely by donations, and a certain portion of proceeds from sales is returned to the Wikimedia
Foundation to help keep Wikibooks running smoothly. Because of the low overhead, we are able to produce and sell
books for much cheaper then proprietary textbook publishers can. This book can be edited by anybody at any
time, including you. We don't make you wait two years to get a new edition, and we don't stop selling old versions

when a new one comes out.

Note that Wikibooks is not a publisher of books, and is not responsible for the contributions of its volunteer editors.
PediaPress.com is a print-on-demand publisher that is also not responsible for the content that it prints. Please see

our disclaimer for more information: http://en.wikibooks.org/wiki/Wikibooks:General_disclaimer .

What is this book?

This book was generated by the volunteers at Wikibooks, a team of people from around the world with varying
backgrounds. The people who wrote this book may not be experts in the field. Some may not even have a passing
familiarity with it. The result of this is that some information in this book may be incorrect, out of place, or
misleading. For this reason, you should never rely on a community-edited Wikibook when dealing in matters of

medical, legal, financial, or other importance. Please see our disclaimer for more details on this.

Despite the warning of the last paragraph, however, books at Wikibooks are continuously edited and improved. If
errors are found they can be corrected immediately. If you find a problem in one of our books, we ask that you be

bold in fixing it. You don't need anybody's permission to help or to make our books better.

Wikibooks runs off the assumption that many eyes can find many errors, and many able hands can fix them. Over
time, with enough community involvement, the books at Wikibooks will become very high-quality indeed. You are
invited to participate at Wikibooks to help make our books better. As you find problems in your book don't just
complain about them: Log on and fix them! This is a kind of proactive and interactive reading experience that you
probably aren't familiar with yet, so log on to http://en. wikibooks. org and take a look around at all the

possibilities. We promise that we won't bite!

http://en.wikibooks.org).
http://en.wikibooks.org/w/index.php?title=File%3AWikibooks-logo-en-noslogan.svg
http://www.wikibooks.org.
http://en.wikibooks.org/wiki/Wikibooks:General_disclaimer
http://en.wikibooks.org

Wikibooks:Collections Preface

Who are the authors?

The volunteers at Wikibooks come from around the world and have a wide range of educational and professional
backgrounds. They come to Wikibooks for different reasons, and perform different tasks. Some Wikibookians are
prolific authors, some are perceptive editors, some fancy illustrators, others diligent organizers. Some Wikibookians
find and remove spam, vandalism, and other nonsense as it appears. Most wikibookians perform a combination of

these jobs.

It's difficult to say who are the authors for any particular book, because so many hands have touched it and so many
changes have been made over time. It's not unheard of for a book to have been edited thousands of times by

hundreds of authors and editors. You could be one of them too, if you're interested in helping out.

Wikibooks in Class

Books at Wikibooks are free, and with the proper editing and preparation they can be used as cost-effective
textbooks in the classroom or for independent learners. In addition to using a Wikibook as a traditional read-only
learning aide, it can also become an interactive class project. Several classes have come to Wikibooks to write new
books and improve old books as part of their normal course work. In some cases, the books written by students one
year are used to teach students in the same class next year. Books written can also be used in classes around the

world by students who might not be able to afford traditional textbooks.

Happy Reading!

We at Wikibooks have put a lot of effort into these books, and we hope that you enjoy reading and learning from
them. We want you to keep in mind that what you are holding is not a finished product but instead a work in
progress. These books are never "finished" in the traditional sense, but they are ever-changing and evolving to meet
the needs of readers and learners everywhere. Despite this constant change, we feel our books can be reliable and
high-quality learning tools at a great price, and we hope you agree. Never hesitate to stop in at Wikibooks and make

some edits of your own. We hope to see you there one day. Happy reading!

Introduction to C; Functions; Control
Constructs

A Little C Primer/An Introductory C Program

Here's a simple C program to calculate the volume of a sphere:

/* sphere.c */

#include <stdio.h> /* Include header file for printf. */
#define PI 3.141592654f /* Define a constant. */
static float sphere(float); /* Function prototype. sphere is

given internal linkage with the keyword
'static' since it isn't used

outside of this translation unit. */

int main (void) /* Main function. */

{
float volume; /* Define a float variable. */
float radius = 3; /* Define and initialize variable. */
volume = sphere (radius); /* Call sphere and copy the return

value into volume. */
printf("Volume: %f\n", volume); /* Print the result. */

return 0O;

float sphere(float rad) /* Definition of a volume
calculating function. */
{

float result; /* "result" is defined with an

automatic storage duration and block scope. */

result = rad * rad * rad;

result = 4 * PI * result / 3;

return result; /* "result" is returned to the
function which called sphere. */

}

The first feature that can be observed in this program is that comments are enclosed by "/*" and "*/". Comments can
go almost anywhere, since the compiler ignores them. Another obvious feature is that individual statements in the

non

program end with a ";". Either forgetting a ";" or adding one where it isn't needed is a common C programming bug.

A Little C Primer/An Introductory C Program

Lines of code are grouped into blocks by using curly brackets ("{ }").

C is case-sensitive. All C keywords are in lower-case. Program variable and function names in whatever case
desired, but by convention they should be in lower case. "Constants", to be discussed a bit later, are upper case by

convention.

Not all the lines in a C program are executable statements. Some of the statements shown above are "preprocessor

directives".
C compilation is a multi-pass process. To create a program, a C compiler system performs the following steps:

* It runs the source file text through a "C preprocessor”. All this does is perform various text manipulations on the
source file, such as "macro expansion", "constant expansion", "file inclusion", and "conditional compilation",
which are also explained later. The output of the preprocessor is a second-level source file for actual compilation.

You can think of the C preprocessor as a sort of specialized automatic "text editor".
* Next, it runs the second-level source file through the compiler proper, which actually converts the source code
statements into their binary equivalents. That is, it creates an "object file" from the source file.

* The object file still cannot be executed, however. If it uses C library functions, such as "printf()" in the example
above, the binary code for the library functions has to be merged, or "linked", with the program object file.
Furthermore, some addressing information needs to be linked to the object file so it can actually be loaded and run

on the target system.

These linking tasks are performed by a "linker", which takes one or more object files and links them to binary library

files to create an "executable" file that can actually be run.

C has a large number of libraries and library functions. C by itself has few statements, so much of its functionality is

implemented as library calls.
Commands intended for the C preprocessor, instead of the C compiler itself, start with a "#" and are known as

"preprocessor directives" or "metacommands". The example program above has two such metacommands:

#include <stdio.h>

#define PI 3.14

The first statement, "#include <stdio.h>;", simply merges the contents of the file "stdio.h" into the current program
file before compilation. The "stdio.h" file contains declarations required for use of the standard-I/O library, which

provides the "printf()" function.

Incidentally, the "stdio.h" file, or "header file", only contains declarations. The actual code for the library is
contained in separate library files that are added at link time. Custom header files loaded with custom declarations

can be created if needed, and then included in a program as follows:

#include "mydefs.h"

Angle brackets ("< >") are not used with custom header files. They only are used to define the default header files
provided standard with a C compiler (and which, on Unix/Linux systems, are found in directory "/usr/include").

A C program is built up of one or more functions. The program above contains two user-defined functions, "main()"
and "sphere()", as well as the "printf()" library function.

The "main()" function is mandatory when writing a self-contained program. It defines the function that is
automatically executed when the program is run. All other functions will be directly or indirectly called by "main()".

A C function is called simply by specifying its name, with any arguments enclosed in following parentheses, with

commas separating the arguments. In the program above, the "printf()" function is called as follows:

A Little C Primer/An Introductory C Program

printf("Volume: %f\n", volume);

This invocation provides two arguments. The first -- "Volume: %f\n" -- supplies text and some formatting

information. The second -- "volume" -- supplies a numeric value.

A function may or may not return a value. The "sphere()" function does, and so is invoked as follows:

volume = sphere(radius);

A function uses the "return" keyword to return a value. In the case of "sphere", it returns the volume of the sphere
with the statement:

return result;

All variables in a C program must be "declared" by specifying their name and type. The example program declares

two variables for the "main" routine:

float volume;

float radius = 3;

-- and one in the "sphere" routine:

float result;

The declarations of "volume", "radius", and "result" specify a floating-point variable. The declaration allows

variables to be initialized when declared if need be, in this case declaring "radius" and assigning it a value of "3".

All three of these declarations define variables block scope. Variables with block scope exist only within the blocks
that declare them. Variables of the same name could be declared in different blocks without interference. It is also
possible to declare variables with file scope that can be shared by all functions by declaring them outside of all
blocks within a translation unit. By default, all identifiers with file scope are given external linkage. It is only with
the keyword "static" that an identifier is given internal linkage. Declarations like this:

extern int aj;

non

identify "a" as an int whose storage is defined elsewhere; preferably in another translation unit.

/* global.c */

#include &l1lt;stdio.hé>

void somefunc(void);

int globalvar;

void main ()

{
extern int globalvar;
globalvar = 42;
somefunc () ;

printf("%$d\n", globalvar);

void somefunc(void)

{

extern int globalvar;

A Little C Primer/An Introductory C Program

printf ("%d\n", globalvar);
globalvar = 13;

Besides the variable declarations, the example programs above also feature a function declaration, or "function
prototype", that allows the C compiler to perform checks on calls to the function in the program and flag an error if

they are not correct:

float sphere (float);

The function prototypes declare the type of value the function returns (the type will be "void" if it does not return a

value), and the arguments that are to be provided with the function.

Finally, the "printf()" library function provides text output capabilities for the program. The "printf()" function can

be used to print a simple message as follows:

printf("Hello, world!");

-- displays the text:

Hello, world!

Remember that "printf()" doesn't automatically add a "newline" to allow following "printf()"s to print on the next

display line. For example:

printf("Twas bryllig ");
printf ("and the slithy toves");

-- prints the text:

Twas bryllig and the slithy toves

A newline character ("\n") must be added to force a newline. For example:
printf("Hello, \nworld!");
-- gives:

Hello,

world!

These examples only print a predefined text constant. It is possible to include "format codes" in the string and then

follow the string with one or more variables to print the values they contain:

printf(" Result = %f\n", result);

This would print something like:

Result = 0.5

The "%f" is the format code that tells "printf" to print a floating-point number. For another example:

printf("%d times %d = %d\n", a, b, a * b);

-- would print something like:

4 times 10 = 40

The "%d" prints an integer quantity. Math or string expressions and functions can be included in the argument list.

A Little C Primer/An Introductory C Program

To simply print a string of text, there is a simpler function, "puts()", that displays the specified text and automatically

appends a newline:
puts ("Hello, world!") ;
Just for fun, let's take a look at what our example program would be like in the pre-ANSI versions of C:

/* oldspher.c */

#include <stdio.h>
#define PI 3.141592654

float sphere(); /* Parameters not defined in function

prototype. */

main ()

{

float volume;

int radius = 3;
volume = sphere(radius);
printf("Volume: %f\n", volume);

float sphere(rad)
int rad; /* Parameter type not specified in function

header. */
{

float result;
result = rad * rad * rad;

result = 4 * PI * result / 3;

return result;

The following sections elaborate on the principles outlined in this section.

A Little C Primer/C Functions in Detail

A Little C Primer/C Functions in Detail

As noted previously, any C program must have a "main()" function to contain the code executed by default when the
program is run.

A program can contain as many functions as needed. All functions are "visible" to all other functions. For example:

/* fdomain.c */
#include <stdio.h>

void funcl (void);

void func2(void);

int main ()

{
puts ("MAIN");
funcl () ;
func2 () ;

void funcl (void)

{
puts ("FUNC1");
func2 () ;

void func2(void)
{
puts ("FUNC2");
funcl () ;
}

In this example, "main()" can call "funcl()" and "func2()"; "funcl()" can call "func2()"; and "func2()" can call
"func1()". In principle, even

"main()" could be called by other functions, but it's hard to figure out why anyone would want to do so. Although
"main()" is the first function in the listing above, there's no particular requirement that it be so, but by convention it

always should be.

Functions can call themselves recursively. For example, "funcl()" can call "funcl()" indefinitely, or at least until a

stack overflow occurs. You cannot declare functions inside other functions.
Functions are defined as follows:
float sphere(int rad)

{

}

They begin with a function header that starts with a return value type declaration ("float" in this case), then the

function name ("sphere"), and finally the arguments required ("int rad").

A Little C Primer/C Functions in Detail

ANSI C dictates that function prototypes be provided to allow the compiler to perform better checking on function
calls:

float sphere(int rad);

For an example, consider a simple program that "fires" a weapon (simply by printing "BANG!"):

/* bango.c */
#include <stdio.h>
void fire(wvoid);

void main ()

{
printf("Firing!\n");
fire();

printf("Fired!\n");

void fire(void)
{
printf ("BANG!\n");

This prints:

Firing!
BANG!

Fired!

Since "fire()" does not return a value and does not accept any arguments, both the return value and the argument are
declared as "void"; "fire()" also does not use a "return" statement and simply returns automatically when completed.
Let's modify this example to allow "fire()" to accept an argument that defines a number of shots. This gives the

program:

/* fire.c */
#include <stdio.h>
void fire(int n);

void main ()

{
printf("Firing!\n");
fire(5);
printf("Fired!\n");

void fire(int n)

{

A Little C Primer/C Functions in Detail

10

int 1i;
for (1 =1; 1 <= n ; ++i)
{

printf ("BANG!\n");

This prints:

Firing!
BANG!
BANG!
BANG!
BANG!
BANG!

Fired!

This program passes a single parameter, an integer, to the "fire()" function. The function uses a "for" loop to execute

a "BANG!" the specified number of times -- more on "for" later.

If a function requires multiple arguments, they can be separated by commas:

printf("%d times %d = %d\n", a, b, a * b);

The word "parameter” is sometimes used in place of "argument". There is actually a fine distinction between these
two terms: the calling routine specifies "arguments" to the called function, while the called function receives the

"parameters” from the calling routine.

When a parameter is listed in the function header, it becomes a local variable to that function. It is initialized to the
value provided as an argument by the calling routine. If a variable is used as an argument, there is no need for it to

have the same name as the parameter specified in the function header.

For example:

fire(shots);

void fire(int n)

The integer variable passed to "fire()" has the name "shots", but "fire()" accepts the value of "shots" in a local
variable named "n". The argument and the parameter could also have the same name, but even then they would
remain distinct variables.

Parameters are, of course, matched with arguments in the order in which they are sent:

/* pmmatch.c */

#include <stdio.h>

void showme(int a, int b);
void main ()

{
int x =1, y = 100;

A Little C Primer/C Functions in Detail

showme (%X, vy);

void showme (int a, int b)

{
printf("a=%d b=%d\n", a, b);

This prints:

a=1 b=100
This program can be modified to show that the arguments are not affected by any operations the function performs
on the parameters, as follows:

/* noside.c */
#include <stdio.h>
void showmore(int a, int b);

void main ()

{
int x =1, y = 100;
showmore (x, vy);

14
printf ("x=%d y=%d\n", x, y);

void showmore(int a, int b)
{
printf("a=%d b=%d\n", a, b);
a = 42;
b = 666;
printf("a=%d b=%d\n", a, b);

This prints:

a=1 b=100
a=42 Db=666
x=1 y=100

Arrays can be sent to functions as if they were any other type of variable:

/* fnarray.c */

#include <stdio.h>
#define SIZE 10

void testfunc(int al[]);

A Little C Primer/C Functions in Detail

12

void main ()
{
int ctr, a[SIZE];
0; ctr < SIZE; ++ctr)

for(ctr
{

alctr] = ctr * ctr;
}

testfunc(a);

void testfunc(int al])
{
int n;
for(n = 0; n < SIZE; ++ n)
{
printf("$d\n", aln]);

It is possible to define functions with a variable number of parameters. In fact, "printf()" is such a function. This is a
somewhat advanced issue and we won't worry about it further in this document.

The normal way to get a value out of a function is simply to provide it as a return value. This neatly encapsulates the
function and isolates it from the calling routine. In the example in the first section, the function "sphere()" returned a
"float" value with the statement:

return(result);

The calling routine accepted the return value as follows:

volume = sphere(radius);

The return value can be used directly as a parameter to other functions:

printf ("Volume: %$f\n", sphere(radius));

The return value does not have to be used; "printf()", for example, returns the number of characters it prints, but few

programs bother to check.

A function can contain more than one "return" statement::

if(error == 0)
{
return(0);
}
else

{

return(1);

A "return" can be placed anywhere in a function. It doesn't have to return a value; without a value, "return" simply
causes an exit from the function. However, this does imply that the data type of the function must be declared as

"void":

A Little C Primer/C Functions in Detail

13

void ftest (int somevar)

{

if(error == 0)
{

return () ;

If there's no "return" in a function, the function returns after it executes its last statement. Again, this means the

function type must be declared "void".

The "return" statement can only return a single value, but this value can be a "pointer" to an array or a data structure.

Pointers are a complicated subject and will be discussed in detail later.

A Little C Primer/C Control Constructs

C contains a number of looping constructs, such as the "while" loop:

/* while.c */

#include <stdio.h>

void main ()
{
int test = 10;
while(test > 0)
{
printf("test = %d\n", test);
test = test - 2;

If "test" starts with an initial value less than or equal to O the "while" loop will not execute even once. There is a

variant, "do", that will always execute at least once:

/* do.c */

#include <stdio.h>

void main ()
{
int test = 10;
do
{
printf("test = %d\n", test);
test = test - 2;

A Little C Primer/C Control Constructs

while(test > 0);

The most common looping construct is the "for" loop, which creates a loop much like the "while" loop but in a more
compact form:

/* for.c */
#include <stdio.h>

void main ()
{
int test;
for(test = 10; test > 0; test = test - 2)
{
printf("test = %d\n", test);

Notice that with all these loops, the initial loop statement does not end with a ";". If a "';" was placed at the end of the

"for" statement above, the "for" statement would execute to completion, but not run any of the statements in the body
of the loop.

The "for" loop has the syntax:
for(<initialization>; <operating test>; <modifying expression>)

All the elements in parentheses are optional. A "for" loop could be run indefinitely with:
for(;i 7)
{

-- although using an indefinite "while" is cleaner:

while(1)
{

It is possible to use multiple expressions in either the initialization or the modifying expression with the "," operator:

/* formax.c */
#include <stdio.h>

void main ()
{
int a, b;
for (a = 256, b =1; b < 512
{
printf("a = %d b = %d\n", a, b);

; a=a/ 2, b=Db*2)

A Little C Primer/C Control Constructs

The conditional tests available to C are as follows:

a ==>b equals
a !'=>b not equals
a<b less than
a>b>b greater than
a <=b less than or equals
a >>b greater than or equals
The fact that "==" is used to perform the "equals" test, while "=" is used as the assignment operator, often causes

confusion and is a common bug in C programming:

a ==>b Is "a" equal to "b"?
a

b Assign value of "b" to "a".
C also contains decision-making statements, such as "if":

/* if.c */

#include <stdio.h>

#define MISSILE 1
void fire(int weapon);
void main ()

{
fire(MISSILE);

void fire(int weapon)

{

if(weapon == MISSILE)
{
printf("Fired missile!\n");
}
if(weapon != MISSILE)

{

printf ("Unknown weapon!\n");

This example can be more easily implemented using an "else" clause:

/* ifelse.c */

void fire(int weapon)
{
if (weapon == MISSILE)

A Little C Primer/C Control Constructs

printf("Fired missile!\n");
}

else

{

printf ("Unknown weapon!\n");

Since there is only one statement in each clause the curly brackets aren't really necessary. This example would work
just as well:

void fire(int weapon)
{
if(weapon == MISSILE)
printf("Fired missile!\n");
else

printf ("Unknown weapon!\n");

However, the brackets make the structure more obvious and prevent errors if you add statements to the conditional

clauses. The compiler doesn't care one way or another, it generates the same code.

There is no "elseif" keyword, but "if" statements can be nested:

/* nestif.c */

#include <stdio.h>
#define MISSILE 1
#define LASER 2

void fire(int weapon)
void main ()

{
fire(LASER);

void fire(int weapon)

{

if (weapon == MISSILE)
{
printf("Fired missile!\n");
}
else
{
if (weapon == LASER)

{

printf("Fired laser!\n");

A Little C Primer/C Control Constructs

17

else

{

printf ("Unknown weapon!\n");

This is somewhat clumsy. The "switch" statement does a cleaner job:

/* switch.c */

void fire(int weapon)
{
switch (weapon)
{
case MISSILE:
printf("Fired missile!\n");
break;
case LASER:
printf("Fired laser!\n");
break;
default:
printf ("Unknown weapon!\n");

break;

The "switch" statement tests the value of a single variable; unlike the "if" statement, it can't test multiple variables.
The optional "default" clause is used to handle conditions not covered by the other cases.

Each clause ends in a "break”, which causes execution to break out of the "switch". Leaving out a "break" can be
another subtle error in a C program, since if it isn't there, execution flows right through to the next clause. However,
this can be used to advantage. Suppose in our example the routine can also be asked to fire a ROCKET, which is the
same as a MISSILE:

void fire(int weapon)
{

switch(weapon)

{

case ROCKET:

case MISSILE:
printf("Fired missile!\n");
break;

case LASER:
printf("Fired laser!\n");
break;

default:
printf ("Unknown weapon!\n");

break;

A Little C Primer/C Control Constructs

The "break" statement is not specific to "switch" statements. It can be used to break out of other control structures,
though good program design tends to avoid such improvisations:

/* break.c */
#include <stdio.h>

void main ()
{
int n;
for(n=0; n < 10; n=n + 1)
{
if(n ==)
{
break; /* Punch out of loop at value 5. */
}

else

{
printf("%d\n", n);

If the "for" loop were nested inside a "while" loop, a "break" out of the

"for" loop would still leave you stuck in the "while" loop. The "break" keyword only applies to the control construct
that executes it.

There is also a "continue" statement that skips to the end of the loop body and continues with the next iteration of the
loop. For example:

/* continue.c */
#include <stdio.h>

void main ()
{
int n;
for(n=0; n < 10; n=n + 1)
{
if(n ==)
{
continue;

}

else

{
printf("%d\n", n);

A Little C Primer/C Control Constructs

19

Finally, there is a "goto" statement:

goto punchout;

punchout:

-- that jumps to an arbitrary tag within a function, but the use of this statement is generally discouraged and it is
rarely seen in practice.

While these are the lot of C's true control structures, there is also a special "conditional operator" that performs a

simple conditional assignment of the form:

if(a == 5)
{

b = -10;
}
elise
{

b = 255;
}

-- using a much tidier, if more cryptic, format:

b= (a==) 2 =10 : 255 ;

the ?: construct is called a ternary operator -- or the ternary operator -- as it takes 3 arguments.

20

C Variables, Operators & Preprocessor
Directives

A Little C Primer/C Variables, Declarations and
Constants

C supports a flexible set of variable types and structures, as well as common arithmetic and math functions along
with a few interesting operators that are unique to C. This chapter explains them in detail, and ends with a short

discussion of preprocessor commands.

C includes the following fundamental data types:

Type Use Size (bits) Range
char Character | 8 -128 to 127
unsigned char | Character | 8 0 to 255
short Integer 16 -32,768 to 32,767
unsigned short | Integer 16 0 to 65,535
int Integer 32 —2,147,483,648 to 2,147,483,647
unsigned int Integer 32 0 to 4,294,967,295
long Integer 32 -2,147,483,648 to 2,147,483,647
unsigned long | Integer 32 0 to 4,294,967,295
float Real 32 12 %1080 3.4 x 10
double Real 64 22 % 10°% 10 1.8 x 10°%8
long double Real 128 3.4 % 10%9%% 10 1.2 x 10°93

These are representative values. The definitions tend to vary between implementations. For example, in some

systems an "int" is 16 bits, and a "long double" could be 64 bits. The only thing that is guaranteed is the precedence:

short <= int <= long

float <= double <= long double

One peculiarity of C that can lead to maddening problems is that while there is an "unsigned char" data type, for
some reason many functions that deal with individual characters require variables to be declared "int" or "unsigned

LR

nt

Declarations are of the form:

int myval, tmpl, tmp2;
unsigned int markerl = 1, marker2 = 10;

float magnitude, phase;

A Little C Primer/C Variables, Declarations and Constants

21

Variable names can be at least 31 characters long, though modern compilers will always support longer names.

non

Variables names can be made up of letters, digits, and the (underscore) character; the first character must be a

letter. While it is possible to use uppercase letters in variable names, conventional C usage reserves uppercase for

non

constant names. A leading is also legal, but is generally reserved for marking internal library names.

C allows several variables to be declared in the same statement, with commas separating the declarations. The

variables can be initialized when declared. Constant values for declarations can be declared in various formats:

128 decimal int

256u decimal unsigned int
5121 decimal long int
OxAF hex int

0173 octal int

0.243 float

0.1732f float

15.75E2 float

'a' character

"giday" string

There are a number of special characters defined in C:

"\a' alarm (beep) character
"\p' backspace

"\f' formfeed

'"\n' newline

"\r' carriage return

"\t' horizontal tab

"\v' vertical tab

"\’ backslash

"\?' question mark

"\"' single quote

A double quote

"\ONN' character code in octal
"\xNN' character code in hex
"\0' null character

"Symbolic constants" can be specified using the "define" C preprocessor declaration:

#define PI 3.141592654

There is also a "const" declaration that defines a read-only variable, such as a memory location in ROM:

const int a;

A Little C Primer/C Variables, Declarations and Constants

22

* Arrays can be declared and initialized:

int myarray[10];
unsigned int 1list[5] = { 10, 15, 12, 19, 23 },;
float rdata[128], grid[5][5];

All C arrays have a starting index of 0, so "list" has the indexes O through 4. Elements in "rdata" would be accessed
as follows:

for(i =0; i <=127; i =1i + 1)
{

printf ("\f\n", rdatal[i]);
}

C does not perform rigorous bounds checking on array access. It is easy to overrun the bounds of the array, and the

only symptom will be that the program acts very strangely.
* Of particular importance are arrays of characters, which are used to store

strings:

char s[128];

strcpy(s, "This is a test!");

The string "This is a test!" is used to initialize "s" through the "strcpy()" function, discussed in a later chapter. The
stored string will contain a terminating "null" character (the character with ASCII code O, represented by "\0'). The
null is used by C functions that manipulate strings to determine where the end of the string is, and it is important to

remember the null is there.

The curious reader may wonder why the "strcpy()" function is needed to initialize the string. It might seem to be
easier to do:

char s[128] = "This is a test!";

In fact, this is an absurd operation, but to explain why, the concept of "pointers" must be introduced.
e C programs can define pointers that contain the address of a variable or

an array. For example, a pointer could be defined named:

int *ptr;

-- that gives the address of a variable, rather than the variable itself. A value could then be put into that location with

the statement:

A Little C Primer/C Variables, Declarations and Constants

23

*ptr = 345;

In an inverse fashion, the address of a variable can be obtained with "&":

int tmp;
somefunc(&tmp);

To sum up:

* A pointer is declared in the form: "*myptr".
e If "myvar" is a variable, then "&myvar" is a pointer to that variable.
o If "myptr" is a pointer, then "*myptr" gives the variable data for that pointer.

Pointers are useful because they allow a function to return a value through a parameter variable. Otherwise, the

function will simply get the data the variable contains and have no access to the variable itself.

One peculiar aspect of C is that the name of an array actually specifies a pointer to the first element in the array. For

example, given the string declaration:

char s[256];

-- then the function call:

somefunc(s)

-- will actually pass the address of the character array to the function, and the function will be able to modify it.

However:

s[12]

-- gives the value in the array value with index 12. Remember that this is the 13th element, since indexes always start
at 0.

There are more peculiarities to strings in C. Another interesting point is that a string literal actually evaluates to a

pointer to the string it defines. This means that in the following operation:

char *p;

p = "Life, the Universe, & Everything!";

n.n

-- "p" ends up being a pointer to the memory in which the C compiler stored the string literal, and "p[0]" would

evaluate to "L". In a similar sense, the following operation:

char ch;

ch = "Life, the Universe, & Everything!"[O0];

A Little C Primer/C Variables, Declarations and Constants

24

-- would put the character "L" into the variable "ch".

This is very well and good, but why care? The reason to care is because this explains why the operation:

char s[128] = "This is a test!";

non

-- is absurd. This statement tells the C compiler to reserve 128 bytes of memory and set a pointer named "s" to point
to them. Then it reserves another block of memory to store "This is a test!" and points "s" to that. This means the
block of 128 bytes of memory that were originally allocated is now sitting empty and unusable, and the program is

actually accessing the memory that stores "This is a test!".
This will seem to work for a while, until the program tries to store more bytes into that block than can fit into the 16
bytes reserved for "This is a test!". Since C is poor about bounds checking, this may cause all kinds of trouble.

This is why "strcpy()" is usually necessary. It isn't needed for a string that won't modified or will not be used to store

more data than it is initialized to, and under such circumstances the following statements will work fine:

char *p;

p = "Life, the Universe, & Everything! "

These issues become particularly tricky when passing strings as parameters to functions. The following example

shows how to get around the pitfalls:

/* strparm.c */

#include <stdio.h>

#include <string.h>

char *strtest(char *a, char *b);

int main ()
{
char a[256],
b[256],
c[256];

strcpy(a, "STRING A: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789");
strcpy(b, "STRING B: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789");
strepy(¢, "STRING C: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789");

printf("Initial values of strings:\n");
printf("\n");

printf(" a = %s\n", a);
printf(" = %s\n", b);
printf(" c = %s\n", c);

printf("\n");

A Little C Primer/C Variables, Declarations and Constants

25

strcpy(c, strtest(a, b));

printf("Final values of strings:\n");
printf("\n");

printf(" a = %s\n", a);
printf(" = %s\n", b);
printf(" c = %s\n", c);

printf("\n");

return 0O;

char *strtest(char *x, char *y)

{
printf("Values passed to function:\n");
printf("\n");
printf("

$s\n", x);

$s\n", y);

printf(" y
printf("\n");

strcpy(y, "NEWSTRING B: abcdefghijklmnopgrstuvwxyz0123456789"

return "NEWSTRING C: abcdefghijklmnopqrstuvwxyz0123456789";

* It is possible to define "structures" in C, which are collections of different data elements:

/* struct.c */

#include <stdio.h>

#include <string.h>

struct person /* Define structure type.

{
char name[50];
int age;
float wage;

};

void display(struct person);

int main ()

{

struct person m; /* Declare an instance of it.

strcpy (m.name, "Coyote, Wile E."); /* Initialize it. */
m.age = 41;

m.wage = 25.50f;

*/

*/

A Little C Primer/C Variables, Declarations and Constants

display(m);

return 0O;

void display(struct person p)

{
printf("Name: %s\n", p.name);
printf("Age: %d\n", p.age);
printf("Wage: %4.2f\n", p.wage);
}

This program has a few interesting features:

* The structure has to be defined by a "struct" declaration before it can declare any structures themselves. In this

case we define a struct of type "person".

* Instances of the struct ("m") are then declared as by defining the structure type ("struct person").

"non

* Elements of the structure are accessed with a "dot" notation ("m.name", "m.age", and "m.wage").
A structure can be copied to another structure with a single assignment statement, as long as the structures are of the

same type:

struct person m, n;

m = n;

It is also possible to declare arrays of structures:

struct person group[1l0];

strcpy (group[5] .name, "McQuack, Launchpad");

-- or even embed structures inside structure declarations:

struct trip_rec

{
struct person traveler;
char dest[50];
int date[3];
int duration;
float cost;
}

-- in which case the nested structure would be accessed as follows:

A Little C Primer/C Variables, Declarations and Constants

struct trip_rec tl1;

strcpy(tl.traveler.name, "Martian, Marvin");

The name of a structure defines a variable, not an address. If the name of a structure is passed to a function, the

function works only on its local copy of the structure. To return values, an address must be specified:

setstruct (&mystruct);

There is a shorthand way to get at the elements of a structure with the pointer to the structure instead of the structure

itself. If "sptr" is a pointer to a structure of type "person”, its fields can be accessed as follows:

strcpy(sptr—>name, "Leghorn, Foghorn");
sptr->age = 50;
sptr->wage = 12.98;

* C contains a concept similar to a structure known as a "union". A union is declared in much the same way as a

structure. For example:

union usample
{
char ch;

int x;

The difference is that the union can store either of these values, but not both at the same time. A "char" value or an
"int" value can be stored in an instance of the union defined above, but it's not possible to store both at the same
time. Only enough memory is allocated for the union to store the value of the biggest declared item in it, and that
same memory is used to store data for all the declared items. Unions are not often used and will not be discussed

further.

* The following example program shows a practical use of structures. It tests a set of functions that perform

operations on three-dimensional vectors:

vadd () : Add two vectors.

vsub () : Subtract two vectors.

vdot () : Vector dot product.

vecross () : Vector cross product.

vnorm () : Norm (magnitude) of vector.
vangle () : Angle between two vectors.

vprint () : Print out vector.

A Little C Primer/C Variables, Declarations and Constants

28

The program follows:

/* vector.c */

#include <stdio.h>

#include <math.h>

#define PI 3.141592654

struct v
{

double i, j, k;
};

void vadd(struct v, struct v, struct v*);

void vprint(struct v);

void vsub(struct v, struct v, struct v*);

double vnorm(struct v);

double vdot(struct v, struct v);

double vangle(struct v, struct v);

void vcross(struct v, struct v, struct v*);

int main ()

{

struct vvi=4{1, 2, 3}, v2 = { 30, 50, 100 },

double a;

printf("Sample Vector 1:
vprint (vl);
printf("Sample Vector 2:
vprint (v2);

vadd(v1l, v2, &v3);
printf ("Vector Add:
vprint (v3);

vsub(vl, v2, &v3);
printf("Vector Subtract:
vprint (v3);

veross(vl, v2, &v3);
printf("Cross Product:

vprint (v3);

printf("\n");
printf("Vector 1 Norm:

printf("Vector 2 Norm:

")

")

")

")

$f\n", vnorm(vl));

$£f\n", vnorm(v2));

v3;

A Little C Primer/C Variables, Declarations and Constants

29

printf ("Dot Product: $£f\n", vdot(vl, v2));
a = 180 * vangle(vl1l, v2) / PI ;
printf ("Angle: %$3f degrees.\n", a);

return O;

void vadd(struct v a, struct v b, struct v *c¢) /* Add vectors. */

{

c—>i = a.i + b.i;
c->j = a.j + b.j;
c—>k = a.k + b.k;

double vangle(struct v a, struct v b) /* Get angle between vectors.
{

double c;

c=vdot(a, b) / (vhorm(a) * vnorm(b));

return acos(c);

void vcross(struct v a, struct v b, struct v *c¢) /* Cross product.

{
c—>i =a.j *b.k - a.k * b.j;
c->j = a.k * b.i - a.i * b.k;

c>k = a.i *b.j - a.j * b.i;

double vdot(struct v a, struct v b) /* Dot product of vectors. */

{
return a.i * b.i + a.j * b.j + a.k * b.k;

double vnorm (struct v a) /* Norm of vectors. */

{

return sqrt(a.i * a.i + a.j * a.j + a.k * a.k);

void vprint (struct v a) /* Print vector. */

{
printf(" I = %6.2f J = %6.2f K = %6.2f\n", a.i, a.j, a.k);

void vsub (struct v a, struct v b, struct v *¢) /* Subtract vectors.

{

c—>i

a.i - b.i;

c->j = a.j - b.j;

*/

*/

*/

A Little C Primer/C Variables, Declarations and Constants 30

c—>k = a.k - b.k;

* The concept of local and global variables should be clear by now. It is

also possible to declare a local variable as "static", meaning it retains its value from one invocation of the function to

the next. For example:

#include <stdio.h>

void testfunc(void);

int main ()

{
int ctr;
for(ctr = 1; ctr <= 8; ++ctr)
{
testfunc();
}
return O;
}

void testfunc(void)

{
static int v;
printf("%d\n", 2*v);
++v;

}

This prints:

-- since the initial value of a integer is O by default. It is not a good idea to rely on a default value!
* There are two other variable declarations that should be recognized, though

there's little reason to use them: "register", which declares that a variable should be assigned to a CPU register, and

"volatile", which tells the compiler that the contents of the variable may change spontaneously.

There is more and less than meets the eye to these declarations. The "register" declaration is discretionary: the

variable will be loaded into a CPU register if it can, and if not it will be loaded into memory as normal. Since a good

A Little C Primer/C Variables, Declarations and Constants

31

optimizing compiler will try to make the best use of CPU registers anyway, this is not in general all that useful a
thing to do.

The "volatile" declaration appears ridiculous at first sight, something like one of those "joke" computer commands
like "halt and catch fire". Actually, it's used to describe a hardware register that can change independently of
program operation, such as the register for a realtime clock.

e C s fairly flexible in conversions between data types. In many cases, the

type conversion will happen transparently. If a "char" is converted to a "short" data type, or an "int" is converted to a
"long" data type, for example, the converted data type can easily accommodate any value in the original data type.

Converting from a bigger to a smaller data type can lead to odd errors. The same is true for conversions between
signed and unsigned data types. For this reason, type conversions should be handled carefully, and it is usually

preferable to do them explicitly, using a "cast" operation. For example, a cast conversion can be performed from an

"int" value to a "float" value as follows:

int a;
float b;

b = (float)a;

e Itis possible to define custom "enumerated" types in C. For example:

enum day

{
saturday, sunday, monday, tuesday, wednesday, thursday, friday
}i

-- defines enumerated type "day" to consist of the values of the days of the week. In practice, the values are merely
text constants associated to a set of consecutive integer values. By default, the set begins at 0 and counts up, so here
"saturday" has the value 0, "sunday" has the value 1, and so on. Any set of number assignments can be specified if
desired:

enum temps

{
zero = 0, freeze = 32, boil = 220

};

Obviously much the same could be done with sets of "#define" directives, but this is a much cleaner solution. Once
the type is defined, for example, variables of that type can be declared as follows:

enum day today = wednesday;

A Little C Primer/C Variables, Declarations and Constants

32

The variable "today" will act as an "int" variable and will allow the operations valid for "int" variables. Once more,
remember that C doesn't do much in the way of bounds checking, and it is not wise to rely on the C compiler to give
warnings.

* Finally, a "typedef" declaration can be used to define custom data types:

typedef str ch[128];

Then variables of this type could be declared as follows:

str name;

A Little C Primer/C Operators

C supports the following arithmetic operators:

c=a*b multiplication
c=a/b division

c=a%b mod (remainder division)
c=a+b addition

c=a->b subtraction

It also supports the following useful (if cryptic) "increment" and "decrement" operators:

++a increment

==a decrement

These operators can also be expressed as "a++" and "a--". If the only thing that's needed is an increment or
decrement, the distinction between the two forms is irrelevant. However, if a variable is being incremented or
decremented as a component of some expression, then "++a" means "increment the variable first, then get its value",
while "a++" means "get the value of the variable first, then increment it". Failing to remember this distinction can

lead to subtle programming errors.

Finally, C supports a set of bitwise operations:

a = ~a bit complement

a =Db << c shift b left by number of bits stored in c
a=Db > c shift b right by number of bits stored in c
a =>b & c b AND c

a=Db " c b XOR c

a=>b | c b OR c¢

C allows math operations to be performed in a shortcut fashion:

operation shortcut

a *b a *

al/b a /

([
o O

33

A Little C Primer/C Operators
a=as%hb a %= b
a=a+b a +t=b
a=a->b a =>
a =a <<b a <<= b
a=a>»> a >>=Db
a=aé&b a &= b
a=a”b a *=>
a=a | b a |=>b

The C relational operations were discussed in the previous chapter and are repeated here for completeness:

a =—=>b equals

a !'=Db not equals

a <b less than

a>b greater than

a <=b less than or equals

a > b greater than or equals

These are actually math operations that yield 1 if true and O if false. The following operation actually makes

syntactic sense:
a=b* (b<2) +10 * (b > 2);
This would give "a" the value "b" if "b" is less than 2, and the value "10" otherwise. This is cute, but not

recommended. It's cryptic; may make porting to other languages more difficult; and in this case, it can be done much

more effectively with the conditional operator discussed in the previous chapter:
a=(b<2)?2Db: 10;

This conditional operator is also known as the "triadic" operator.

There are similar logical operators:

! logical NOT
&& logical AND
| logical OR

Remember that these are logical operations, not bitwise operations -- don't confuse "&&" and "lI" with "&" and
The distinction is that while the bitwise operators perform the operations on a bit-by-bit basis, the logical operations
simply assess the values of their operands to be either 0 or 1 (any nonzero operand value evaluates to 1 in such

comparisons) and return either a O or a 1:

if((A ==) && (B == 10))
{

Finally, there is a "sizeof" operand that returns the size of a particular operand in bytes:

int tvar;

printf ("Size = %d\n", sizeof(int));

A Little C Primer/C Operators 34

This comes in handy for some mass storage operations. The "sizeof()" function can be given a data type name or the

name of a variable , and the variable can be an array, in which case "sizeof()" gives the size of the entire array.

The precedence of these operators in math functions -- that is, which ones are evaluated before others -- are defined
as follows, reading from the highest precedence to the lowest:

0 [] >

! ~ +4 == (cast) & sizeof - (minus prefix)
/ %

+ _

<< >>

< <= > >=

== =

&

A

|

&&

[

?:

= += = *= /= %= >>= <<= 5=

Of course, parentheses can be used to control precedence. If in doubt about the order of evaluation of an expression,
add more parentheses. They won't cause any trouble and might save some pain.

Advanced math operations are available as library functions. These will be discussed in a later chapter.

A Little C Primer/C Preprocessor Directives

35

A Little C Primer/C Preprocessor Directives

We've already seen the "#include" and "#define" preprocessor directives. The C preprocessor supports several other

directives as well. All such directives start with a "#" to allow them to be distinguished from C language commands.

As explained in the first chapter, the "#include" directive allows the contents of other files in C source code:

#include <stdio.h>

Notice that the standard header file "stdio.h" is specified in angle brackets. This tells the C preprocessor that the file
can be found in the standard directories designated by the C compiler for header files. To include a file from a

nonstandard directory, use double quotes:
#include "\home\mydefs.h"

Include files can be nested. They can call other include files.

Also as explained in the first chapter, the "#define" directive can be used to specify symbols to be substituted for

specific strings of text:

#define PI 3.141592654

a = PI b;

In this case, the preprocessor does a simple text substitution on PI throughout the source listing. The C compiler

proper not only does not know what Pl is, it never even sees it.

The "#define" directive can be used to create function-like macros that allow parameter substitution. For example:

#define ABS (value) ((value) >=0 ? (value) : —(value))

This macro could then be used in an expression as follows:

printf ("Absolute value of x = %d\n", ABS(x));

Beware that such function-like macros don't behave exactly like true functions. For example, suppose "x++" is as an

argument for the macro above:

val = ABS (x++);

This would result in "x" being incremented three times because "x++" is substituted in the expression three times:
val = ((x++) >=0 ? (x++) : —(x++))

Along with the "#define" directive, there is also an "#undef" directive that undefines a constant that has been
previously defined:

#undef PI

Another feature supported by the C preprocessor is conditional compilation, using the following directives:
#if
#else

#elif
#endif

These directives can test the values of defined constants to define which blocks of code are passed on to the C

compiler proper:

A Little C Primer/C Preprocessor Directives

36

#if WIN ==
#include "WIN.H"
#elif MAC ==
#include "MAC.H"
#else

#include "LINUX.H"

#endif

These directives can be nested if needed. The "#if" and "#elif" can also test to see if a constant has been defined at

all, using the "defined" operator:

#if defined(DEBUG)
printf ("Debug mode!\n");
#endif

-- or test to see if a constant has not been defined:

#if !defined(DEBUG)
printf ("Not debug mode!\n");
#endif

Finally, there is a "#pragma" directive, which by definition is a catch-all used to implement machine-unique
commands that are not part of the C language. Pragmas vary from compiler to compiler, since they are by definition

nonstandard.

37

C Input & Output

A Little C Primer/C Console 10

This chapter covers console (keyboard/display) and file I/O. You've already seen one console-I/O function,
"printf()", and there are several others. C has two separate approaches toward file I/O, one based on library functions
that is similar to console I/O, and a second that uses "system calls". These topics are discussed in detail below.

Console I/O in general means communications with the computer's keyboard and display. However, in most modern
operating systems the keyboard and display are simply the default input and output devices, and user can easily
redirect input from, say, a file or other program and redirect output to, say, a serial I/O port:

type infile > myprog > com

The program itself, "myprog", doesn't know the difference. The program uses console I/O to simply read its
"standard input (stdin)" -- which might be the keyboard, a file dump, or the output of some other program -- and
print to its "standard output (stdout)" -- which might be the display or printer or another program or a file. The
program itself neither knows nor cares.

Console I/O requires the declaration:

#include <stdio.h>

Useful functions include:

printf () Print a formatted string to stdout.
scanf () Read formatted data from stdin.
putchar () Print a single character to stdout.
getchar () Read a single character from stdin.
puts () Print a string to stdout.

gets () Read a line from stdin.

Windows-based compilers also have an alternative library of console I/O functions. These functions require the
declaration:

#include <conio.h>

The three most useful Windows console 1I/O functions are:

getch () Get a character from the keyboard (no need to press Enter).
getche () Get a character from the keyboard and echo it.
kbhit () Check to see if a key has been pressed.

The "printf()" function, as explained previously, prints a string that may include formatted data:

printf("This is a test!\n");

-- which can include the contents of variables:

printf ("Valuel: %d Value2: %f\n", intval, floatval);

The available format codes are:

A Little C Primer/C Console 10

sd decimal integer

%1d long decimal integer

%scC character

%s string

e floating-point number in exponential notation
st floating-point number in decimal notation

%g use %e and %f, whichever is shorter

su unsigned decimal integer

%0 unsigned octal integer

EP unsigned hex integer

Using the wrong format code for a particular data type can lead to bizarre output. Further control can be obtained
with modifier codes; for example, a numeric prefix can be included to specify the minimum field width:

%10d

This specifies a minimum field width of ten characters. If the field width is too small, a wider field will be used.
Adding a minus sign:

%-10d
-- causes the text to be left-justified. A numeric precision can also be specified:

%6.3f

This specifies three digits of precision in a field six characters wide. A string precision can be specified as well, to

indicate the maximum number of characters to be printed. For example:

/% PEEIRE.e */

#include <stdio.h>

int main (void)

{

printf ("<%d>\n", 336);
printf ("<%2d>\n", 336);
printf ("<%10d>\n", 336);
printf ("<%-10d>\n", 336);

return 0;

This prints:

<336>
<336>
< 336>
<336 >

Similarly:

/* prfloat.c */

#include <stdio.h>

A Little C Primer/C Console 10

int main (void)
{

("<%f>\n", 1234.56);

("<%e>\n", 1234.56);
printf ("<%4.2f>\n", 1234.56);
printf ("<%3.1f>\n", 1234.56);

("<%10.3f>\n", 1234.56);

("<%10.3e>\n", 1234.56)

printf
printf

printf
printf g

return 0;

-- prints:

<1234.560000>
<1.234560e+03>
<1234.56>
<1234.6>

< 1234.560>

< 1.234e+03>

And finally:

/* prtstr.c */

#include <stdio.h>

int main (void)

{

printf("<%2s>\n", "Barney must die!");
printf("<%22s>\n", "Barney must die!");

printf("<%22.5s>\n", "Barney must die!");
printf("<%-22.5s>\n", "Barney must die!");

return 0;

-- prints:

<Barney must die!>

< Barney must die!>
< Barne>
<Barne >

Just for convenience, the table of special characters listed in chapter 2 is repeated here. These characters can be

embedded in "printf" strings:

"\a' alarm (beep) character
"\p' backspace
"\f' formfeed

U\ © newline

40

A Little C Primer/C Console 10
"\r' carriage return
"\t horizontal tab
"\v' vertical tab
"\ backslash
"\?! question mark
A single quote
A" double quote
"\ONN" character code in octal
'"\xNN' character code in hex
"\O"' null character

The "scanf()" function reads formatted data using a syntax similar to that of "printf", except that it requires pointers

as parameters, since it has to return values. For example:

/* cscanf.c */

#include <stdio.h>

int main (void)
{
int val;

char name[256];

printf ("Enter your age and name.\n");
scanf ("%d %s", &val, name);
printf("Your name is: %$s —-- and your age is: %d\n", name, val);

return 0;

There is no "&" in front of "name" since the name of a string is already a pointer. Input fields are separated by
whitespace (space, tab, or newline), though a count, for example "%10d", can be included to define a specific field

width. Formatting codes are the same as for "printf()", except:
* There is no "%g" format code.

* The "%f" and "%e" format codes work the same.

* There is a "%h" format code for reading short integers.

If characters are included in the format code, "scanf()" will read in the characters and discard them. For example, if

the example above were modified as follows:

no

scanf ("%d, %s", &val, name);

-- then "scanf()" will assume that the two input values are comma-separated and swallow the comma when it is

encountered.
If a format code is preceded with an asterisk, the data will be read and discarded. For example, if the example were
changed to:

scanf ("%d%*c%s", &val, name);

non

-- then if the two fields were separated by a ":", that character would be read in and discarded.

The "scanf()" function will return the value EOF (an "int"), defined in "stdio.h", when its input is terminated.

A Little C Primer/C Console 10

41

The "putchar()" and "getchar()" functions handle single character I/O. For example, the following program accepts

characters from standard input one at a time:

/55 AEUIE @ W/

#include <stdio.h>

int main (void)
{

unsigned int ch;

while ((ch = getchar()) != EOF)

{
putchar(ch);

}

return 0;

The "getchar" function returns an "int" and also terminates with an EOF. Notice the neat way C allows a program to
get a value and then test it in the same expression, a particularly useful feature for handling loops.

One word of warning on single-character I/O: if a program is reading characters from the keyboard, most operating
systems won't send the characters to the program until the user presses the "Enter" key, meaning it's not possible to
perform single-character keyboard I/O this way.

The little program above is the essential core of a character-mode text "filter", a program that can perform some
transformation between standard input and standard output. Such a filter can be used as an element to construct more

sophisticated applications:

type file.txt > filterl | filter2 > outfile.txt

The following filter capitalizes the first character in each word in the input. The program operates as a "state
machine", using a variable that can be set to different values, or "states", to control its operating mode. It has two
states: SEEK, in which it is looking for the first character, and REPLACE, in which it is looking for the end of a
word.

In SEEK state, it scans through whitespace (space, tab, or newline), echoing characters. If it finds a printing
character, it converts it to uppercase and goes to REPLACE state. In REPLACE state, it converts characters to
lowercase until it hits whitespace, and then goes back to SEEK state.

The program uses the "tolower()" and "toupper()" functions to make case conversions. These two functions will be
discussed in the next chapter.

/* caps.c */

#include <stdio.h>

#include <ctype.h>

#define SEEK 0
#define REPLACE 1

int main (void)

{

A Little C Primer/C Console 10

int ch, state = SEEK;
while((ch = getchar()) != EOF)
{
switch(state)
{
case REPLACE:
switch(ch)
{

case

case '\t':

case '\n': state = SEEK;
break;

default: ch = tolower(ch);
break;

}

break;

case SEEK:

switch(ch)

{

case ' ':

case '\t':

case '\n': break;

default: ch = toupper(ch);

state = REPLACE;

break;

}
putchar(ch);

}

return 0;

The "puts()" function is like a simplified version of "printf()" without format codes. It prints a string that is

automatically terminated with a newline:

puts("Hello world!");

The "fgets()" function is particularly useful: it allows reads a line of text terminated by a newline. It is much less

finicky about its inputs than "scanf()":

/* cgets.c */

#include <stdio.h>

#include <string.h>
#include <stdlib.h>

int main (void)

{

A Little C Primer/C Console 10

43

char word[256],

*guess = "blue\n";
int i, n = 0;
puts("Guess a color (use lower case please):");
while (fgets(word, 256, stdin) != NULL)

{
if(strcmp(word, guess) ==)
{
puts("You win!");
break;

}

else

{
puts("No, try again.");

}

return 0;

}

This program includes the "strcmp" function, which performs string comparisons and returns O on a match. This

function is described in more detail in the next chapter.

These functions can be used to implement filters that operate on lines of text, instead of characters. A core program
for such filters follows:

/* 1lfilter.c */

#include <stdio.h>

int main (void)
{
char b[256];
while ((gets(b)) != NULL)
{
puts(b);
}

return 0;

The "fgets()" function returns NULL, defined in "stdio.h", on input termination or error.

The Windows-based console-I/O functions "getch()" and "getche()" operate much as "getchar()" does, except that

"getche()" echoes the character automatically.

The "kbhit()" function is very different in that it only indicates if a key has been pressed or not. It returns a nonzero
value if a key has been pressed, and zero if it hasn't. This allows a program to poll the keyboard for input, instead of
hanging on keyboard input and waiting for something to happen. As mentioned, these functions require the "conio.h"
header file, not the "stdio.h" header file

A Little C Primer/C File-10 Through Library Functions

44

A Little C Primer/C File-10 Through Library
Functions

The file-1/O library functions are much like the console-I/O functions. In fact, most of the console-I/O functions can

be thought of as special cases of the file-I/O functions. The library functions include:

fopen () Create or open a file for reading or writing.
fclose () Close a file after reading or writing it.
fseek () Seek to a certain location in a file.

rewind () Rewind a file back to its beginning and leave it open.
rename () Rename a file.

remove () Delete a file.

fprintf () Formatted write.

fscanf () Formatted read.

fwrite () Unformatted write.

fread() Unformatted read.

putc () Write a single byte to a file.

getc () Read a single byte from a file.

fputs () Write a string to a file.

fgets () Read a string from a file.

All these library functions depend on definitions made in the "stdio.h" header file, and so require the declaration:

#include <stdio.h>

C documentation normally refers to these functions as performing "stream I/O", not "file I/O". The distinction is that
they could just as well handle data being transferred through a modem as a file, and so the more general term "data
stream" is used rather than "file". However, we'll stay with the "file" terminology in this document for the sake of
simplicity.

The "fopen()" function opens and, if need be, creates a file. Its syntax is:

<file pointer> = fopen(<filename>, <access mode>);

The "fopen()" function returns a "file pointer", declared as follows:
FILE *<file pointer>;

The file pointer will be returned with the value NULL, defined in "stdio.h", if there is an error. The "access modes"

are defined as follows:

Open for reading.

w Open and wipe (or create) for writing.

Append ——- open (or create) to write to end of file.
r+ Open a file for reading and writing.
w+ Open and wipe (or create) for reading and writing.
a+ Open a file for reading and appending.

The "filename" is simply a string of characters.

A Little C Primer/C File-10 Through Library Functions

45

It is often useful to use the same statements to communicate either with files or with standard I/O. For this reason,
the "stdio.h" header file includes predefined file pointers with the names "stdin" and "stdout". There's no 't need to do

an "fopen()" on them -- they can just be assigned to a file pointer:

fpin = stdin;
fpout = stdout;

-- and any following file-I/O functions won't know the difference.

The "fclose()" function simply closes the file given by its file pointer parameter. It has the syntax:

fclose(fp);

The "fseek()" function call allows the byte location in a file to be selected for reading or writing. It has the syntax:

fseek (<file_pointer>, <offset>, <origin>);

The offset is a "long" and specifies the offset into the file, in bytes. The "origin" is an "int" and is one of three

standard values, defined in "stdio.h":

SEEK_SET Start of file.
SEEK_CUR Current location.
SEEK_END End of file.

The "fseek()" function returns 0 on success and non-zero on failure.

The "rewind()", "rename()", and "remove()" functions are straightforward. The "rewind()" function resets an open

file back to its beginning. It has the syntax:
rewind(<file_pointer>);
The "rename()" function changes the name of a file:
rename (<old_file name_string>, <new_file_name_string>);
The "remove()" function deletes a file:
remove (<file_name_string>)
The "fprintf()" function allows formatted ASCII data output to a file, and has the syntax:

fprintf(<file pointer>, <string>, <variable list>);

The "fprintf()" function is identical in syntax to "printf()", except for the addition of a file pointer parameter. For

example, the "fprintf()" call in this little program:

/* fprpi.c */

#include <stdio.h>

void main ()

{
int nl = 16;
float n2 = 3.141592654f;
FILE *fp;

fp = fopen("data", "w");

A Little C Primer/C File-10 Through Library Functions

46

fpri
fclo

ntf(fp, " 3%d sf", nl,

se(fp);

-- stores the following ASCII data:

1

6

3.14159

n2);

The formatting codes are exactly the same as for "printf()":

sd decimal integer

%1d long decimal integer

%scC character

%s string

e floating-point number in exponential notation
st floating-point number in decimal notation

%g use %e and %f, whichever is shorter

su unsigned decimal integer

%0 unsigned octal integer

EP unsigned hex integer

Field-width specifiers can be used as well. The "fprintf()" function returns the number of characters it dumps to the

file, or a negative number if it terminates with an error.
The "fscanf()" function is to "fprintf()" what "scanf()" is to "printf()": it reads ASCII-formatted data into a list of

variables. It has the syntax:

fscanf (<file pointer>, <string>, <variable list>);

However, the "string" contains only format codes, no text, and the "variable list" contains the addresses of the
variables, not the variables themselves. For example, the program below reads back the two numbers that were

stored with "fprintf()" in the last example:

/* frdata.c */

#include <stdio.h>

void main ()
{
int nl;
float n2;
FILE *fp;

fp = fopen("data", "r");
fscanf (fp, "%d %f", &nl, &n2);
printf ("%d %$f", nl, n2);
fclose(fp);

The "fscanf()" function uses the same format codes as "fprintf()", with the familiar exceptions:
e There is no "%g" format code.

¢ The "%f" and "%e" format codes work the same.

A Little C Primer/C File-10 Through Library Functions

* There is a "%h" format code for reading short integers.

Numeric modifiers can be used, of course. The "fscanf()" function returns the number of items that it successfully

read, or the EOF code, an "int", if it encounters the end of the file or an error.

The following program demonstrates the use of "fprintf()" and "fscanf()":

/% EpEsC.e */

#include <stdio.h>

void main ()

{
int ctr, i1[3], nl = 16, n2 = 256;
float f[4], n3 = 3.141592654f;
FILE *fp;

fp = fopen("data", "w+");

/* Write data in: decimal integer formats
decimal, octal, hex integer formats
floating-point formats */

fprintf(fp, "%d %$10d %-10d \n", nl, nl, nl);

fprintf(fp, "%d %o %$x \n", n2, n2, n2);

fprintf(fp, "%$f %10.10f %e %5.4e \n", n3, n3, n3, n3);

/* Rewind file. */

rewind(fp);

/* Read back data. */

puts("");
fscanf (fp, "%d %d %d", &i[0], &if[l], &i[2]);
printf(" $d\t%sd\tsdn", i[0], 1i[1], 1[2]);
fscanf (fp, "%d %o %x", &1i[0], &if[l1l], &i[2]);
printf(" $d\tsd\t&d\n", i[0], 1i[1]1, 1[2]);
fscanf (fp, "%f %f %f %f", &f[0], &f[1l], &f[2], &£[3]);
printf(" SENtSENtSENtSf\n", £[0], f£[1], f[2], f£I3]);

fclose(fp);

The program generates the output:

16 16
256 256
3.141593 3.141593

The "fwrite()" and "fread()" functions are used for binary file I/O. The syntax of "fwrite()" is as follows:

16
256
3.141593 3.141600

A Little C Primer/C File-10 Through Library Functions

48

fwrite(<array_pointer>, <element_size>, <count>, <file_pointer>);

The array pointer is of type "void", and so the array can be of any type. The element size and count, which give the
number of bytes in each array element and the number of elements in the array, are of type "size_t", which are
equivalent to "unsigned int".

The "fread()" function similarly has the syntax:

fread(<array_pointer>, <element_size>, <count>, <file_pointer>);

The "fread()" function returns the number of items it actually read.

The following program stores an array of data to a file and then reads it back using "fwrite()" and "fread()":

/* fwrrd.c */

#include <stdio.h>

#include <math.h>

#define SIZE 20

void main ()

{

int n;

float d[SIZE];

FILE *fp;

for(n = 0; n < SIZE; ++n) /* Fill array with roots. */

{
d[n] = (float)sqgrt((double)n);
}

fp = fopen("data", "w+"); /* Open file. */
fwrite(d, sizeof(float), SIZE, fp); /* Write it to file. */
rewind(fp); /* Rewind file. */
fread(d, sizeof(float), SIZE, fp); /* Read back data. */
for(n = 0; n < SIZE; ++n) /* Print array. */

{
printf("%d: $7.3f\n", n, d[n]);
}
fclose(fp); /* Close file. */

The "putc()" function is used to write a single character to an open file. It has the syntax:

putc(<character>, <file pointer>);

The "getc()" function similarly gets a single character from an open file. It has the syntax:

<character variable> = getc(<file pointer>);

The "getc()" function returns "EOF" on error. The console I/O functions "putchar()" and "getchar()" are really only
special cases of "putc()" and

A Little C Primer/C File-10 Through Library Functions

"getc()" that use standard output and input.

The "fputs()" function writes a string to a file. It has the syntax:
fputs(<string / character array>, <file pointer>);
The "fputs()" function will return an EOF value on error. For example:
fputs("This is a test", fptr);
The "fgets()" function reads a string of characters from a file. It has the syntax:
fgets(<string>, <max_string_length>, <file_pointer>);

The "fgets" function reads a string from a file until if finds a newline or grabs <string_length-1> characters. It will
return the value NULL on an error.

The following example program simply opens a file and copies it to another file, using "fgets()" and "fputs()":

/* fcopy.c */

#include <stdio.h>

#define MAX 256

void main ()

{
FILE *src, *dst;
char b[MAX];

/* Try to open source and destination files. */

if ((src = fopen("infile.txt", "r")) == NULL)
{
puts("Can't open input file.");
exit () ;
}
if ((dst = fopen("outfile.txt", "w")) == NULL)

puts("Can't open output file.");
fclose(src);

exit () ;

/* Copy one file to the next. */

while((fgets(b, MAX, src)) != NULL)

{
fputs(b, dst);

A Little C Primer/C File-10 Through Library Functions

50

/* All done, close up shop. */

fclose(src);

fclose(dst);

A Little C Primer/C File-IO Through System
Calls

File-I/O through system calls is simpler and operates at a lower level than making calls to the C file-I/O library.

There are seven fundamental file-I/O system calls:

creat () Create a file for reading or writing.
open () Open a file for reading or writing.
close () Close a file after reading or writing.
unlink () Delete a file.

write () Write bytes to file.

read () Read bytes from file.

These calls were devised for the UNIX operating system and are not part of the ANSI C spec.

Use of these system calls requires a header file named "fentl.h":

#include <fcntl.h>

The "creat()" system call, of course, creates a file. It has the syntax:

<file descriptor variable> = creat (<filename>, <protection bits>);

This system call returns an integer, called a "file descriptor”, which is a number that identifies the file generated by
"creat()". This number is used by other system calls in the program to access the file. Should the "creat()" call

encounter an error, it will return a file descriptor value of -1.

The "filename" parameter gives the desired filename for the new file. The "permission bits" give the "access rights"
to the file. A file has three

"permissions" associated with it:
* Write permission:

Allows data to be written to the file.
* Read permission:

Allows data to be read from the file.

* Execute permission:

Designates that the file is a program that can be run.

These permissions can be set for three different levels:

e User level:

Permissions apply to individual user.

A Little C Primer/C File-1IO Through System Calls

51

* Group level:

Permissions apply to members of user's defined "group".

e System level:

Permissions apply to everyone on the system.

For the "creat()" system call, the permissions are expressed in octal, with an octal digit giving the three permission
bits for each level of permissions. In octal, the permission settings:
0644
-- grant read and write permissions for the user, but only read permissions for group and system. The following octal
number gives all permissions to everyone:

0777

An attempt to "creat()" an existing file (for which the program has write permission) will not return an error. It will

instead wipe the contents of the file and return a file descriptor for it.

For example, to create a file named "data" with read and write permission for everyone on the system would require

the following statements:

#define RD_WR 0666
int £d; /Define file descriptor. */
fd = creat ("data", RD_WR);
The "open()" system call opens an existing file for reading or writing. It has the syntax:
<file descriptor variable> = open(<filename>, <access mode>);

The "open()" call is similar to the "creat()" call in that it returns a file descriptor for the given file, and returns a file
descriptor of -1 if it encounters an error. However, the second parameter is an "access mode", not a permission code.

There are three modes (defined in the "fcntl.h" header file):

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

For example, to open "data" for writing, assuming that the file had been created by another program, the following

statements would be used:

int fd;
fd = open("data", O_WRONLY);

A few additional comments before proceeding:
e A "creat()" call implies an "open()". There is no need to "creat()" a file and then "open()" it.

» There is an operating-system-dependent limit on the number of files that a program can have open at any one
time.
* The file descriptor is no more than an arbitrary number that a program uses to distinguish one open file for

another. When a file is closed, re-opening it again will probably not give it the same file descriptor.

The "close()" system call is very simple. All it does is "close()" an open file when there is no further need to access

it. The "close()" system call has the syntax:

A Little C Primer/C File-1IO Through System Calls

52

close(<file descriptor>);
The "close()" call returns a value of 0 if it succeeds, and returns -1 if it encounters an error.
The "unlink()" system call deletes a file. It has the syntax:
unlink (<file_name_string>);
It returns O on success and -1 on failure.
The "write()" system call writes data to an open file. It has the syntax:

write(<file descriptor>, <buffer>, <buffer length>);

The file descriptor is returned by a "creat()" or "open()" system call. The "buffer" is a pointer to a variable or an

array that contains the data; and the "buffer length" gives the number of bytes to be written into the file.

While different data types may have different byte lengths on different systems, the "sizeof()" statement can be used
to provide the proper buffer length in bytes. A "write()" call could be specified as follows:

float array[10];

write(fd, array, sizeof(array));

The "write()" function returns the number of bytes it actually writes. It will return -1 on an error.

The "read()" system call reads data from a open file. Its syntax is exactly the same as that of the "write()" call:

read(<file descriptor>, <buffer>, <buffer length>);

The "read()" function returns the number of bytes it actually returns. At the end of file it returns O, or returns -1 on

€rror.

53

C Library Functions & Other Comments

A Little C Primer/C Math Library

This chapter discusses some useful standard C libraries:

math library

standard utility library
the "sprintf()" function
string function library
character class test library

And the following minor topics:

command-line arguments

dynamic memory allocation

pointers to functions

PC memory model and other declarations
troubleshooting hints

The math library requires the declaration:

#include <math.h>

The math functions consist of:

sin(x) Sine of x.

cos(x) Cosine of x.

tan(x) Tangent of x.

asin(x) Inverse sine of x.

acos(x) Inverse cosine of x.

atan(x) Inverse tangent of x.

sinh(x) Hyperbolic sine of x.

cosh(x) Hyperbolic cosine of x.

tanh(x) Hyperbolic tangent of x.

exp(x) Exponential function -- e”x.

log(x) Natural log of x.

loglO(x) Base 10 log of x.

pow(X, y) Power function -- x"y.

sgrt (x) Square root of x.

ceil(x) Smallest integer not less than x, returned as double.
floor(x) Greatest integer not greater than x, returned as double.
fabs (x) Absolute value of x.

All values are "doubles", and trig values are expressed in radians.

A Little C Primer/C Standard Utility Library & Time Library

54

A Little C Primer/C Standard Utility Library &
Time Library

The utility functions library features a grab-bag of functions. It requires the declaration:

#include <stdlib.h>

Useful functions include:

atof (<string>) Convert numeric string to double wvalue.

atoi(<string>) Convert numeric string to int value.

atol (<string>) Convert numeric string to long value.

rand () Generates pseudorandom integer.

srand (<seed>) Seed random-number generator —- "seed" is an "int".
exit (<status>) Exits program —-- "status" is an "int".

system(<string>) Tells system to execute program given by "string".
abs(n) Absolute value of "int" argument.

labs(n) Absolute value of long-int argument.

The functions "atof()", "atoi()", and "atol()" will return O if they can't convert the string given them into a value.
The time and date library includes a wide variety of functions, some of them obscure and nonstandard. This library

requires the declaration:

#include <time.h>

The most essential function is "time()", which returns the number of seconds since midnight proleptic Coordinated
Universal Time (UTC) of January 1, 1970, not counting leap seconds. It returns a value as "time_t" (a "long") as
defined in the header file.

The following function uses "time()" to implement a program delay with resolution in seconds:

/delay.c */

#include <stdio.h>

#include <time.h>

void sleep(time_t delay);

void main ()

{
puts("Delaying for 3 seconds."”");
sleep(3);

puts("Done!");

void sleep(time_t delay)
{

time_t tO0, tl;

time(&t0);

A Little C Primer/C Standard Utility Library & Time Library

55

do
{
time (&tl);
}
while ((tl - t0) < delay);
}

The "ctime()" function converts the time value returned by "time()" into a time-and-date string. The following little

program prints the current time and date:

/time.c */

#include <stdio.h>

#include <time.h>

void main ()
{

time_t *t;

time (t);

puts(ctime(t));
}

This program prints a string of the form:

Tue Dec 27 15:18:16 1994

further reading

* C Programming/Standard libraries
* C Programming/C Reference

* C++ Programming/Code/Standard C Library

http://en.wikibooks.org/w/index.php?title=C_Programming/Standard_libraries
http://en.wikibooks.org/w/index.php?title=C_Programming/C_Reference
http://en.wikibooks.org/w/index.php?title=C%2B%2B_Programming/Code/Standard_C_Library

A Little C Primer/The C sprintf Function

56

A Little C Primer/The C sprintf Function

The "sprintf" function creates strings with formatted data. Technically speaking, this is part of the standard-1/O
library, and requires the declaration:

#include <stdio.h>
However, it is really a string function and needs to be discussed along with the other string functions. The syntax of

"sprintf()" is exactly the same as it is for "printf()", except there is an extra parameter at the beginning, which is a

pointer to a string. Instead of outputting to standard output, sprintf outputs to the string. For example:

/* csprntf.c */
#include <stdio.h>

int main ()
{
char b[100];
int i = 42;
float £ = 1.1234f;
sprintf(b, "Formatted data: %d / %f", i, f);
puts(b);
}

-- prints the string:

Formatted data: 42 / 1.1234

There is also an "sscanf()" function that similarly mirrors "scanf()" functionality.

C STRING FUNCTION LIBRARY

moved to A Little C Primer/C String Function Library

A Little C Primer/C String Function Library

57

A Little C Primer/C String Function Library

The string-function library requires the declaration:

#include <string.h>

The most important string functions are as follows:

strlen () Get length of a string.
strcpy () Copy one string to another.
strcat () Link together (concatenate) two strings.
strcmp () Compare two strings.
strchr () Find character in string.
strstr () Find string in string.
strlwr () Convert string to lowercase.
strupr () Convert string to uppercase.
strlen()

The "strlen()" function gives the length of a string, not including the NUL character at the end:

/* strlen.c */

#include <stdio.h>

finclude <string.h>

int main ()

{
char *t = "XXX";
printf ("Length of <%s> is %d.\n", t, strlen(t));

This prints:

Length of <XXX> is 3.

strepy()

The "strcpy"” function copies one string from another. For example:

/* strcpy.c */

#include <stdio.h>

#include <string.h>

int main ()
{
char s1[100],
s2[1007;
strcpy(sl, "string 1");
strcpy (s2, "string 2");

A Little C Primer/C String Function Library

58

puts("Original strings: ");

4

puts

4

4

s2

(
()
puts(sl)
puts ()
()

4

puts

strcpy (s2, sl);

puts("New strings: ");
puts("");
puts(sl);
puts(s2);
}
This will print:

Original strings:

string 1
string 2

New strings:

string 1
string 1
Please be aware of two features of this program:

* This program assumes that "s1" has enough space to store the final string. The "strcpy()" function won't bother to

check, and will give erroneous results if that is not the case.

* A string constant can be used as the source string instead of a string variable. Using a string constant for the

destination, of course, makes no sense.

These comments are applicable to most of the other string functions.

strncpy()

There is a variant form of "strcpy" named "strncpy" that will copy "n" characters of the source string to the
destination string, presuming there are that many characters available in the source string. For example, if the

following change is made in the example program:

strncpy(s2, sl, 5);

-- then the results change to:

New strings:

string 1

string

Notice that the parameter "n" is declared "size_t", which is defined in "string.h".

A Little C Primer/C String Function Library

strcat()

The "strcat()" function joins two strings:

/* strcat.c */

#include <stdio.h>

#include <string.h>

int main ()
{
char s1[50],
s2[501];
strcpy (sl, "Tweedledee ");
strcpy(s2, "Tweedledum");
strcat (sl, s2);

puts(sl);

This prints:

Tweedledee Tweedledum

strncat()

There is a variant version of "strcat()" named "strncat()" that will append "n" characters of the source string to the
destination string. If the example above used "strncat()" with a length of 7:

strncat (sl, s2, 7);

-- the result would be:

Tweedledee Tweedle

Again, the length parameter is of type "size_t".

stremp()

The "strcmp()" function compares two strings:

/* strcmp.c */

#include <stdio.h>

#include <string.h>
#define ANSWER "blue"

int main ()
{
char t[100];
puts("What is the secret color?");
gets(t);
while (strcmp(t, ANSWER) != 0)
{

A Little C Primer/C String Function Library

60

puts("Wrong, try again.");
gets(t);

}

puts("Right!");

The "strcmp()" function returns a O for a successful comparison, and nonzero otherwise. The comparison is

case-sensitive, so answering "BLUE" or "Blue" won't work.

There are three alternate forms for "stremp()":

strncmp()
* A "strncmp()" function which, as might be guessed, compares "n" characters in the source string with the

destination string:

"strncmp(sl, s2, 6)".

stricmp()

e A "stricmp()" function that ignores case in comparisons.

strnicmp()

* A case-insensitive version of "strncmp" called "strnicmp".

strchr()

The "strchr” function finds the first occurrence of a character in a string. It returns a pointer to the character if it finds

it, and null if not. For example:

/> strchr.c */
#include <stdio.h>
#finclude <string.h>

int main ()
{
char *t = "MEAS:VOLT:DC?";
char *p;
P =t
puts(p);
while((p = strchr(p, ':')) != NULL)
{
puts(++p);

This prints:

MEAS :VOLT :DC?
VOLT:DC?
DC?

A Little C Primer/C String Function Library

61

"

The character is defined as a character constant, which C regards as an "int". Notice how the example program

increments the pointer before using it ("++p") so that it doesn't point to the ":" but to the character following it.

strrchr()

The "strrchr()" function is almost the same as "strchr()", except that it searches for the last occurrence of the

character in the string.

strstr()
The "strstr()" function is similar to "strchr()" except that it searches for a string, instead of a character. It also returns
a pointer:

char *s = "Black White Brown Blue Green";

puts(strstr(s, "Blue"));

strlwr() and strupr()

The "strlwr()" and "strupr()" functions simply perform lowercase or uppercase conversion on the source string. For

example:

/* casecvt.c */

#include <stdio.h>

#include <string.h>

int main ()

{
char *t = "Hey Barney hey!";
puts(strlwr(t));
puts(strupr(t));

-- prints:

hey barney hey!
HEY BARNEY HEY!

These two functions are only implemented in some compilers and are not part of ANSI C.

further reading

* C Programming/Strings
¢ C++ Programming/Code/IO/Streams/string

http://en.wikibooks.org/w/index.php?title=C_Programming/Strings
http://en.wikibooks.org/w/index.php?title=C%2B%2B_Programming/Code/IO/Streams/string

A Little C Primer/C Character Class Test Library

A Little C Primer/C Character Class Test
Library

These functions perform various tests on characters. They require the declaration:

#include <ctype.h>

The character is represented as an "int" and the functions return an "int". They return O if the test is false and non-0 if

the test is true:

isalnum(c) Character is alpha or digit.
isalpha(c) Character is alpha.
iscntrl(c) Character is control character.
isdigit (c) Character is decimal digit.
isgraph(c) Character is printing character (except space).
islower(c) Character is lower-case.
isprint (c) Character is printing character (including space) .
ispunct (c) Character i1s printing character but not space/alpha-digit.
isspace(c) Character is space, FF, LF, CR, HT, VT.
isupper(c) Character is upper-case.
isxdigit (c) Character is hex digit.

The library also contains two conversion functions that also accept and return an "int":

tolower(c) Convert to lower case.

toupper(c) Convert to upper case.

A Little C Primer/C Command Line Arguments

63

A Little C Primer/C Command Line Arguments

C allows a program to obtain the command line arguments provided when the executable is called, using two
optional parameters of "main()" named "argc (argument count)" and "argv (argument vector)".

The "argc" variable gives the count of the number of command-line parameters provided to the program. This count
includes the name of the program itself, so it will always have a value of at least one. The "argv" variable is a pointer

to the first element of an array of strings, with each element containing one of the command-line arguments.

The following example program demonstrates:

/* cmdline.c */

#include <stdio.h>

void main(int argc, char *argv[])
{
int ctr;
for(ctr=0; ctr < argc; ctr++)
{
puts (argvictr]);

If this program is run from the command line as follows:

stooges moe larry curley

-- the output is:

stooges
moe
larry

curley

In practice, the command line will probably take a number of arguments, some of which will indicate options or

non

switches, designated by a leading "-" or "/". Some of the switches may be specified separately or together, and some

may accept an associated parameter. Other arguments will be text strings, giving numbers, file names, or other data.
The following example program demonstrates parsing the command-line arguments for an arbitrary program. It
assumes that the legal option characters are "A", "B", "C", and "S", in either upper- or lower-case. The "S" option

must be followed by some string representing a parameter.

/* cparse.c */

#include <stdio.h>
#include <stdlib.h>

#include <string.h>

main(int argc, char *argv[])
{
int m, n, /* Loop counters. */

1, /* String length. */

A Little C Primer/C Command Line Arguments

64

Xy
clag
char s[256];

for(n = 1; n < argc; n+
{
switch((int)argv[n] [0
{
case '—-':
case '/': x = 0;
1l = strlen(
for(m = 1;
{
ch = (int)

switch(ch
{

case 'a
case 'A':
case 'b':
case 'B':
case 'C':
case 'd':
case 'D':
case 's':
case 'S':
default:

}

I X ==

break;

/* Exit code. */
/* Character buffer. */
/* String buffer. */

+) /* Scan through args. */

1) /*

/* Bail out if 1. */
argv[n]);
m < 1; ++m) /* Scan through options. */
argv([n] [m];

)

/* Legal options. */

printf("Option code = %c\n", ch);
break;
/* String parameter. */
if(m+ 1 >= 1)
{
puts("Illegal syntax —-- no string!");

exit (1);
}

else
{
strcpy(s, &argv[n] [m+1l]);
printf("String = %$s\n", s);
}
x = 1;
break;
printf("Illegal option code = %c\n", ch);
x = 1; /* Not legal option. */

exit (1);

break;

Check for option character.

*/

A Little C Primer/C Command Line Arguments

break;
default: printf("Text = %$s\n", argv[n]); /* Not option —- text. */
break;
}
}
puts("DONE!");

For a more practical example, here's a simple program, based on an example from the previous chapter, that attempts
to read the names of an input and output file from the command line. If no files are present, it uses standard input and
standard output instead. If one file is present, it is assumed to be the input file and opens up standard output. This is a

useful template for simple file-processing programs.

/* cpfile.c */

#include <stdio.h>
#include <stdlib.h>
#define MAX 256

void main(unsigned int argc, unsigned char *argv[])

{

FILE *src, *dst;
char b[MAX];

/* Try to open source and destination files. */

switch (argc)

{

case 1: /* No parameters, use stdin-stdout. */
src = stdin;

dst = stdout;

break;
case 2: /* One parameter —— use input file & stdout. */
if ((src = fopen(argv[l], "r")) == NULL)

{
puts("Can't open input file.\n");
exit(0);

}

dst = stdout;

break;
case 3: /* Two parameters —- use input and output files. */
if ((src = fopen(argv[l], "r")) == NULL)

{
puts("Can't open input file.\n");
exit (0);

A Little C Primer/C Command Line Arguments

66

}

if ((dst = fopen(argv[2], "w")) == NULL

{
puts("Can't open output file.\n"
exit (0);

}

break;
default: /* Too many parameters.
puts ("Wrong parameters.\n");

exit (0);

/* Copy one file to the next. */
while((fgets(b, MAX, src)) != NULL
{

fputs(b, dst);

/* All done, close up shop. */

fclose(src);
fclose(dst);

)i

*/

)

)

A Little C Primer/Pointers to C Functions

67

A Little C Primer/Pointers to C Functions

This document has explained how to declare pointers to variables, arrays, and structures in C. It is also possible to

define pointers to functions. This feature allows functions to be passed as arguments to other functions. This is useful

for, say, building a function that determines solutions to a range of math functions.

The syntax for declaring pointers to functions is obscure, and so let's start with an idiot example: declaring a pointer

to the standard library function "printf()":

/* ptrprt.c */
#include <stdio.h>

void main ()

{
int (*func_ptr) (); /* Declare the pointer. */
func_ptr = printf; /* Assign it a function. */

(*func_ptr) ("Printf is here!\n"); /* Execute the function. */

The function pointer has to be declared as the same type ("int" in this case) as the function it represents.

Next, let's pass function pointers to another function. This function will assume the functions passed to it are math

functions that accept double and return double values:

/* ptrroot.c */

#include <stdio.h>

#include <math.h>

void testfunc (char *name, double (*func_ptr) ());

void main ()
{

testfunc("square root", sqrt);

void testfunc (char *name, double (*func_ptr) ())
{
double x, xinc;

int c;

printf("Testing function %$s:\n\n", name);
for(c=0; c < 20; ++c)
{
printf("%d: %f\n", c, (*func_ptr) ((double)c));

A Little C Primer/Pointers to C Functions

68

It is obvious that not all functions can be passed to "testfunc()". The function being passed must agree with the

expected number and type of parameters, as well as with the value returned.

A Little C Primer/C Dynamic Memory Allocation
& Deallocation

For simple programs, it is OK to just declare an array of a given size:

char buffer[1024]

In more sophisticated programs, this leads to trouble. There may be no way of knowing how big an array needs to be
for the specific task the program is performing, and so allocating an array in a fixed size will either result in wasted
memory or in not having enough to do the job.

The answer to this problem is to have the program allocate the memory at runtime, and that's what the "malloc()"

library function does. For example, let's use "malloc()" to allocate an array of "char":

/*malloc.c */

#include <stdio.h>

#include <stdlib.h> /*For "malloc", "exit" functions. */

int main ()
{
char *p; /*Pointer to array. */

unsigned count; /*Size of array. */

puts("Size of array?");

scanf ("%d", &count); /*Get size in bytes. */
p = malloc((size_t)count); /*Allocate array. */
if(p == NULL) /*Check for failure. */
{

puts("Can't allocate memory!");

exit(0);

}
puts("Allocated array!");
free(p); /*Release memory. */

return 0;

}

The header file "stdlib.h" must be included, and a pointer to the memory block to be allocated must be declared. The

"malloc()" function sets the pointer to the allocated memory block with:

p = malloc((size_t)count);

The count is in bytes and it is "cast" to the type of "size_t", which is defined in "stdlib.h". The pointer returned by
"malloc()" is assigned to the variable "p", which is of type "char *". In ANSI C, "malloc()" returns a pointer of type

"void *", which can be assigned to any other pointer type without a cast.

If the "malloc()" fails because it can't allocate the memory, it returns the value NULL (as defined in "stdio.h").

A Little C Primer/C Dynamic Memory Allocation & Deallocation

69

It is simple to allocate other data types:

int *buf;

buf = malloc((size_t)sizeof(int));

The "sizeof()" function is used to determine the number of bytes in the "int" data type.

When the programs finished using the memory block, it get rids of it using the "free" function:

free(p);

C also contains two other memory-allocation functions closely related to "malloc()": the "calloc()" function, which
performs the same function as "malloc()" but allows the block allocated to be specified in terms of number of
elements:

void *calloc(size_t <number_elements>, size_t <sizeof_ element_type>);

-- and the "realloc()" function, which reallocates the size of an array that's already been allocated:

void *realloc(void *<block_pointer>, size_t <size_in_bytes>);

A Little C Primer/Common Programming
Problems in C

There are a number of common programming pitfalls in C that even trap experienced programmers:

n_n

1: Confusing "=" (assignment operator) with "==" (equality operator). For example:

if (x =1){ /* wrong! */
}

if (x ==){ /* good. */
}
and
for (x == 1; ... /* wrong! */
for (x =1; ... /* good. */

2: Confusing precedence of operations in expressions. When in doubt, use parentheses to enforce precedence. It

never hurts to use a few extra parenthesis.

3: Confusing structure-member operators. If "struct_val" is a structure and "struct_ptr" is a pointer to a structure,
then:

struct_val->myname

-- is wrong and so is:

struct_ptr.myname

4: Using incorrect formatting codes for "printf()" and "scanf()". Using a "%f" to print an "int", for example, can lead

to bizarre output.

A Little C Primer/Common Programming Problems in C

70

5: Remember that the actual base index of an array is 0, and the final index is 1 less than the declared size. For

example:

int data[20];

for ((x = 1; x <= 20; ++x)
{
printf ("%d\n", datal[x]);

nyn

-- will give invalid results when "x" is 20. Since C does not do bounds checking, this one might be hard to catch.

6: Muddling syntax for multidimensional arrays. If:

data[10] [10]

-- is a two-dimensional array, then:

data[2] [7]

-- will select an element in that array. However:

datal[2, 7]

-- will give invalid results but not be flagged as an error by C.

7: Confusing strings and character constants. The following is a string:

"Y"

-- as opposed to the character constant:
] Y]

This can cause troubles in comparisons of strings against character constants.

8: Forgetting that strings end in a null character (\0'). This means that a string will always be one character bigger
than the text it stores. It can also cause trouble if a string is being created on a character-by-character basis, and the
program doesn't tack the null character onto the end of it.

9: Failing to allocate enough memory for a string -- or, if pointers are declared, to allocate any memory for it at all.

10: Failing to check return values from library functions. Most library functions return an error code; while it may

not be desirable to check every invocation of "printf()", be careful not to ignore error codes in critical operations.

Of course, forgetting to store the value returned by a function when that's the only way to get the value out of it is a
bonehead move, but people do things like that every now and then.

11: Having duplicate library-function names. The compiler will not always catch such bugs.
12: Forgetting to specify header files for library functions.

13: Specifying variables as parameters to functions when pointers are supposed to be specified, and the reverse. If

the function returns a value through a parameter, that means it must be specified as a pointer:

myfunc (&myvar);

The following will not do the job:

myfunc (myvar);

A Little C Primer/Common Programming Problems in C

71

Remember that a function may require a pointer as a parameter even if it doesn't return a value, though as a rule this

is not a good programming practice.

14: Getting mixed up when using nested "if" and "else" statements. The best way to avoid problems with this is to
always use brackets. Avoiding complicated "if" constructs is also a good idea; use "switch" if there's any choice in
the matter. Using "switch" is also useful even for simple "if" statements, since it makes it easier to expand the
construct if that is necessary.

15: Forgetting semicolons -- though the compiler usually catches this -- or adding one where it isn't supposed to be --
which it usually doesn't. For example:

for(x = 1; x < 10; ++x);
{
printf ("%d\n", x)

-- never prints anything.

16: Forgetting "break" statements in "switch" constructs. As commented earlier, doing so will simply cause
execution to flow from one clause of the "switch" to the next.

17: Careless mixing and misuse of signed and unsigned values, or of different data types. This can lead to some
insanely subtle bugs. One particular problem to watch out for is declaring single character variables as "unsigned
char". Many I/O functions will expect values of "unsigned int" and fail to properly flag EOF. It is recommended to

cast function arguments to the proper type even if it appears that type conversion will take care of it on its own.

18: Confusion of variable names. It is recommended that such identifiers be unique in the first 6 characters to ensure
portability of code.

19: In general, excessively tricky and clever code. Programs are nasty beasts and even if it works, it will have to be
modified and even ported to different languages. Maintain a clean structure and do the simple straightforward thing,
unless it imposes an unacceptable penalty.

72

C Quick Reference

A Little C Primer/C Quick Reference

This section contains a sample program to give syntax examples for fundamental C statements, followed by a list of

library routines. This list is very terse and simply provides reminders. If more details are needed, please refer to the

previous chapters.

/sample.c: a silly program to give syntax examples. */

#include <stdio.h> /Include header file for console I/0. */

int £1(int p); /Function prototypes. */
long f2(void);
long g; /Global variable. */

void main(int argc, char *argv[])

{
float f; /Declare variables. */
int ctr;

extern long g;

printf ("Arguments:\n\n");
for(ctr = 0; ctr < argc; ctr++)
{

puts (argvictr]);
}
printf ("\nFunction 1:\n\n");
ctr = 0;

while(ctr < 5)
{

printf ("$d\n", fl(ctr++));
}
printf("\nFunction 2:\n\n");
ctr = 0;
do
{

g = ctrt+;

printf ("$d\n", £2());

}
while(ctr < 5);

exit (0);

A Little C Primer/C Quick Reference

73

int f1(int p)

{

return (

long £2(
{
extern

return (

(p<3)?2p:pp);

void)
long g;
g g)

Console I/0O -- #include <stdio.h>:

int printf(char *s, <varlist>) > 0 Print formatted string to stdout.
int scanf(char *s, *<varlist>) != EOF Read formatted data from stdin.
int putchar(int ch) Print a character to stdout.

int getchar () != EOF Read a character from stdin.

int puts(char *s) Print string to stdout, add \n.

char *get

s() != NULL Read line from stdin (no \n).

PC console routines -- #include <conio.h>:

int getch() != 0 Get a character from the keyboard (no Enter).
int getche() != 0 Get a character from the keyboard and echo it.
int kbhit () !'= 0 Check to see if a key has been pressed.

Format codes:

%10d
%-10d
%6.3f

"\ONN"
"\ xNN'
I\Ol

short int (scanf () only)

decimal integer

long decimal integer

character

string

exponential floating-point

decimal floating-point

use %e or %f, whichever is shorter (printf() only)
unsigned decimal integer

unsigned octal integer

unsigned hex integer

10-character field width.
Left—-justified field.

6-character field width, three digits of precision.

character code in octal.
character code in hex.

null character.

File-1/O -- #include <stdio.h>:

A Little C Primer/C Quick Reference

74

FILE *

int fc

rewind
rename

remove

fseek (

fprint
fscanf
fwrite
fread/(

putc (

int ge
fputs (
fgets(

sprint

sscanf

File modes:

r+
w+
a+

Offset values

SEEK_S
SEEK_C
SEEK_E

fopen(char *f, char *mode) != NULL Create or open file.
lose(FILE *f) Close a file.

(FILE *f) Rewind.

(char *old, char *new) Rename a file.

(char *name) Delete a file.
FILE *f, long offset, int origin) == 0 Seek.

f(FILE *f, char *fmt, <varlist>) > 0 Formatted write.

(FILE *f, char *fmt, &<varlist>) != EOF Formatted read.

(void *b, size_t s, size_t c, FILE *f) > 0 Unformatted write.
void *b, size_t s, size_t ¢, FILE *f) > 0 Unformatted read.
int ¢, FILE *f) Write character.

tc(FILE *f) != EOF Read character.
char *s, FILE *f) Write a string.
char *s, int max, FILE *f) != NULL Read a string.

f(char *b, char *fmt, <varlist>) Print into string.
(char *b, char *fmt, &<varlist>) > 0 Scan string.

Open for reading.

Open and wipe (or create) for writing.

Append —— open (or create) to write to end of file.
Open a file for reading and writing.

Open and wipe (or create) for reading and writing.

Open a file for reading and appending.

ET Start of file.
UR Current location.
ND End of file.

Math library -- #include <math.h>:

double
double
double
double
double
double
double
double
double
double
double

sin(double x) Sine of x (in radians).

cos (double x) Cosine of x.

tan (double x) Tangent of x.

asin(double x) Inverse sine of x.

acos (double x) Inverse cosine of x.

atan(double x) Inverse tangent of x.

sinh (double x) Hyperbolic sine of x.

cosh (double x) Hyperbolic cosine of x.
tanh (double x) Hyperbolic tangent of x.
exp (double x) Exponential function —-- e”x.

log(double x) Natural log of x.

A Little C Primer/C Quick Reference

75

double 1loglO(double x
double pow(double x,

double sqgrt (double x

double ceil(double x

double floor (double x
double fabs(x)

)

double vy)

)
)

)

Standard utility library -- #include <stdlib.h>:

double atof (
int atoi (
long atol (

int rand()

srand (unsigned seed)

exit (int status)
int system(
int abs(int n)

long labs(long n)

char *nvalstr

char *nvalstr) != 0

) =0

char *nvlastr) '= 0

char *syscmd) == 0

Time & date library -- #include <time.h>:

time_t time(time_t *timeptr)

char *ctime(time_t *timeptr)

String function library -- #include <string.h>:

int strlen(char *s Length.

strcpy (char *dst, char *src) Copy .

strncpy (char *dst, char *src, size_t n) Copy n characters max.
strcat (char *dst, char *s) Concatenate.

strncat (char *d, char *s, size_t n) Concatenate n characters.
strcmp (char *sl, char *s2) == 0 Compare.

strncmp (char *sl, char *s2, size .t n) == 0 Compare n characters.
stricmp(char *sl, char *s2) == 0 Compare, no case.
strnicmp (char *sl, char *s2, size_t n) == 0 Compare, no case, n chars.
char *strchr(char *s, int ch) = NULL Find first character.
char *strrchr(char *s, int ch) != NULL Find last character.

char *strstr(char *dst, char *src) = NULL Find string.

char *strlwr(char *s) Lowercase.

char *strupr(char *s) Uppercase.

Character class test library -- #include <ctype.h>:

int isalnum(int c
int isalpha(int c
int iscntrl(int c
int isdigit(int c
int isgraph(int c
int islower (int c
int isprint(int c
int ispunct (int c¢

)
)
)
)
)
)
)
)

O O O O O o o o

Base 10 log of x.
Power function -- x%y.
Square root of x.
Integer >= x (returned as double).
Integer <= x (returned as double).

Absolute value of x.

Convert numeric string to double.
Convert numeric string to int.
Convert numeric string to long.
Generates pseudorandom integer.
Seed random-number generator.
Exits program.

Execute system program.

Absolute value of int.

Absolute value of long.

Current time count as long int.

Current time & date string.

Alpha / digit.
Alpha.

Control character.
Decimal digit.
Printing character (except space).
Lower—-case.

Printing character (including space).

Printing character but not space/alnum.

A Little C Primer/C Quick Reference

76

int isspace(int c) =

int isupper(int c) =

int isxdigit(int c) !=

int tolower (int c)

int toupper(int c)

0 Space, FF,
0 Upper—-case.
0 Hex digit.

Convert to

Convert to

Dynamic memory allocation -- #include <malloc.h>:

buf =

free (

(<type> *)malloc (
<type> *buf)

(size_t)sizeof (<type>

LF,

CR, HT, VT.

lower case.

upper case.

)

<array size>)

!= NULL

77

Comments and Revision History

A Little C Primer/Comments and Revision
History

I wrote this document, not because I am an expert on this subject, but because I'm not. I don't use C often, and the
combination of infrequent use and relatively obscure syntax makes them frustrating to deal with. So I threw these

notes together to make sure that what I did know was in an accessible form.

This document originally contained two chapters on C++, but they were sketchy and I had little interest in the
language. C++ is really not so much an enhancement of C as it is a different language based on C. For the very small
software projects I tend to work on, its additional features are much more bother than they're worth. Since I couldn't

maintain that material, I deleted it.

Revision history:

v1.0 / 01 jan 95 / gvg

v2.0 / 01 may 95 / gvg / Added chapters on C++, reformatted.

v2.1l / 30 may 95 / gvg / Minor corrections and changes.

v2.2 / 01 jul 95 / gvg / Added quick reference and minor changes.
v2.3 / 09 jul 95 / gvg / Corrected bug in "strlen ()" description.
v2.4 / 25 aug 95 / gvg / Added command-line parser example.

v2.5 / 13 oct 95 / gvg / Web update.

v2.5 / 01 feb 99 / gvg / Minor cosmetic update.

v2.0.7 / 01 feb 02 / gvg / Minor cosmetic update.

v3.0.0 / 01 aug 03 / gvg / Eliminated C++ material.

v3.0.1 / 01 aug 05 / gvg / Minor proofing & cleanup.

v3.0.2 / 01 jul 07 / gvg / Minor cosmetic update.

78

Resources and Licensing

A Little C Primer/Resources

Wikimedia Resources

e C Programming

¢ C++ Programming/Code/Standard C Library

Other Resources

* http://www.vectorsite.net

e Learn C Language [

References

[1] http://www.studiesinn.com/learn/Programming-Languages/C-Language.html

A Little C Primer/Licensing

Licensing
The original text of this book was released into the public domain by its author, Greg Goebel. The text of the book is
available at http://www.vectorsite.net/tscpp.html, and that original version is still available in the public domain.
The version here at Wikibooks is released under the following license:
») Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License."

http://en.wikibooks.org/w/index.php?title=C_Programming
http://en.wikibooks.org/w/index.php?title=C%2B%2B_Programming/Code/Standard_C_Library
http://www.vectorsite.net
http://www.studiesinn.com/learn/Programming-Languages/C-Language.html
http://www.studiesinn.com/learn/Programming-Languages/C-Language.html
http://www.vectorsite.net/tscpp.html,
http://en.wikibooks.org/w/index.php?title=File:Heckert_GNU_white.svg
http://en.wikipedia.org/wiki/GNU_Free_Documentation_License
http://en.wikipedia.org/wiki/Free_Software_Foundation
http://en.wikibooks.org/w/index.php?title=GNU_Free_Documentation_License

Article Sources and Contributors

79

Article Sources and Contributors

Wikibooks:Collections Preface Source: http://en.wikibooks.org/w/index.php?0ldid=2347851 Contributors: Adrignola, Jomegat, Magesha, Martin Kraus, Mike.lifeguard, RobinH, Whiteknight

A Little C Primer/An Introductory C Program Source: http://en.wikibooks.org/w/index.php?oldid=2426674 Contributors: AllenZh, Fishpi, GiovanniES, Jfmantis, Kd7nyq, Makoryu, Svixv,
Whiteknight, 11 anonymous edits

A Little C Primer/C Functions in Detail Source: http://en.wikibooks.org/w/index.php?0ldid=2410274 Contributors: Ebaychatter0, Makoryu, Whiteknight, 1 anonymous edits
A Little C Primer/C Control Constructs Source: http://en.wikibooks.org/w/index.php?oldid=2409797 Contributors: Makoryu, Whiteknight, 3 anonymous edits

A Little C Primer/C Variables, Declarations and Constants Source: http://en.wikibooks.org/w/index.php?0ldid=2307879 Contributors: 4crickj, Fauxmight, Rbonvall, Thenub314,
‘Whiteknight, 5 anonymous edits

A Little C Primer/C Operators Source: http://en.wikibooks.org/w/index.php?oldid=2438195 Contributors: Fauxmight, Fender0107401, Whiteknight

A Little C Primer/C Preprocessor Directives Source: http://en.wikibooks.org/w/index.php?0ldid=2379891 Contributors: Whiteknight, 1 anonymous edits

A Little C Primer/C Console IO Source: http://en.wikibooks.org/w/index.php?0ldid=2239015 Contributors: Fauxmight, Jfmantis, Whiteknight, 1 anonymous edits

A Little C Primer/C File-IO Through Library Functions Source: http://en.wikibooks.org/w/index.php?0ldid=1548907 Contributors: Fauxmight, Whiteknight

A Little C Primer/C File-IO Through System Calls Source: http://en.wikibooks.org/w/index.php?0ldid=1633178 Contributors: Whiteknight, 2 anonymous edits

A Little C Primer/C Math Library Source: http://en.wikibooks.org/w/index.php?0ldid=2239018 Contributors: Jfmantis, Whiteknight

A Little C Primer/C Standard Utility Library & Time Library Source: http://en.wikibooks.org/w/index.php?0ldid=2321402 Contributors: DavidCary, Fauxmight, Whiteknight

A Little C Primer/The C sprintf Function Source: http://en.wikibooks.org/w/index.php?0ldid=2410276 Contributors: DavidCary, Ebaychatter0, Sigma 7, Whiteknight, 2 anonymous edits

A Little C Primer/C String Function Library Source: http://en.wikibooks.org/w/index.php?oldid=2410312 Contributors: DavidCary, Denispir, Ebaychatter0, Fauxmight, Mabdul, Sigma 7,
Whiteknight, 4 anonymous edits

A Little C Primer/C Character Class Test Library Source: http://en.wikibooks.org/w/index.php?oldid=1274974 Contributors: Whiteknight

A Little C Primer/C Command Line Arguments Source: http://en.wikibooks.org/w/index.php?oldid=1551853 Contributors: Fauxmight, Whiteknight, 2 anonymous edits

A Little C Primer/Pointers to C Functions Source: http://en.wikibooks.org/w/index.php?0ldid=2301673 Contributors: Jfmantis, Whiteknight, Anekcanap Llamyramm, 2 anonymous edits

A Little C Primer/C Dynamic Memory Allocation & Deallocation Source: http://en.wikibooks.org/w/index.php?0ldid=2421314 Contributors: Sergioller, Whiteknight, 2 anonymous edits

A Little C Primer/Common Programming Problems in C Source: http://en.wikibooks.org/w/index.php?oldid=2364113 Contributors: Avicennasis, DavidCary, Reyk, Whiteknight, 1
anonymous edits

A Little C Primer/C Quick Reference Source: http://en.wikibooks.org/w/index.php?oldid=1274979 Contributors: Whiteknight
A Little C Primer/Comments and Revision History Source: http://en.wikibooks.org/w/index.php?oldid=1274980 Contributors: Whiteknight
A Little C Primer/Resources Source: http://en.wikibooks.org/w/index.php?0ldid=1933272 Contributors: DavidCary, Whiteknight, 1 anonymous edits

A Little C Primer/Licensing Source: http://en.wikibooks.org/w/index.php?0ldid=2053016 Contributors: Avicennasis, Whiteknight

Image Sources, Licenses and Contributors

80

Image Sources, Licenses and Contributors

Image:Wikibooks-logo-en-noslogan.svg Source: http://en.wikibooks.org/w/index.php?title=File:Wikibooks-logo-en-noslogan.svg License: logo Contributors: User:Bastique, User:Ramac et al.
File:Heckert GNU white.svg Source: http://en.wikibooks.org/w/index.php?title=File:Heckert GNU_white.svg License: Free Art License Contributors: Aurelio A. Heckert

<aurium @ gmail.com>

License

81

License

Creative Commons Attribution-Share Alike 3.0 Unported
Jlereativecommons.org/licenses/by-sa/3.0/

