
Processor and Computer

John SUM
Institute of Technology Management

National Chung Hsing University
Taichung, ROC

May 15, 2020

Contents

1 Instruction Execution 3

2 Simple Processor 3
2.1 Switches . 3
2.2 Micro-instruction . 4
2.3 Register access . 4
2.4 Instruction set . 7

3 Memory Access 7
3.1 Memory address . 11
3.2 Data register . 13
3.3 Move data from/to memory 13
3.4 Access time . 14

4 Signals To/From the Processor 15

5 CISC and RISC 16

6 CPU 17
6.1 Simple ADD/SUB system . 17
6.2 Program . 18

1

7 Artificial CPU (JS2019) 19
7.1 List of Commands . 20
7.2 Command Descriptions . 20

8 Computer Organization 23
8.1 Hardware . 23

8.1.1 CPU & Registers . 24
8.1.2 Memory . 24
8.1.3 I/O devices . 25
8.1.4 NetCom devices . 25

8.2 Operating systems . 25

9 Levels of Programming 26
9.1 Micro-programming . 27
9.2 Machine code level programming 27
9.3 Assembly level programming 28
9.4 Middle level programming . 28
9.5 High level programming . 28

10 Register and Memory 29

11 A Computer versus A Firm 29
11.1 An instruction versus a service 30
11.2 Control unit versus operations manager 30
11.3 Computer designers versus firm executives 30
11.4 Design principles . 32

12 Exercises 32

2

Conceptually, a processor (or CPU) is a complex digital logic circuit which
consists of many small digital logic circuits, registers and switches (resp. con-
nectors). Each small digital logic circuit performs a simple logical operation.
The registers are used as temporary working memory space to support the
completion of an instruction. The switches (resp. connectors) are used for
controlling the flow of signal amongst the registers, the logic gates and the
logic circuits.

1 Instruction Execution

Basically, a processor will go through two phases once an instruction has been
fed in. The first phase is called instruction decode. In this phase, the control
unit will decode the instructions to a sequence of binary signals, called the
micro-instruction, for controlling the switches (resp. connectors) which are
used for controlling the flow of signal amongst the registers, the logic gates
and the logic circuits. The second phase is called execution. The control unit
generates the micro-instructions, one micro-instruction per clock cycle, for
controlling the switches and connectors.

2 Simple Processor

Figure 1 shows a simple processor with four logic gates, seven registers and
eighteen switches. Registers RA, RB and RZ are registers associated with
the logic gates, while the registers R1, R2, R3 and R4 act as temporary
memory spaces.

2.1 Switches

The connections between the set of registers (RA,RB,RZ) and the set of
logic gates are controlled by simple switches, called connectors, S1, S2, · · ·,
S11. Each connector connects two metal lines if the signal received is ’1’.
Otherwise, the connector disconnects the lines. By default, a connector is in
the condition of disconnection.

Connection =

{
Connect if Si = 1,
Disconnect if Si = 0.

for i = 1, · · · , 11.

3

The flow of data amongst the registers {RA,RB,RZ,R1, R2, R3, R4} and
the common connection line is controlled by two-way switches S12, S13, · · · , S18.
Each two-way switch is associated with a single register to control if a data
is to be read from or written to a register.

Si Action
00 Disconnect.
01 Data flowing out of the register, i.e. read data from the register.
10 Data flowing in the register, i.e. write data to the register.

2.2 Micro-instruction

To complete a task specified by an instruction, the control unit needs to
decode the instruction into a sequence of micro-instructions. Figure 2 shows
a sample of eight instructions and their micro-instructions. The first five
instructions are the simplest instructions. Each of these simple instructions
consists of only one micro-instruction. For the other three instructions are
more complicated instructions.

Here, one should note that the design of the micro-instructions for an
instruction is depended on the architecture of the processor. The micro-
instructions depicted in Figure 2 are designed based on the processor archi-
tecture as shown in Figure 1. It consists of four additional registers, R1, R2,
R3 and R4, as the working memory space for completion of the task speci-
fied by an instruction. In this design, it is allowed to move a data within the
registers R1, R2, R3 and R4.

2.3 Register access

Based upon the architecture as shown in Figure 1, the total number of elec-
trical signals to be generated to control the read/write of the registers R1,
R2, R3 and R4 are eight. If the number of registers is scaled up to n, the
number of electrical signals to be generated will be 2n. For large n, this
number will be large.

Figure 3 shows an alternative and yet simplified architecture for the access
of registers R1, R2, R3 and R4. Instead of using four two-way switches for
the registers, the registers are connected to the data line via three different
switches. The empty (resp. solid) black circle switch is ’ON’ if the control
signal is ’1’ (resp. ’0’). These switches are connected to two signal generators

4

NOT

AND

OR

XOR

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12 S13

RA RB RZ

S14 S15 S16 S17 S18

R1 R2 R3 R4

Two-Way Switches: Disconnected (00); Down (01), Up (10).

(S12; S13; S14; S15; S16; S17; S18)

Connectors: Disconnected (0), Connected (1).

(S1; S2; S3; S4; S5; S6; S7; S8; S9; S10; S11)

(a) Processor

0 1 1 0

Two-Way Electronic Switch

Forward Backward

(b) Two-Way switch (resp. R/W switch)

Figure 1: A processor with four logic gates. Switches S1 to S11 are simple
switches (i.e. connectors). S12 to S18 are two-way switches. ’01’ also refers
to the ’read’ action. Data is read from the register. ’10’ refers to the ’write’
action. Data is pass to the register.

5

In
st

ru
ct

io
n

s
S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

M
O

V
R

A
R

1
0

0
0

0
0

0
0

0
0

0
0

10
00

00
01

00
00

00

N
O

T
R

A
1

0
0

0
0

0
0

1
0

0
0

00
00

00
00

00
00

00

A
N

D
R

A
R

B
0

1
0

0
1

0
0

0
1

0
0

00
00

00
00

00
00

00

O
R

R
A

R
B

0
0

1
0

0
1

0
0

0
1

0
00

00
00

00
00

00
00

X
O

R
R

A
R

B
0

0
0

1
0

0
1

0
0

0
1

00
00

00
00

00
00

00

N
A

N
D

R
A

R
B

0
1

0
0

1
0

0
0

1
0

0
00

00
00

00
00

00
00

0
0

0
0

0
0

0
0

0
0

0
10

00
01

00
00

00
00

1
0

0
0

0
0

0
1

0
0

0
00

00
00

00
00

00
00

A
+
A
B

0
1

0
0

1
0

0
0

1
0

0
00

00
00

00
00

00
00

0
0

0
0

0
0

0
0

0
0

0
00

10
01

00
00

00
00

0
0

1
0

0
1

0
0

0
1

0
00

00
00

00
00

00
00

(¬
A

+
B

)(
A

+
¬B

))
0

0
0

0
0

0
0

0
0

0
0

01
00

00
10

00
00

00
0

0
0

0
0

0
0

0
0

0
0

00
01

00
00

10
00

00
1

0
0

0
0

0
0

1
0

0
0

00
00

00
00

00
00

00
0

0
0

0
0

0
0

0
0

0
0

00
00

01
00

00
10

00
0

0
0

0
0

0
0

0
0

0
0

10
00

00
00

01
00

00
1

0
0

0
0

0
0

1
0

0
0

00
00

00
00

00
00

00
0

0
0

0
0

0
0

0
0

0
0

01
00

00
00

00
00

10
0

0
0

0
0

0
0

0
0

0
0

00
10

00
00

00
01

00
0

0
1

0
0

1
0

0
0

1
0

00
00

00
00

00
00

00
0

0
0

0
0

0
0

0
0

0
0

00
00

01
00

00
10

00
0

0
0

0
0

0
0

0
0

0
0

10
00

00
01

00
00

00
0

0
0

0
0

0
0

0
0

0
0

00
10

00
00

00
00

01
0

0
1

0
0

1
0

0
0

1
0

00
00

00
00

00
00

00
0

0
0

0
0

0
0

0
0

0
0

00
10

01
00

00
00

00
0

0
0

0
0

0
0

0
0

0
0

10
00

00
00

00
01

00
0

1
0

0
1

0
0

0
1

0
0

00
00

00
00

00
00

00

F
ig

u
re

2:
S
am

p
le

m
ic

ro
-i

n
st

ru
ct

io
n
s

fo
r

th
e

p
ro

ce
ss

or
w

it
h

ar
ch

it
ec

tu
re

as
sh

ow
n

in
F

ig
u
re

1.

6

A1 and A2. The switches connecting the R/W are two-way switches. Thus,
the data to be read from and written to the registers R1, R2, R3 and R4
could be defined as in the following table.

A1 A2 R/W Action
0 0 01 Read data from R1
0 1 01 Read data from R2
1 0 01 Read data from R3
1 1 01 Read data from R4
0 0 10 Write data to R1
0 1 10 Write data to R2
1 0 10 Write data to R3
1 1 10 Write data to R4
x x 00 Disconnection

In this regard, the number of signal to be generated reduces from 2n to
log2(n) + 2. By using this new design for the access of the registers R1, R2,
R3 and R4, the micro-instructions depicted in Figure 2 could be re-designed,
as shown in Figure 4.

2.4 Instruction set

From the above two different architectures, one can expect that their instruc-
tion sets have a subtle difference. For the processor with architecture shown
in Figure 1, it is allowed to move a data within the registers R1, R2, R3 and
R4 in clock cycle. For the processor with architecture shown in Figure 5, it
is not possible to move a data within the registers R1, R2, R3 and R4 in
clock cycle.

If we consider an instruction as the instruction which can be completed
in one clock cycle, the set of MOV instructions provided by the processor as
shown in Figure 1 will be different from the set of MOV instructions provided
by the processor as shown in Figure 5. Their differences are depicted in
Table 1.

3 Memory Access

As a matter of fact, the design for register access could also be applied to
design memory access, Figure 6. MA1 and MA2 refer to the memory address.

7

R1 R2 R3 R4

A1

A2

Disconnected (1); Connected (0)
Disconnected (0); Connected (1)

R/W

R/W : Read (0); Write (1)

Figure 3: To read data from and write to a register, electrical signal cor-
responding to the register address is needed. Moreover, electrical signal in-
dicating the read or write action is also needed to be sent to the two-way
switches. This signal is called the R/W signal.

8

In
st

ru
ct

io
n

s
S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

A
1

A
2

R
/W

M
O

V
R

A
R

1
0

0
0

0
0

0
0

0
0

0
0

10
00

00
0

0
01

N
O

T
R

A
1

0
0

0
0

0
0

1
0

0
0

00
00

00
0

0
00

A
N

D
R

A
R

B
0

1
0

0
1

0
0

0
1

0
0

00
00

00
0

0
00

O
R

R
A

R
B

0
0

1
0

0
1

0
0

0
1

0
00

00
00

0
0

00

X
O

R
R

A
R

B
0

0
0

1
0

0
1

0
0

0
1

00
00

00
0

0
00

N
A

N
D

R
A

R
B

0
1

0
0

1
0

0
0

1
0

0
00

00
00

0
0

00
0

0
0

0
0

0
0

0
0

0
0

10
00

01
0

0
00

1
0

0
0

0
0

0
1

0
0

0
00

00
00

0
0

00

A
+

A
B

0
1

0
0

1
0

0
0

1
0

0
00

00
00

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
10

01
0

0
00

0
0

1
0

0
1

0
0

0
1

0
00

00
00

0
0

00

(¬
A

+
B

)(
A

+
¬B

))
0

0
0

0
0

0
0

0
0

0
0

01
00

00
0

0
10

0
0

0
0

0
0

0
0

0
0

0
00

01
00

0
1

10
1

0
0

0
0

0
0

1
0

0
0

00
00

00
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

00
01

1
0

10
0

0
0

0
0

0
0

0
0

0
0

10
00

00
0

1
01

1
0

0
0

0
0

0
1

0
0

0
00

00
00

0
0

00
0

0
0

0
0

0
0

0
0

0
0

01
00

00
1

1
10

0
0

0
0

0
0

0
0

0
0

0
00

10
00

1
0

01
0

0
1

0
0

1
0

0
0

1
0

00
00

00
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

00
01

1
0

10
0

0
0

0
0

0
0

0
0

0
0

10
00

00
0

0
01

0
0

0
0

0
0

0
0

0
0

0
00

10
00

1
1

01
0

0
1

0
0

1
0

0
0

1
0

00
00

00
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

10
01

0
0

00
0

0
0

0
0

0
0

0
0

0
0

10
00

00
1

0
01

0
1

0
0

1
0

0
0

1
0

0
00

00
00

0
0

00

F
ig

u
re

4:
S
am

p
le

m
ic

ro
-i

n
st

ru
ct

io
n
s

fo
r

th
e

p
ro

ce
ss

or
w

it
h

ar
ch

it
ec

tu
re

as
sh

ow
n

in
F

ig
u
re

1
w

it
h

th
e

n
ew

re
gi

st
er

ac
ce

ss
d
es

ig
n

as
sh

ow
n

in
F

ig
u
re

3
an

d
F

ig
u
re

5.

9

NOT

AND

OR

XOR

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12 S13

RA RB RZ

S14

R1 R2 R3 R4

A1

A2

R/W

DataDMA2DMA1
S19 S20

S21

S22

Memory address. Data.

R/W

Control signal

S23

Figure 5: A processor with four logic gates and a new design for register
access. Switches S1 to S11, S19, S20 and S23 are simple switches (i.e. con-
nectors). S21, S22 and the switches connected to the R/W signal for register
access are two-way switches.

10

Table 1: Different instruction sets for different architectures.

Processor in Figure 1 Processor in Figure 5
MOV RA RZ MOV RA RZ
MOV RB RZ MOV RB RZ
MOV RN RA MOV RN RA
MOV RN RB MOV RN RB
MOV RN RZ MOV RN RZ
MOV RA RN MOV RA RN
MOV RB RN MOV RB RN
MOV RN RM –
RN, RM refers to R1, R2, R3 and R4.

Once the binary signals have been fed to these two points, the corresponding
memory location will have to take action. Data will be read from (resp.
written to) the memory location if the R/W signal is 01 (resp. 10).

MA1 MA2 R/W Action
0 0 01 Read data from M1
0 1 01 Read data from M2
1 0 01 Read data from M3
1 1 01 Read data from M4
0 0 10 Write data to M1
0 1 10 Write data to M2
1 0 10 Write data to M3
1 1 10 Write data to M4

3.1 Memory address

For a memory with n bits memory address, i.e. MA1, · · · ,MAn, the max-
imum number of memory spaces to be accessed is 2n. By convention, the
address of the first memory location is numbered ’zero’1.

1In this lecture note, the first memory location is always named M1. As a matter of
fact, the names for the memory locations should be started with M0. That is to say, the
names for the memory locations should be M0, M1, M2 and so on.

11

M1 M2 M3 M4

MA1

MA2

Disconnected (1); Connected (0)
Disconnected (0); Connected (1)

R/W

R/W : Read (0); Write (1)

Data

Figure 6: To read a data from a memory location, (i) electrical signal cor-
responding to the memory address and (ii) a signal ’0’ will be sent from the
processor to MA1 and MA2; and the R/W line of the memory. Thus, the
data located in the corresponding memory location will be available at the
data line. As the data line is connected to the data line of the processor.
The data could thus be latched in the next clock cycle to the processor. To
write a data to the memory, (i) electrical signal corresponding to the memory
address, (ii) a signal ’1’ and (iii) the data will be sent from the processor to
MA1 and MA2; the R/W line and the data line of the memory.

12

MA2 MA1 Memory location
0 0 M1
0 1 M2
1 0 M3
1 1 M4

In a processor, the memory address is generated by the control unit and
stored in a set of special registers. Let us call them DMA1, DMA2 and
so on. Again, each of these registers is connected to a two-way switch to a
metal pin connecting to the memory device. The metal pin corresponding to
the DMAi (i = 1, · · · , n) will be connected to the MAi pin of the memory
device.

3.2 Data register

In principle, a processor has another special register called ’Data’. Whenever
the content of a register has to be written to the main memory, its content
will be temporary stored in the Data register. Similar to that of the registers
for memory address, the Data register is connected to a two-way switch to a
metal pin connecting to the memory device.

3.3 Move data from/to memory

With the above concepts, we could describe the mechanism how to write the
content of a register, say RZ, to the memory location, say M1. In assembly
language, the instruction is MOV M1 RZ.

1. Control unit signals S14 = 01 and S21 = 10. Other switches are set to
disconnection mode.

2. Control unit signals S19 = S20 = 1, S22 = 01, DMA1 = 0, DMA2 = 0,
R/W = 10 (the one which is next to the Data register) and S23 = 1.
Other switches are set to disconnection mode.

3. Since MA1 = DMA1 = 0, MA2 = DMA2 = 0 and R/W = 10, the
data in ’Data’ is copied to the memory location M1.

Similarly, we could describe the mechanism how to read the content of
M1 to RA. Equivalently, the instruction is MOV RA M1.

13

1. Control unit signals S19 = S20 = 1, S22 = 10, DMA1 = 0, DMA2 = 0,
R/W = 01 (the one which is next to the Data register) and S23 = 1.
Other switches are set to disconnection mode.

2. Since MA1 = DMA1 = 0, MA2 = DMA2 = 0 and R/W = 01, the
content of M1 is moved to ’Data’ in the memory device. As S22 = 10,
the ’Data’ is transferred to the ’Data’ in the processor simultaneously.

3. Control unit signals S12 = 10 and S21 = 01. Other switches are set to
disconnection mode.

3.4 Access time

Generally speaking, memory access time refers the time to read/write a data
from/to the memory. Usually, different memory devices would have different
access times.

• The access time between two registers in a processor is the smallest. It
is in an order of magnitude 10−9 second.

• The access time between a processor register and a dynamic RAM
(DRAM) is in a similar order of magnitude 10× 10−9 second.

• The access time between a processor register and a static RAM (SRAM)
is around 50× 10−9 to 150× 10−9 second.

• The access time between a processor register and a solid state drive
(SSD) is in the range of 25× 10−6 to 100× 10−6 second.

• The access time between a processor register and a typical hard disk is
in the range of 5× 10−3 to 10× 10−3 second.

In view of the access time, one should realize the reasons why RAM is
needed. Once a processor is executing an instruction, it is likely that the
number of registers inside the processor is not enough. Recall that some
registers in a processor is grouped together as a cache. The cache acts as a
temporary working space for the processor.

If this working space is not large enough, the only solution is to swap out
some data in the cache to the hard disk and later swap them back to the
processor for completion of the instruction. In the end, the completion time

14

of an instruction will be dominated by the time spending on swap out/in
a data to/from the hard disk. That is to say, the completion time is in
an order of magnitude 10−3. The performance of the computer is definitely
deteriorated. Clearly, this solution is not a good option. An alternative
solution is to swap the data to a RAM. The RAM, instead of the hard disk,
is treated as another temporary working space for the processor.

4 Signals To/From the Processor

In simple words, an instruction consists of two parts. The first part is called
the action, like MOV and ADD. The second part specifies the locations of
the data. It could be a register location in the processor. It could be the
location of a memory space in the memory.

Thus, a processor would need to have instruction signal. This signal is fed
to the processor. Once a processor needs to move data to the memory, the
memory address is thus generated and the data is moved to the data register.
Moreover, a control signal (i.e. R/W) is needed to be sent out. If the control
signal is ’Write’, the memory address and the data are the signals to be sent
out. If the control signal is ’Read’, the memory address is sent out and the
processor is ready to receive the data from the memory.

In principle, a processor would need to have some metal pins for receiving
the instruction. These pins are connected to the ’Control Unit’ in the pro-
cessor. Besides, a processor would need to have some metal pins for memory
address, the data and the control signals. At the same time, a memory chip
would need to have metal pins for memory address, data and the control
signals. These pins are physically connected to the corresponding pins of the
processor.

Figure 7 is the schematic diagram showing the signals transferred between
a processor and a memory. Here, we assume that RAM is not used. Moreover,
one should realize that the processor and the memory are also connected to
a ’Clock’ circuit. This circuit generates the clock signal to all the devices in
a computer. It ultimate purpose is to synchronize all devices.

Figure 8 shows a schematic diagram of a simple computer architecture.
Note that the processor can interact with the ROM, the RAM, the memory
and other devices like network communication card and the I/O devices.
The interaction between the RAM and the memory is controlled by a system
called direct memory access. The memory/RAM and other devices have no

15

Processor Memory

Instruction

Memory Address

Data

Control Signal

Clock

Figure 7: Types of signals transferred between a processor and a memory.

direct interaction. The processor plays a role as a centralized coordinator.

5 CISC and RISC

The set of instructions a processor can perform is called the instruction set.
A processor which is used for general purpose is called a general purpose
processor. The number of instructions in its instruction set is usually huge.
This kind of processor is called the complex instruction set computing (CISC)
processor. All the processors that you can find in notebooks and desktop PC
are belongs to this kind of processor.

On the other hand, there are special purpose processors. For instance,
some processors are designed for performing mathematical computation. Thus,
the number of instructions the processor needs to perform is much smaller
than the CISC processor. This kind of processor is called the reduced in-
struction set computing (RISC) processor. The CPU that you can find in
iPhone and the processors that you find in video cards are belongs to this
type. Moreover, graphical processing unit (GPU), the processor which is
used in almost all video cards, is a RISC processor.

In general, the average processing time a CISC processor to perform an

16

Processor Memory

RAMROM

Control

Data

Memory Address

Instruction

Other Devices

Figure 8: A simple computer architecture.

instruction is longer than a RISC processor. The circuit complexity of a
CISC processor is higher than a RISC processor.

6 CPU

Central processing unit (CPU) is a digital system which is able to perform
all logic and arithmetic operations. To understand how it works, one can
refer to the circuits as shown in Figure 1, Figure 5 and Figure 9.

6.1 Simple ADD/SUB system

As observed from Figure 9, the signal pin on the right side controls the
operation of the circuit. In other words, it controls operation of the circuit
on the inputs. Thus, one can imagine a very complex circuit which consists
of logic circuits handling all the arithmetic operations and other circuits
handling logic operations on the inputs. We could thus control the operation
of this complex circuit by sending control signals. But this time, the number
of signal pins will be many more than one.

17

Memory

ADD/SUB

Figure 9: A system consists of arithmetic unit and memory. The control unit
is not shown in the diagram.

If moreover there are (electronic) components which can be built for stor-
age (see the blank rectangular blocks in Figure 9), we can connect them to
the inputs and the outputs. Let say the temporary storage for inputs are
called IA and IB and the output is called OUT. Precisely, it is called regis-
ter. By using the same components, it is for sure that memory can be built.
Suppose we have a memory with 16 units. Each unit consists of 4 bits. Let
say the memory units are M1, M2, M3, · · ·, M16.

6.2 Program

Now, suppose we have a problem to find out the subtotal of M1, M2, M3
and then save the answer on M4. We use the term ADD as the ”name” for
the ”control signals” (binary signals) for controlling the circuit to perform
addition. The following steps can help to do this task.

A sample program

M4 = M1 + M2 + M3

MOV IA M1

18

MOV IB M2

ADD IA IB

MOV IA OUT

MOV IB M3

ADD IA IB

MOV M4 OUT

In the above example, the signal MOV is designed for signal-flow from
the memory to register, and from register to register. The above steps for
adding three numbers, while simple, are called instructions. These seven
instructions constitute the program. A program is a sequence of instructions.
MOV and ADD are called commands. Since this program describes what
the ABB/SUB circuit and the memory should do, it is the so-called low-
level program. The corresponding binary code is called machine code.
The software translating the program to machine code is called compiler.

7 Artificial CPU (JS2019)

Below is a simple circuit. It consists of a memory with 16 memory spaces
(from M1 to M16), an ALU block, 2 input registers (IA and IB) and one
output register (OUT). M1 to M16, IA, IB and OUT are all 8 bits long.
Numbers are represented in fixed-point 2’s compliment format.

Memory

ADD/SUB

19

7.1 List of Commands

Eleven commands (MOV, ADD, SUB, MUL, DIV, CMP, SHL, SHR, DEF,
MSK and IF) are provided for instructing the above circuit. The syntax and
the descriptions of these commands are depicted in Table 1.

Table 2: Commands for using the CPU.

Syntax Description
MOV X Y Copy the content of Y to X
ADD X Y OUT = X + Y .
SUB X Y OUT = X − Y .
MUL X Y OUT = X × Y .
DIV X Y OUT = X/Y .
CMP X Y OUT = b1b2b3b4b5b6b7b8.

bi = 0 if Xi = Yi.
bi = 1 if Xi 6= Yi.

SHL X Y OUT is the content of X
shifting left Y bits.

SHR X Y OUT is the content of X
shifting right Y bits.

DEF X N Define X as the number N.
MSK X M Mask the value of X by M.
IF ELSE Condition statement.

A command is also called an instruction. The set of instruction available
for instructing a CPU is called instruction set. For a general purpose CPU,
like Intel CORE i5, the total number of instructions is large. So, this type
of processors is called complex instruction set processor. For some special
purpose processors, like GPU and digital signal processors, they are used for
specialized purposes, matrix multiplication for instance. Only a small set of
instructions for arithmetic operations is enough. This type of processors is
called reduced instruction set processor.

7.2 Command Descriptions

1. For the ”CMP” command, if X = 0110 and Y = 1101, OUT = 1011.

20

2. For ”SHL” and ”SHR” commands, the content of Y can only be one
of the following.

Y Meaning
10000000 (Shift 7 bits)
01000000 (Shift 6 bits)
00100000 (Shift 5 bits)
00010000 (Shift 4 bits)
00001000 (Shift 3 bits)
00000100 (Shift 2 bits)
00000010 (Shift 1 bits)
00000001 (No shift)

For example, if
X = 00011000, Y = 00000100,

the OUT of ”SHL X Y” is 01100000 and the OUT of ”SHR X Y” is
00000110.

3. For the ”DEF” command, N must be a number in decimal form. X
can only be a memory location. ”DEF” command is not applicable for
assigning values to a register. It is used to assign a value to a memory
location. For example, ”DEF M1 12” means that memory location M1
will be assigned with a value 12. Therefore, M1 = 00001100.

4. For the ”MSK” command, it is used for masking a register (either IA
or IB) by the mask M (in binary). The mask must be 8 bits long.

Suppose that the content of IA and M are defined as follows :

IA = 01001001,M = 11110000.

Then, the output OUT will be ”01000000”. The last four bits are
masked. Here is an example.

DEF M1 45

MOV IA M1

MSK IA 00001111

MOV M2 OUT

21

Initially, M1 is assigned with value 45. In binary form, the content
reads ”00101101”. Thus, the output OUT is ”00001101”.

5. The ”IF-ELSE” command is an advanced level command. It is for
conditional statement. Once it is executed, the CPU will performs
multiple steps in order to make it works. You do not need to know
the detail how it works. In term of its usage, it is simple. Here is an
example.

DEF M1 1

DEF M2 2

DEF M3 1

MOV IA M1

IF IA == 0

MOV IA M2

MOV IB M3

ADD IA IB

MOV M4 OUT

ELSE

MOV IA M1

MOV IB M2

ADD IA IB

MOV M4 OUT

ENDIF

Command ”IF” checks if the content of IA is identical to ”0”. If it is,
it will perform M2 + M3 and output the result to M4. Otherwise, it
will perform M1 + M2 and output the result to M4.

DEF M1 1

DEF M2 2

DEF M3 1

MOV IA M1

22

IF IA == 0

MOV IA M2

MOV IB M3

ADD IA IB

MOV M4 OUT

ENDIF

In this example, the CPU performs M2 + M3 only if IA is zero. Oth-
erwise, it performs nothing.

6. For the ”IF-ELSE” command, the following conditions are allowed for
you to define. Here NUM must be stated in decimal form but not in
binary.

IA == NUM

IA > NUM

IA >= NUM

IA < NUM

IA <= NUM

8 Computer Organization

Generally speaking, a computer is a huge logic circuit. For clarity, this huge
logic circuit is partitioned into different sub-systems namely central process-
ing unit, memory, input/output device, network communication device, see
also Figure 8. To manage the usage of these hardware units, an operating
system is needed.

8.1 Hardware

In a computer, there are five important hardware components, namely (i) the
central processing unit (CPU) or processor in short, (ii) the memory, (iii) the
input device, (iv) the output device and (v) the network communication
device. Table 3 lists some of these devices that can be found in notebook
computers.

23

Table 3: Common devices in a notebook computer.

Type of devices Exemplar devices
Processor Intel CPU, AMD CPU, Nvidia GPU
Memory ROM, RAM, Hard disk, Solid state drive (SSD)

USB flash memory, CD reader, External hard disk
Input Keyboard, Mouse, Microphone, Digital camera

Mouse pad, Touch-screen panel, Scanner
Output Screen, Loudspeakers, Printer
Net. Comm. WiFi card, Bluetooth card, Wired network card

8.1.1 CPU & Registers

The central processing unit (CPU) is responsible for doing arithmetic and
logic operations. (CPU) would not just have an ADD/SUB system in it. A
CPU consists of at least a unit called Arithmetic/Logic Unit (ALU), an
Instruction Decode unit and a Control unit. To improve the performance
of a CPU, registers (normally tens of Bytes) and cache memory (normally
a few hundred KBytes) are usually embedded inside the CPU.

8.1.2 Memory

Memory (primary storage) is used for temporarily storing the data or instruc-
tion that are needed for the CPU. Usually, this primary memory is called
RAM (random access memory). It is workable only when power is off. Once
the power is off, the content in the RAM will be gone. For storing the data
permanently, we need secondary storages – the hard-disk, the CD or USB
flash memory. In term of memory capacity, RAM usually ranges from a few
hundred mega bytes (MBytes) to a few giga bytes (GBytes). The memory
capacity of a USB flash memory can now be made to 128 GBytes. Hard-disk
or the latest solid state drive (SSD) has the largest capacity up to tera bytes
(TBytes).

One should note that the access speed of different types of memory are
quite different. By access speed, it means the time for transferring data
from the memory to the CPU. Since registers and cache are embedded in the
CPU, it is clear that the access speed is the fastest. RAM is mounted on
the mother board. While its location is still close to the CPU, transferring

24

data between CPU and RAM is 1000 times slower than registers. For the
secondary storages like hard-disk, the access speed is even slower. Normally,
it is 1000 times slower than RAM.

8.1.3 I/O devices

Input devices are those devices that can let user to enter information to the
computer. Keyboard, scanner and mouse are three common input devices.
Output devices are those devices that can let user to know what is happening
in the computer. Monitor and loudspeaker are two common output devices.

8.1.4 NetCom devices

Strictly speaking, network communication device is not belongs to be part
of a computer. Recall that the usage of the first generation electronic com-
puter did not require network communication. But nowadays, the usage of
computer is attached to Internet access. So, network communication device
turns out to be an important part in a computer. Without such, the usage
of a computer will be so limited.

In a computer, the network communication device is referred to the In-
ternet communication device. It is used for making communication via the
Internet. In a smartphone, there are two communication devices. One is
used for making Internet communication. The other is for making telecom-
munication.

8.2 Operating systems

Once you have understood that a computer is just a combination of various
logic circuits and devices for input/output, what you need to know more is the
operating system. Operating system is a complicated program. It consists of
many lines of machine code (instruction)2. Operating system starts running
when the computer is power on and then stops when the power is off. The
main purposes of the operating system is to manage the file system, the
memory, the input/output devices, see Figure 10. So that, computer user
can interact with the operating system via either command prompt or GUI
to control the computer.

2Recall that machine codes are sequence of electrical signals feeding to the CPU.

25

Operating System

Input Output Memory CPU Network

WORD EXCEL Chrome LINE SPSS

Figure 10: Operating system provides services to support the application
systems.

Common operating systems are Window XP, Windows 7/8, Apple iOS for
personal computers, Andorid, iOS, Window Phone 8 for smart phones. Unix
and Linux are two common operating systems for network of computers.

9 Levels of Programming

In this chapter, one should realize that there are different levels of program-
ming, namely (1) micro-programming (i.e. micro-instruction level program-
ming), (2) machine code level programming (i.e. instruction level program-
ming), (3) assembly level programming, (4) middle level programming and
(5) high level programming. Figure 11 shows the relations amongst different
levels of program. In principle, the higher the level of programming, the
programming is easier. But, the functions that a program can provide are
more restricted. On the other hand, the lower the level of programming,
the programming is more difficult. But, the functions that a program can
provide are less restricted.

One should note that a program is simply another representation of a se-
quence of instructions (resp. a sequence of micro-instructions). The program
developed by different levels of programming could be treated as different
levels of representation of the same sequence of instructions (resp. micro-

26

M.I. M.I. M.I. M.I. M.I.

Ins. Ins. Ins. Ins. Ins.

ASS ASS

MID MID

HIGH HIGH

Figure 11: Level of programming or representation.

instructions).

9.1 Micro-programming

The lowest level of program is the micro-instructions. It specifies the sequence
of electrical signals to be generated by the control unit to control the data
flow inside a processor and the data flow amongst the processor, the memory
and other hardware devices in a computer. This level of programming is
called the micro-programming.

9.2 Machine code level programming

The next level of program is the instruction. The set of instructions is pro-
vided by the processor manufacturers based upon the architecture design of
a processor. Clearly, each instruction is a set of electrical signal feeding to
the processor. It is also called a machine code. It is in binary formate, not
easily to be understood and not user friendly for programmer. Nevertheless,
debugging such program is not an easy task. This level of programming
appeared shortly in the period of the first generation electronic computers.

27

9.3 Assembly level programming

Sooner, an English-like programming language was introduced. Writing a
program of machine codes could thus be replaced by a program of English-
like programming codes. The programmer could easily debug the program if
there is any syntax or logical error. Once an error-free English-like program
had been ready, a human compiler could thus translate the program line by
line to a program of machine code.

Thus, each processor manufacturer would develop a compiler and a pro-
gramming language called assembly language. Assembly language is a English-
like programming language. Each line of code refers to one machine code.

For some mechanical systems requiring real-time digital control, their
controllers are normally designed with a specialized processor and the corre-
sponding assembly language.

9.4 Middle level programming

While assembly language is more user-friendly than the machine code, it is
still too difficult for a programmer to develop a program to perform a task
like networking. Thus, other programming languages have been developed for
handling such tasks. Some authors called them middle level programming
languages. C language and Java are two examples. These programming
languages consist of function calls to interact the Internet and the operating
systems. Each program of this type will first be translated to assembly
language and then to machine codes.

These middle level programming languages are good for developing pro-
grams for scientific researches which involve a lot of mathematical computa-
tion. Moreover, some of these programming languages include instructions
for networking applications. They are applied to develop servers, like web
servers and email servers, and other application software systems.

9.5 High level programming

For some applications for solving database access and managing informa-
tion, these middle level programming languages would be too low level for
programming. Thus, some higher level programming languages have been
developed. Structural query language (SQL) is a high level programming
language developed for database access and data manipulation. The pro-

28

gramming languages provided by SPSS, SAS, Matlab and Mathematica are
developed for mathematical calculations.

10 Register and Memory

Here, all the registers in the processors as shown in Figure 1 and Figure 5
are one-bit registers. In fact, the size of a register in a processor is usually
a multiplication of 8 bits, like 8 bits, 16 bits, 32 bits and so on. Therefore,
the actual number of logical gates and the switches is 8 times, 16 times and
even 32 times higher.

Similar, each memory location (i.e. memory address) is not referred to
a one-bit memory space. In reality, each memory location (i.e. memory
address) is referred to an 8-bit memory space (i.e. one byte memory space).
Hence, the number of switches in the memory is 8 times higher. It is a de
facto standard. No one can change.

This size is good enough for storing a character defined in the ASCII table.
To store a Asian language character, two consecutive memory locations are
required. Thus, to store a 16-bit number to the main memory, two consecutive
memory locations are required. To store a 32-bit floating point number, four
consecutive memory locations are required.

One can imagine that multiple cycles are needed for the data transferred
between the processor and the memory if the data is a number or an Asian
language character.

11 A Computer versus A Firm

Basically, a computer could be analogized to a firm, see Table 4. The pro-
cessor could be treated as a factory and the adminstration office of a firm.
The memory could be treated as the warehouse storing the products pro-
duced from the factory. The logic gates in the processor could be treated as
the tools or machines in a factory. The switches are treated as the workers
controlling the flow of the semi-products. The registers are treated as the
working space for putting the semi-products. The control unit in the pro-
cessor could thus be treated as the management team of the firm. In this
regard, an instruction to the processor could thus be treated as a service
request to the firm. The instruction set is the set of services the firm can do

29

to its customers.

11.1 An instruction versus a service

Once a service request (resp. instruction) has been received, the
operations manager (resp. control unit) generates a sequence of
signals (resp. micro-instructions) to command the workers (resp.
switches) to control the flow of semi-products (resp. data) from one
working space (resp. register) to another. The sequence of signals
(resp. micro-instructions) could also be used for commanding the
workers (resp. switches) to control the flow of semi-products (resp.
data) from one working space (resp. register) to a specific location
(resp. memory address) in the warehouse (resp. memory) and vice
versa.

11.2 Control unit versus operations manager

To run a firm (resp. a computer) is basically an easy jobs if all the designs
have been ready, the tools/machines (resp. logic gates) and the workers
(resp. switches) perform perfectly. If the tools/machines (resp. logic gates)
and the workers (resp. switches) cannot perform as they should, additional
management works (resp. addition control circuits in the processor) will
have to be done (resp. have to be designed). In a firm, these additional
management works are thus be done by a middle management team. The
team members are so-called the operations managers. They follow the pre-
designed operating procedures to monitor the progress and the quality of a
service. Sometimes, an operations manager will also have to design a new
operating procedure for a new service or re-design the operating procedure
for an existing service.

11.3 Computer designers versus firm executives

However, the most difficult task is how to design a firm (resp. a com-
puter). Designing a firm (resp. a computer) involves three interrelated de-
signs, namely factory design (resp. processor design), warehouse design (resp.
memory device design), the operations design (resp. micro-instructions de-
sign) and the organization design (resp. architecture design). These four

30

Table 4: A computer versus a firm.

A Computer A Firm
Processor Factory
Memory Warehouse
Logic gates Tools/Machines
Switches Workers
Registers Working space for semi-products
Control unit Operations manager
A memory address A location in the warehouse
A memory space A space for storing a product
Data specification Product specification
Operating system (OS) Executives (Top/Senior/Middle)
Set of instructions Set of services (resp. productions)
An instruction A service request
A micro-program An operation procedure
Levels of programming Levels of management
Micro-instructions design Operating procedure design
Processor design Factory design
Memory device design Warehouse design

(Design for efficiently storage & (Design for efficiently storage &
retrieval of data) retrieval of products)

Architecture design Organization design
Program design Operations design
Computer designers Executives (Top/Senior/Middle)

Either a computer or a firm, the most difficult tasks are the designs. These
designs are interrelated. One design could affect the design of the others.
Thus, a good design of a firm (resp. a computer) has to consider multiple
aspects, i.e. co-design.

31

designs, especially the factory design (resp. processor design) and the ware-
house design (resp. memory device design), reply very much on the selection
of tools/machines (resp. logic gates) and the use of workers (resp. switches).
Thus, the design of a firm (resp. a computer) is a co-design.

Now, it comes to an important question. Who is going to do these de-
signs? For a computer, one could say that the designs would be done by the
computer engineers. But, what about a firm? To design a firm, it is clearly
to be done by the founders (i.e. the senior executives). Thus, the jobs an
executive or a manager needs to do are (i) to design the set of services to be
delivered, (ii) the design of the operations, (iii) the design of the organiza-
tion, (iv) the selection of the tools/machines and (v) the recruitment of the
workers. All these jobs have to be designed simultaneously. These are the
actual challenges a management student has to learn.

11.4 Design principles

The principles introduced in management (resp. computer science) are sim-
ply the principles for the good designs of a firm (resp. a computer). The
major challenges are the designs. A management student has to learn how
to actually design. The principles behind management are just for reference.
As a matter of fact, these principles could naturally be evolved once an ex-
ecutive has practically designed a number of operations and organizations.
If a management student only learns the principles but has no any practical
experience, the knowledge acquired is nothing.

12 Exercises

Question 1

Refer to the artificial CPU and its commands, what will be the content of
M4 if the following commands are executed?

DEF M1 0

DEF M2 2

DEF M3 5

MOV IA M1

IF IA == 0

32

MOV IA M2

MOV IB M3

ADD IA IB

MOV M4 OUT

ELSE

MOV IA M1

MOV IB M2

ADD IA IB

MOV M4 OUT

ENDIF

Answer:

(a) 2.

(b) 7.

(c) 5.

(d) 0.

Question 2

What will be the content of M4 if the following program segment is executed?

DEF M1 16

DEF M2 22

DEF M3 10

MOV IA M1

MOV IB M2

CMP IA IB

MOV M4 OUT

MOV IA M2

MOV IB M3

CMP IA IB

MOV IA OUT

MOV IB M4

ADD IA IB

MOV M4 OUT

Answer:

33

(a) 28.

(b) 30.

(c) 32.

(d) 34.

Question 3

Refer to the artificial CPU and its commands, what will be the content of
M4 if the following commands are executed?

DEF M1 0

DEF M2 2

DEF M3 5

MOV IA M1

IF IA == 0

MOV IA M2

SHL IA 00000100

MOV IA OUT

MOV IB M2

ADD IA IB

MOV M4 OUT

ELSE

MOV IA M3

SHL IA 00000100

MOV IA OUT

MOV IB M3

ADD IA IB

MOV M4 OUT

ENDIF

Answer:

(a) 4.

(b) 6.

(c) 8.

34

(d) 10.

Question 4

Three numbers have been stored in M1, M2 and M3. Which of the following
program segments can correctly give the output of the following formulae?

M4 = M1 + M2×M3.

Answer:

(a) ----------------

MOV IA M1

MOV IB M2

MUL IA IB

MOV IA OUT

MOV IB M3

ADD IA IB

MOV M4 OUT

(b) ----------------

MOV IA M1

MOV IB M2

ADD IA IB

MOV IA OUT

MOV IB M3

MUL IA IB

MOV M4 OUT

(c) ----------------

MOV IA M2

MOV IB M3

MUL IA IB

MOV IA OUT

MOV IB M1

ADD IA IB

MOV M4 OUT

35

(d) ----------------

MOV IA M2

MOV IB M3

ADD IA IB

MOV IA OUT

MOV IB M1

MUL IA IB

MOV M4 OUT

Question 5

Given that there are five memories M1, M2, M3, M4 and M5. Here is the
program segment to instruct the circuit.

MOV IA M1

MOV IB M2

MUL IA IB

MOV M5 OUT

MOV IA M3

MOV IB M4

MUL IA IB

MOV IA OUT

MOV IB M5

ADD IA IB

MOV M5 OUT

Which of the following mathematical equation is identical to the operation
of the following program segment?
Answer:

(a) M5 = M1 + M2×M3 + M4.

(b) M5 = (M1 + M2)×M3 + M4

(c) M5 = M1× (M2 + M3)×M4.

(d) M5 = M1×M2 + M3×M4.

36

Question 6

Given that there are five memories M1, M2, M3, M4 and M5. Here is the
program segment to instruct the circuit.

MOV IA M1

MOV IB M2

MUL IA IB

MOV IA OUT

MOV IB M3

MUL IA IB

MOV IA OUT

MOV IB M4

SUB IA IB

MOV M5 OUT

which of the following mathematical equation is identical to the operation
of the following program segment?
Answer:

(a) M5 = M4−M1×M2×M3.

(b) M5 = M4− (M1 + M2)×M3

(c) M5 = M1×M2×M3−M4.

(d) M5 = (M1 + M2)×M3−M4.

Question 7

If the content in M1 is either ’1’ or ’0’, which of the following mathematical
equation is identical to the operation of the following program segment?

MOV IA M1

IF IA == 0

MOV IA M2

SHL IA 00000100

MOV IA OUT

MOV IB M2

37

ADD IA IB

MOV M4 OUT

ELSE

MOV IA M3

SHL IA 00000100

MOV IA OUT

MOV IB M3

ADD IA IB

MOV M4 OUT

ENDIF

Answer:

(a) M1× (9×M2) + (1−M1)× (9×M3).

(b) M1× (5×M2) + (1−M1)× (5×M3).

(c) (1−M1)× (9×M2) + M1× (9×M3).

(d) (1−M1)× (5×M2) + M1× (5×M3).

Question 8

1. What is the truth table for the following logical operation?

Z = (Ā + B)⊕ (A + B̄).

2. With reference to the processor as shown in Figure 5, state (i) the
assembly program and (ii) the micro-instructions for the following op-
eration.

M3 = (M̄1 + M2)⊕ (M1 + M̄2).

It is assumed that M1, M2 and M3 are three memory locations in
the main memory. Each location is a one-bit memory. Their memory
addresses are 00, 01 and 10.

Question 9

1. What is the use of the control unit in a processor?

38

2. What is an micro-instruction and what is a micro-program (i.e. the
program consists of a sequence of micro-instructions)?

3. With an aid of example, explain why different processor architectures
would come up with different instruction sets?

4. What is the purpose of the ’Clock’ circuit in a computer?

5. State the different levels of programming and the reasons why there
are many different levels of programming.

6. Which level of programming languages consists of function calls for
accessing Internet and the operating systems.

7. What is the role of an operating system from the firm level perspective?

8. State the tasks an executive has to do to a firm.

9. State the tasks an operations manager has to do to a firm.

39

