
Processor and Computer
(Supplementary Materials)

John SUM
Institute of Technology Management
National Chung Hsing University

Taichung, ROC

October 22, 2021

Contents

1 Single-NAND-Gate Processor 2

2 Simple Logical Operations 3
2.1 NOT RA . 3
2.2 AND RA RB . 3
2.3 OR RA RB . 4
2.4 NOR RA RB . 4

3 Micro-Instruction Design 6
3.1 XOR RA RB . 9
3.2 Algorithm I for XOR RA RB 9
3.3 Algorithm II for XOR RA RB 10
3.4 Complexity . 14

4 Exercises 15

1

NAND
S2

S3

S12 S13

RA RB RZ

S14

R1 R2 R3 R4

A1

A2

R/W

DataDMA2DMA1
S19 S20

S21

S22

Memory address. Data.

R/W

Control signal

S23

S1

Figure 1: A single-logic-gate processor.

1 Single-NAND-Gate Processor

Figure 1 shows an artificial processor with a single NAND gate and a few
registers. The registers, R1 to R4, are connected to the data line via three
different switches. The empty (resp. solid) black circle switch is ’ON’ if
the control signal is ’1’ (resp. ’0’). These switches are connected to a two-
signal generator for A1 and A2. The switches connecting the R/W are
two-way switches. The signals sending to A1, A2 and R/W together with
the corresponding actions are depicted in the following table.

2

A1 A2 R/W Action
0 0 01 Read data from R1
0 1 01 Read data from R2
1 0 01 Read data from R3
1 1 01 Read data from R4
0 0 10 Write data to R1
0 1 10 Write data to R2
1 0 10 Write data to R3
1 1 10 Write data to R4
x x 00 Disconnection

2 Simple Logical Operations

To perform simple logical operations, more than one micro-instruction are
needed. The micro-instructions for a few simple logical operations are shown
in Figure 2. To describe the steps clearly, let me introduction a notation ⊙
to denote the NAND operation.

2.1 NOT RA

For the micro-instructions for ’NOT RA’, there are two steps. Before execu-
tion, the data is already available in RA.

S1. RB = RA.

S2. RZ = RA⊙RB.

2.2 AND RA RB

For the micro-instructions for ’AND RA RB’, there are three steps. Before
execution, the data are already available in RA and RB.

S1. RZ = RA⊙RB.

S2. RA = RZ. RB = RZ.

S3. RZ = RA⊙RB.

3

2.3 OR RA RB

For the micro-instructions for ’OR RA RB’, there are nine steps. Registers
R1 and R2 are needed. Before execution, the data are already available in
RA and RB.

S1. R1 = RB.

S2. RB = RA.

S3. RZ = RA⊙RB.

S4. R2 = RZ.

S5. RA = R1. RB = R1.

S6. RZ = RA⊙RB.

S7. RB = RZ.

S8. RA = R2.

S9. RZ = RA⊙RB.

2.4 NOR RA RB

For the micro-instructions for ’NOR RA RB’, there are eleven steps. Reg-
isters R1 and R2 are needed. The first nine steps are identical to the steps
for ’OR RA RB’. Before execution, the data are already available in RA and
RB.

S1. R1 = RB.

S2. RB = RA.

S3. RZ = RA⊙RB.

S4. R2 = RZ.

S5. RA = R1. RB = R1.

S6. RZ = RA⊙RB.

S7. RB = RZ.

4

S8. RA = R2.

S9. RZ = RA⊙RB.

S10. RA = RZ. RB = RZ.

S11. RZ = RA⊙RB.

Instructions S1 S2 S3 S12 S13 S14 A1 A2 R/W

NOT RA 0 0 0 01 10 00 0 0 00
1 1 1 00 00 00 0 0 00

AND RA RB 1 1 1 00 00 00 0 0 00
0 0 0 10 10 01 0 0 00
1 1 1 00 00 00 0 0 00

OR RA RB 0 0 0 00 01 00 0 0 10
0 0 0 01 10 00 0 0 00
1 1 1 00 00 00 0 0 00
0 0 0 00 00 01 0 1 10
0 0 0 10 10 00 0 0 01
1 1 1 00 00 00 0 0 00
0 0 0 00 10 01 0 0 00
0 0 0 10 00 00 0 1 01
1 1 1 00 00 00 0 0 00

NOR RA RB 0 0 0 00 01 00 0 0 10
0 0 0 01 10 00 0 0 00
1 1 1 00 00 00 0 0 00
0 0 0 00 00 01 0 1 10
0 0 0 10 10 00 0 0 01
1 1 1 00 00 00 0 0 00
0 0 0 00 10 01 0 0 00
0 0 0 10 00 00 0 1 01
1 1 1 00 00 00 0 0 00
0 0 0 10 10 01 0 0 00
1 1 1 00 00 00 0 0 00

Figure 2: Sample micro-instructions for the single-logic-gate processor as
shown in Figure 1.

5

NAND
S2

S3

S12 S13

RA RB RZ

S14

R1 R2 R3 R4

A1

A2

R/W

DataDMA2DMA1
S19 S20

S21

S22

Memory address. Data.

R/W

Control signal

S23

S1

S1 = S2 = S3 = 1

Figure 3: Implementation of the first step, RZ = RA ⊙ RB, for the in-
struction AND RA RB. The thick arrows indicate the flow of electrical
signals.

For illustration, the flow of the electrical signals during the implementa-
tion of the instruction AND RA RB are shown in Figure 3, Figure 4 and
Figure 5.

3 Micro-Instruction Design

For the single-NAND-gate processor as shown in Figure 1, the number of
micro-instructions for the realization of a logical operation is different from
one to another. Consider that the completion time of one micro-instruction
takes one clock cycle. The time taken for the processor to perform a logical
operation is equal to the number of micro-instructions to be executed.

6

NAND
S2

S3

S12 S13

RA RB RZ

S14

R1 R2 R3 R4

A1

A2

R/W

DataDMA2DMA1
S19 S20

S21

S22

Memory address. Data.

R/W

Control signal

S23

S1

S12 = S13 = 10; S14 = 01

Figure 4: Implementation of the second step, RA = RZ and RB = RZ,
for the instruction AND RA RB. The thick arrows indicate the flow of
electrical signals.

7

NAND
S2

S3

S12 S13

RA RB RZ

S14

R1 R2 R3 R4

A1

A2

R/W

DataDMA2DMA1
S19 S20

S21

S22

Memory address. Data.

R/W

Control signal

S23

S1

S1 = S2 = S3 = 1

Figure 5: Implementation of the third step, RZ = RA ⊙ RB, for the in-
struction AND RA RB. The thick arrows indicate the flow of electrical
signals.

8

A

B

ZNAND

NAND

NAND

NAND

Figure 6: Implementation of an XOR gate using NAND gates.

Logical Operation NOT AND OR NOR
No. of Micro-Instructions 2 3 9 11
No. of Clock Cycles 2 3 9 11

Therefore, a poor design on the micro-instructions might end up spend
more time to complete the jobs to be done for an instruction.

3.1 XOR RA RB

To illustrate the important of micro-instruction design, let us have an exam-
ple about the logical operation XOR. To realize the instruction ’XOR RA
RB’, one would need to have the digital logic circuit for the implementation
of an XOR gate using NAND gates. Its logical equation is given as follows :

A⊕ B = (A⊙ (A⊙ B))⊙ (B ⊙ (A⊙ B)) .

It is to recall that the notation ⊕ denotes the XOR operation and the notation
⊙ denotes the NAND operation.

3.2 Algorithm I for XOR RA RB

With reference to the digital logic circuit in Figure 6, the following algorithm
can be applied.

S1. R1 = RA.

S2. R2 = RB.

S3. RZ = RA⊙RB.

9

S4. RB = RZ.

S5. R3 = RZ.

S6. RZ = RA⊙RB.

S7. R4 = RZ.

S8. RA = R2.

S9. RZ = RA⊙RB.

S10. RA = R4.

S11. RB = RZ.

S12. RZ = RA⊙RB.

There are twelve micro-instructions. Four additional registers are needed as
the working memory space for the algorithm. The contents of the registers
after an instruction has been executed are shown in Figure 7. The micro-
instructions for Algorithm I are listed in Figure 8.

3.3 Algorithm II for XOR RA RB

Pretty clear, Algorithm I presented in the previous section is not the only
algorithm which can implement the XOR operation. Besides, Algorithm I
might not be the optimal algorithm for the realization of the XOR operation.
From the algorithm design point of view, if possible, one should design the
optimal solution for a problem.

The optimal solution is the algorithm which has the minimum number
of micro-instructions and requires the minimum number of registers for the
implementation of a logical operation.

One might have been aware that the fourth and the firth micro-instructions
in the Algorithm I can be executed simultaneously. Thus, Algorithm I is not
the optimal solution. Following the digital circuit as shown in Figure 6, we
can have an alternative algorithm.

S1. R1 = RB.

S2. RZ = RA⊙RB.

10

S
te
p

R
A

R
B

R
Z

R
1

R
2

R
3

R
4

0
A

B
-

-
-

-
-

1
A

B
-

A
-

-
-

2
A

B
-

A
B

-
-

3
A

B
A
⊙
B

A
B

-
-

4
A

A
⊙
B

A
⊙
B

A
B

-
-

5
A

A
⊙
B

A
⊙
B

A
B

A
⊙
B

-
6

A
A
⊙
B

A
⊙
(A

⊙
B
)

A
B

A
⊙

B
-

7
A

A
⊙
B

A
⊙
(A

⊙
B
)

A
B

A
⊙

B
A
⊙

(A
⊙
B
)

8
B

A
⊙
B

A
⊙
(A

⊙
B
)

A
B

A
⊙

B
A
⊙

(A
⊙
B
)

9
B

A
⊙
B

B
⊙
(A

⊙
B
)

A
B

A
⊙

B
A
⊙

(A
⊙
B
)

1
0

A
⊙
(A

⊙
B
)

A
⊙
B

B
⊙
(A

⊙
B
)

A
B

A
⊙

B
A
⊙

(A
⊙
B
)

1
1

A
⊙
(A

⊙
B
)

B
⊙
(A

⊙
B
)

B
⊙
(A

⊙
B
)

A
B

A
⊙

B
A
⊙

(A
⊙
B
)

1
2

A
⊙
(A

⊙
B
)

B
⊙
(A

⊙
B
)

(A
⊙
(A

⊙
B
))
⊙
(B

⊙
(A

⊙
B
))

A
B

A
⊙

B
A
⊙

(A
⊙
B
)

F
ig
u
re

7:
T
h
e
co
n
te
n
ts

in
th
e
re
gi
st
er
s
af
te
r
a
m
ic
ro
-i
n
st
ru
ct
io
n
in

th
e
A
lg
or
it
h
m

I
h
as

b
ee
n
ex
ec
u
te
d
.
T
h
e

n
u
m
b
er

of
re
gi
st
er
s,
ap

ar
t
fr
om

R
A
,
R
B

an
d
R
Z
,
re
q
u
ir
ed

fo
r
th
e
al
go
ri
th
m

is
fo
u
r.

11

Instructions S1 S2 S3 S12 S13 S14 A1 A2 R/W

XOR RA RB 0 0 0 01 00 00 0 0 10
0 0 0 00 01 00 0 1 10
1 1 1 00 00 00 0 0 00
0 0 0 00 10 01 0 0 00
0 0 0 00 00 01 1 0 10
1 1 1 00 00 00 0 0 00
0 0 0 00 00 01 1 1 10
0 0 0 10 00 00 0 1 01
1 1 1 00 00 00 0 0 00
0 0 0 10 00 00 1 1 01
0 0 0 00 10 01 0 0 00
1 1 1 00 00 00 0 0 00

Figure 8: Micro-instructions for the Algorithm I.

S3. R2 = RZ. RB = RZ.

S4. RZ = RA⊙RB.

S5. R3 = RZ.

S6. RA = R2.

S7. RB = R1.

S8. RZ = RA⊙RB.

S9. RA = R3.

S10. RB = RZ.

S11. RZ = RA⊙RB.

There are eleven micro-instructions. Three additional registers are needed
as the working memory space for the algorithm. The contents of the registers
after an instruction has been executed are shown in Figure 9. The micro-
instructions for Algorithm II are listed in Figure 10.

12

S
te
p

R
A

R
B

R
Z

R
1

R
2

R
3

R
4

0
A

B
-

-
-

-
-

1
A

B
-

B
-

-
-

2
A

B
A
⊙
B

B
-

-
-

3
A

A
⊙
B

A
⊙
B

B
A
⊙

B
-

-
4

A
A
⊙
B

A
⊙
(A

⊙
B
)

B
A
⊙
B

-
-

5
A

A
⊙
B

A
⊙
(A

⊙
B
)

B
A
⊙
B

A
⊙
(A

⊙
B
)

-
6

A
⊙
B

A
⊙
B

A
⊙
(A

⊙
B
)

B
A
⊙
B

A
⊙
(A

⊙
B
)

-
7

A
⊙
B

B
A
⊙
(A

⊙
B
)

B
A
⊙
B

A
⊙
(A

⊙
B
)

-
8

A
⊙
B

B
B

⊙
(A

⊙
B
)

B
A
⊙

B
A
⊙

(A
⊙
B
)

-
9

A
⊙
(A

⊙
B
)

B
B

⊙
(A

⊙
B
)

B
A
⊙
B

A
⊙
(A

⊙
B
)

-
1
0

A
⊙
(A

⊙
B
)

B
⊙
(A

⊙
B
)

B
⊙
(A

⊙
B
)

B
A
⊙
B

A
⊙
(A

⊙
B
)

-
1
1

A
⊙
(A

⊙
B
)

B
⊙
(A

⊙
B
)

(A
⊙
(A

⊙
B
))
⊙
(B

⊙
(A

⊙
B
))

B
A
⊙
B

A
⊙
(A

⊙
B
)

-

F
ig
u
re

9:
T
h
e
co
n
te
n
ts

in
th
e
re
gi
st
er
s
af
te
r
a
m
ic
ro
-i
n
st
ru
ct
io
n
in

th
e
A
lg
or
it
h
m

II
h
as

b
ee
n
ex
ec
u
te
d
.
T
h
e

n
u
m
b
er

of
re
gi
st
er
s,
ap

ar
t
fr
om

R
A
,
R
B

an
d
R
Z
,
re
q
u
ir
ed

fo
r
th
e
al
go
ri
th
m

is
fo
u
r.

13

Instructions S1 S2 S3 S12 S13 S14 A1 A2 R/W

XOR RA RB 0 0 0 00 01 00 0 0 10
1 1 1 00 00 00 0 0 00
0 0 0 00 10 01 0 1 10
1 1 1 00 00 00 0 0 00
0 0 0 00 00 01 1 0 10
0 0 0 10 00 00 0 1 01
0 0 0 00 10 00 0 0 01
1 1 1 00 00 00 0 0 00
0 0 0 10 00 00 1 0 01
0 0 0 00 10 01 0 0 00
1 1 1 00 00 00 0 0 00

Figure 10: Micro-instructions for the Algorithm II.

3.4 Complexity

In the area of computer science, the performance of an algorithm is deter-
mined by the number of steps (computational complexity) and the amount
of memory space (memory complexity) required for the completion of that
algorithm.

Algorithm No. of M.I. No. of Registers
NOT RA 2 0
AND RA RB 3 0
OR RA RB 9 2
NOR RA RB 11 2
XOR RA RB (Algo. I) 12 4
XOR RA RB (Algo. II) 11 3

From the above table, based on the single-NAND-gate processor, the
computational complexity (resp. memory complexity) required for the im-
plementation of the Algorithm II is smaller than the computational com-
plexity (resp. memory complexity) required for the implementation of the
Algorithm I.

Therefore, the performance of processor is not just determined by its
clock speed. It is also determined by the design of the micro-instructions.

14

NOR
S2

S3

S12 S13

RA RB RZ

S14

R1 R2 R3 R4

A1

A2

R/W

DataDMA2DMA1
S19 S20

S21

S22

Memory address. Data.

R/W

Control signal

S23

S1

Figure 11: A single-NOR-gate processor.

The design of a micro-program is determined by the architecture of the pro-
cessor. Poor micro-program design or poor processor architecture design
would degrade the performance of a processor.

4 Exercises

Figure 11 shows a processor with single NOR gate. Its architecture is the
same as the one shown in Figure 1 except that the NAND gate is replaced
by a NOR gate. The truth table of a NOR gate is depicted in the following
table.

15

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table of a NOR Gate.

You would need to design the micro-instructions for the implementation
of the following logical operations.

(a) NOT RA.

(b) AND RA RB.

(c) OR RA RB.

(d) NAND RA RB.

(e) XOR RA RB.

As a reference, the digital logic circuits for the implementation of AND gate
and NAND gate using NOR gates are shown in Figure 12. For the imple-
mentation of the XOR gate, some digital logic circuits could be found on the
Wikipedia1.

Like the examples presented in the previous sections. You need to count
for each micro-program (i) its number of micro-instructions and (ii) the num-
ber of registers being used.

1https://en.wikipedia.org/wiki/NOR_logic.

16

NOR

NOR

NOR

A

B

Z

AND Gate Circuit

NAND Gate Circuit

NOR

NOR

NOR

NOR

A

B

Z

Figure 12: The digital logic circuits for the implementation of AND gate and
NAND gate using NOR gates only.

17

