
Digital Systems and Computer

John SUM
Institute of Technology Management
National Chung Hsing University

Taichung, ROC

October 28, 2019

Contents

1 Logic Gates 3
1.1 Logic Gate . 3
1.2 Truth Tables . 4
1.3 Digital logic design . 5
1.4 Exercises . 6

2 Arithmetical Operations 7
2.1 Decimal number . 7
2.2 Binary number . 9
2.3 Number Conversion . 10

2.3.1 Binary to Decimal . 10
2.3.2 Decimal to Binary . 11

2.4 Binary Addition . 12
2.5 Binary Subtraction . 12
2.6 Circuit Design for Add/Sub 16
2.7 Exercises . 17

3 CPU 18
3.1 Simple ADD/SUB system . 19
3.2 Program . 19

1

4 Artificial CPU (JS2019) 20
4.1 List of Commands . 21
4.2 Command Descriptions . 22
4.3 Exercises . 25

5 Computer Organization 31
5.1 Hardware . 31

5.1.1 CPU & Registers . 31
5.1.2 Memory . 31
5.1.3 I/O devices . 32
5.1.4 NetCom devices . 32

5.2 Operating systems . 32

6 More on Binary Number Representations 33
6.1 Fixed-point . 33

6.1.1 Sign-Magnitude . 33
6.1.2 2’s-Compliment . 35
6.1.3 Range . 36

6.2 Floating-point . 36
6.2.1 Representation . 37
6.2.2 Interesting numbers . 38
6.2.3 Arithmetic . 39
6.2.4 FLOPS . 40

6.3 Exercises . 40

2

1 Logic Gates

A computer is a basically a digital system. Loosely speaking, digital system
is a system that is able to perform logical and arithmetical operations1. It
consists of many digital logic circuits. Some of these circuits are implemented
by simple logic gates to perform those operations. Some of them are control
circuits. They control the activations of the logic gates (or logic circuits) and
the connections amongst them.

1.1 Logic Gate

Logic gate is the basic building block of a digital system. Common logic gates
include AND gate, OR gate, NAND gate, NOR gate, XOR2 gate and NOT
gate. Except NOT gate which is a single-input-single-output logic gate, all
others are two-input-single-output logic gates.

For electronic logic gates, the inputs to the gates are electrical signals
(voltage). The logical signal could be defined in many different ways. For
instance, ’high’ voltage refers to ’TRUE’ (or ’1’) and ’low’ voltage refers to
’FALSE’ (or ’0’). Another setting is that ’positive’ voltage refers to ’TRUE’
(or ’1’) and ’negative’ voltage refers to ’FALSE’ (or ’0’). As there are only
two types of signal, this kind of signal is called binary (or digital). Output
signal of a logic gate is also binary.

There are many specifications for high and low signals. One specification
is that 5V for high signal and 0V for low signal. Another specification is that
5V for high and -5V for low. As both input and output signals are binary
(i.e. digital), a logic gate performs simple logic function which implies the
name logic gate. Therefore, the systems which are composed of these logic
gates are digital systems.

Logic gate is itself an electronic circuit which consists of electronic com-
ponents. In the early 20 century, vacuum tubes were used for such implemen-
tation. In 1940s, semiconductor were invented. Vacuum tubes were replaced
by semiconductor transistors to implement the logic gates.

1Precisely, a digital system can simply perform logical operations. Arithmetical oper-
ations are implemented based upon these logical operations.

2It should be noted that the function of XOR is not logic. However, in computer science
field, we still say that it is a logic gate for convenient.

3

1.2 Truth Tables

The logical operation of a logic gate is defined by its truth table. Conven-
tionally, high voltage is represented by ’1’ and low voltage is represented by
’0’. In other words, the basic operation of a logic gate is specified by its truth
table.

AND GATE

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

OR GATE

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

NAND GATE

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

NOR GATE

X Y Z

0 0 1

0 1 0

1 0 0

1 1 0

XOR GATE

X Y Z

0 0 0

0 1 1

4

1 0 1

1 1 0

1.3 Digital logic design

These logic gates are the basic building blocks for any digital logic circuit
that performs logic function. In the following examples, the notations are
defined as follows :

Notation Meaning Example

X̄ Inversion If X = 1, X̄ = 0.
XY AND operation XY = 1 only if X = 1 and Y = 1.

X + Y OR operation XY = 1 if either X = 1 or Y = 1.

Besides, it should be noted that the following equalities hold for AND
and OR operations.

ABC = A(BC) = (AB)C, A+B + C = A+ (B + C) = (A+B) + C.

Here are some illustrative examples that you can try to see if you can under-
stand these basic operations.

Example 1: Z = AB̄C.

A B C Z

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Example 2: Z = ĀBC + AB̄C̄.

A B C Z

0 0 0 0

5

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Example 3: Z = ĀB̄C̄ + ĀBC + AB̄C̄ + ĀBC̄.

A B C Z

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

For the above examples, it is clear that such logic functions can simply be
implemented by NOT gate, AND gate and OR gate only. However, in com-
puter science, the key problem in digital logic design is to find the simplest
design, the one uses the minimum number of logic gates.

1.4 Exercises

1. Design a digital circuit which consists of 8 inputsA,B,C,D,E, F,GandH
and 1 output Z with the following function.

Z =

{
1 if ABCD = EFGH
0 otherwise.

2. Design a digital circuit which consists of 8 inputsA,B,C,D,E, F,GandH
and 1 output Z with the following function.

Z =

{
1 if A = Ē, B = F̄ , C = Ḡ and D = H̄
0 otherwise.

6

3. Design a digital circuit which can perform the logic function Z = AB+
CD.

4. Design an AND gate using XOR gates only.

5. Design an AND gate using NAND gates only.

6. Design an OR gate using NAND gates only.

7. Design an NOR gate using NAND gates only.

8. Design an XOR gate using NAND gates only.

9. Using NAND gates only, design a digital circuit which can perform the
logic function Z = AB + CD.

2 Arithmetical Operations

To start with, we need to know how numbers are represented in decimal and
binary forms.

2.1 Decimal number

In decimal numeral system (base-ten numeral system), we have 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, and so forth to represent positive integers. Look at the
numbers, what can you see? Actually, we use symbols ’0’, ’1’, ’2’, ’3’, ’4’, ’5’,
’6’, ’7’, ’8’ and ’9’ to form the number.

For value which is in between zero and nine, we use one digit. For value
which is in between ten and ninety-nine, we use two digits. For value which
is in between one hundred to nine hundred and ninety-nine, we use three
digits.

Let us start with the first ten numbers,

0 1 2 3 4 5 6 7 8 9.

The last digit has reached its largest value 9. So, return to the next line
starting with two digits.

10 11 12 13 14 15 16 17 18 19.

7

The last significant digit of the last number has reached its largest value 9.
So, return to the next line starting and the first digit increments by one, we
get that

20 21 22 23 24 25 26 27 28 29.

gain, the least significant digit has reached its largest value 9. So, return
to the next line starting and the first digit increments by one. After repeat
until the last number is 79, the next line reads

80 81 82 83 84 85 86 87 88 89.

Again, the least significant digit has reached its largest value 9. So, return
to the next line starting and the first digit increments by one. Now, the first
digit in the next line is 9, i.e.

90 91 92 93 94 95 96 97 98 99.

Again, the least significant digit has reached its largest value 9. So, return
to the next line starting and the first digit increments by one. However, the
first digit has already reached its largest value. Now, we need three digits.
That is,

100 101 102 103 104 105 106 107 108 109.

See! That is the way we make up the positive integers. One should note
three important numbers, ’0’, ’10’ and ’100’. They are the first number on
the line. If we unify the number of digits to be 3, the numbers are listed as
follows.

000 001 002 003 004 005 006 007 008 009

010 011 012 013 014 015 016 017 018 019

020 021 022 023 024 025 026 027 028 029

. . .

090 091 092 093 094 095 096 097 098 099

100 101 102 103 104 105 106 107 108 109

8

2.2 Binary number

Now, let us talk about the binary number. In binary numeral system, we
use two symbols, ’0’ and ’1’. In each line, we only allow ’0’ and ’1’. ’1’ is
the largest value. So, by the same principle as what we list the numbers in
decimal numeral system, we can list all the numbers in binary form. The
first line reads

0 1.

The rightmost digit has reached its largest value. So, we need to start a new
line with two digits, i.e.

10 11.

The rightmost digit has reached its largest value. So, we need to start a new
line with two digits. However, the first digit has reached its largest value.
So, we need to start with a new line with three digits, i.e.

100 101.

The rightmost digit has reached its largest value. So, we need to start a new
line with the second digit increments by one, i.e.

110 111.

Again, if we unify the number of digits to three, the above numbers will be
listed as follows.

000 001

010 011

100 101

110 111

So, you see! The numbers ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’ in decimal form
show quite different appearance in binary form.
Question: How do we know ’101’ in binary form is ’5’ in decimal form?
Answer: By counting.
Question: Would there be an easy way for us to identify its value in decimal
form?
Answer: By using formulae.

9

Here are two examples.

1012 = 1× 4 + 0× 2 + 1× 1 = 510.

1002 = 1× 4 + 0× 2 + 0× 1 = 410.

4, 2, and 1 are the basis for three digit binary number. For a binary
number with five digits, the basis will be 16, 8, 4, 2 and 1. The decimal value
of ’10110’ is given by

101102 = 1× 16 + 0× 8 + 1× 4 + 1× 2 + 0× 1 = 2210.

Now, it is your turn.

2.3 Number Conversion

First of all, we need to indicate a number if is belongs to a binary number
or a decimal number. For a binary number, we use subscript ’2’. EG. 1012.
For a decimal number, we use subscript ’10’. EG. 2110. In this regard, we
can see that 1012 equals to 510, and 2110 equals to 101012.

2.3.1 Binary to Decimal

To convert a binary number to a decimal number, one needs the following
table. Suppose that we want to convert a number 110111012 to decimal.

Weight 27 26 25 24 23 22 21 20

Digit 1 1 0 1 1 1 0 1

Equivalently, the above table can be depicted as the following table.

Weight 128 64 32 16 8 4 2 1
Digit 1 1 0 1 1 1 0 1

Then, the decimal number of 110111012 is done by the following formulae.

110111012 = 1× 12810 + 110 × 6410 + 0× 3210

+ 1× 1610 + 1× 810 + 1× 410

+ 0× 210 + 1

= 22110.

10

In summary, let an n-bit positive binary number, say X2, is specified as
an−1 · · · a1a0, where ak ∈ {0, 1} for k = 0, · · · , n − 1. Its decimal number
(X10) can be calculated as follows :

X10 = an−1 × 2n−1 + an−2 × 2n−2 + · · ·+ a1 × 21 + a0 × 20.

As the largest number is the number with all ones, i.e. ak = 1 for k =
0, · · · , n− 1, the largest number that can be represented by an n-bit is

2n−1 + 2n−2 + · · ·+ 21 + 20,

which is equal to 2n − 1.

2.3.2 Decimal to Binary

To convert a decimal number to binary, the steps are different. We apply
long division. Let us have two simple examples.

Convert 510 to binary number.

2 5 ’1’
2 2 ’0’

’1’

So, 510 = 1012.

Convert 5010 to binary number.

2 50 ’0’
2 25 ’1’
2 12 ’0’
2 6 ’0’
2 3 ’1’

’1’

So, 5010 = 1100102.

11

2.4 Binary Addition

Addition of two binary numbers is similar to the addition of two decimal
numbers. Let have three examples.

0101
+ 0100

1001

0011
+ 0110

1001

0111
+ 0011

1010

The procedure starts from the least significant bit (LSB) and then moves to
left until the most significant bit (MSB) has reached.

Carry 0000
0101

+ 0100
0001

Carry 0000
0101

+ 0100
0001

Carry 1000
0101

+ 0100
0001

Carry 0000
0101

+ 0100
1001

The bitwise operation is performed by a logic circuit called full adder. Its
schematic diagram and truth table are shown in Figure 1. To add two 4-bit
(positive) numbers, we would need to have to connect four full-adders in the
way as shown in Figure 2. For the sake of explanation, you can imagine that
the steps of operation is first done at the rightmost full-adder. Then, the
steps move from right to left.

It should be noted that the circuit shown in Figure 2 consists of 8 inputs
(4 inputs for each binary number) and 5 outputs. That means, this adder
can allow the addition of 1111 and 1111. Moreover, one should note that the
D-input of the rightmost adder is set to ’0’.

One design of a full-adder is by combining two simpler adders called
half-adders. Its schematic diagram and truth table are shown in Figure 3.
From the truth table, it is clear that the outputs C and D are essentially
implemented by an XOR gate and an AND gate respectively. How two
half-adders and an OR gate can implement a full-adder is left as an exercise
for you.

2.5 Binary Subtraction

Before introducing the method of binary subtraction, we need to know how
negative number is represented in binary. One simple approach is by using
the leftmost bit as the sign bit. For a 4-bit format, the following table lists
the numbers from −7 to 7.

12

ZC

A DB

(a) Schematic diagram.

A B D C Z
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
(b) Truth table.

Figure 1: Truth table of a full adder.

Direction of Computation

ZC

A B D

ZC

A B D

ZC

A B D

ZC

A B D

0

Figure 2: Schematic diagram of a 4-bit adder.

13

C D

A B

(a) Schematic diagram.

A B C D
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(b) Truth table.

Figure 3: Truth table of an half-adder.

Decimal Binary Decimal Sign
0 0000 – –
1 0001 -1 1001
2 0010 -2 1010
3 0011 -3 1011
4 0100 -4 1100
5 0101 -5 1101
6 0110 -6 1110
7 0111 -7 1111
Sign magnitude format.

While this formate is easy to understand, it is not simplest enough for sub-
traction operation.

Another approach is based on the idea of 2’s complement. Here are the
representations of -1 to -7 in 2’s complement. As a reference, the represen-
tations of 0 to 7 are given.

14

Decimal Binary Decimal 2’s
0 0000 – –
1 0001 -1 1111
2 0010 -2 1110
3 0011 -3 1101
4 0100 -4 1100
5 0101 -5 1011
6 0110 -6 1010
7 0111 -7 1001
2’s complement format.

A simple three steps procedure can help you how to convert a negative num-
ber from its decimal form to 2’s complement. Let say the number is −M10

Step 1 Convert M10 to binary.

Step 2 Inversion all the bits.

Step 3 Add the inversion by ’1’.

Example 1: Convert −610 to its 2’s complement, the following three steps
give the result.

Step 1 610 → 01102.

Step 2 01102 → 10012.

Step 3 10012 + 00012 = 10102.

Note that there are 15 numbers (from −710 to 710) can be represented
by 4 bits. For N bits, the range of numbers that can be represented is from
−(2N−1 − 1) to (2N−1 − 1).

Example 2: Convert −9110 to its 2’s complement, we need 8 bits.

Step 1 9110 → 010110112.

Step 2 010110112 → 101001002.

Step 3 101001002 + 000000012 = 101001012.

With the knowledge of 2’s complement, it is time to learn the method of
subtraction. Let start with an example.

15

B = 0XXX

ZC

A B D

ZC

A B D

ZC

A B D

ZC

A B D

Normal/2S Comp2−S Complement

0 (A+B)

1 (A−B)

0

A = 0XXX

Figure 4: Schematic diagram of a circuit for doing addition and subtraction
of two positive numbers.

Example 3: The way to calculate the value of 8010−2610 is by adding 8010
and −2610, i.e.

8010 − 2610 = 8010 + (−2610)

= 010100002 + 111001102

= 001101102.

The last step is essentially the binary addition.

2.6 Circuit Design for Add/Sub

Figure 4 shows a schematic diagram of a circuit for doing both addition and
subtraction of two positive numbers which are in the range of [0, 7]. The
operation of the ”Normal/2’s Comp” block is defined in the table below.
The pin on the right side of the circuit is to control if the circuit is doing
A + B or A − B. Here, it is defined that the circuit performs A + B if the
signal is ’0’. Otherwise, it performs A−B.

16

Number A+B A−B
0000 0000 0000
0001 0001 1111
0010 0010 1110
0011 0011 1101
0100 0100 1100
0101 0101 1011
0110 0110 1010
0111 0111 1001

Clearly, the circuit shown in Figure 4 is not the only design. There are many
others.

2.7 Exercises

Question 1

1. What are the bases for a binary number with eight digits?

2. What is the value of ’10000000’ in decimal form?

3. What is the value of ’10101001’ in decimal form?

4. What is the value of ’11011011’ in decimal form?

5. What is the value of ’00101010’ in decimal form?

6. What is the value of ’11111111’ in decimal form?

7. What are the bases for a binary number with sixteen digits?

8. What is the value of ’1000000000000000’ in decimal form?

9. What is the value of ’1111111111111111’ in decimal form?

10. What is the largest number (in decimal form) of a binary number with
thirty-two digits?

11. What is the largest number (in decimal form) of a binary number with
sixty-four digits?

(Hint: The largest value of a binary number with N digits is 2N − 1. Why?)

17

Question 2

(a) Using an XOR and an AND gates to implement a half-adder.

(b) Using two half-adders and an OR to implement a full-adder.

Question 3

In the question, the binary number is of 8-bit format.

(a) Convert 2010 into binary number.

(b) Represent −1210 2’S complement.

(c) Show the steps of obtaining the value of 2010 − 1210.

Question 4

In the question, the binary number is of 16-bit format.

(a) Convert 2010 into binary number.

(b) Represent −1210 2’S complement.

(c) Show the steps of obtaining the value of 2010 − 1210.

Question 5

In the question, the binary number is of 16-bit format.

(a) Convert 5810 into binary number.

(b) Represent −7810 2’S complement.

(c) Show the steps of obtaining the value of 5810 − 7810.

(d) Convert the answer in (c) in sign-magnitude form.

3 CPU

Central processing unit (CPU) is a digital system which is able to perform
all logic and arithmetic operations. To understand how it works, one can
refer to the circuit as shown in Figure 4.

18

Memory

ADD/SUB

Figure 5: A system consists of arithmetic unit and memory. The control unit
is not shown in the diagram.

3.1 Simple ADD/SUB system

As observed from Figure 4, the signal pin on the right side controls the
operation of the circuit. In other words, it controls operation of the circuit
on the inputs. Thus, one can imagine a very complex circuit which consists
of logic circuits handling all the arithmetic operations and other circuits
handling logic operations on the inputs. We could thus control the operation
of this complex circuit by sending control signals. But this time, the number
of signal pins will be many more than one.

If moreover there are (electronic) components which can be built for stor-
age (see the blank rectangular blocks in Figure 5), we can connect them to
the inputs and the outputs. Let say the temporary storage for inputs are
called IA and IB and the output is called OUT. Precisely, it is called regis-
ter. By using the same components, it is for sure that memory can be built.
Suppose we have a memory with 16 units. Each unit consists of 4 bits. Let
say the memory units are M1, M2, M3, · · ·, M16.

3.2 Program

Now, suppose we have a problem to find out the subtotal of M1, M2, M3
and then save the answer on M4. We use the term ADD as the ”name” for

19

the ”control signals” (binary signals) for controlling the circuit to perform
addition. The following steps can help to do this task.

A sample program

M4 = M1 + M2 + M3

MOV IA M1

MOV IB M2

ADD IA IB

MOV IA OUT

MOV IB M3

ADD IA IB

MOV M4 OUT

In the above example, the signal MOV is designed for signal-flow from
the memory to register, and from register to register. The above steps for
adding three numbers, while simple, are called instructions. These seven
instructions constitute the program. A program is a sequence of instructions.
MOV and ADD are called commands. Since this program describes what
the ABB/SUB circuit and the memory should do, it is the so-called low-
level program. The corresponding binary code is called machine code.
The software translating the program to machine code is called compiler.

4 Artificial CPU (JS2019)

Below is a simple circuit. It consists of a memory with 16 memory spaces
(from M1 to M16), an ALU block, 2 input registers (IA and IB) and one
output register (OUT). M1 to M16, IA, IB and OUT are all 8 bits long.
Numbers are represented in fixed-point 2’s compliment format.

20

Memory

ADD/SUB

4.1 List of Commands

Eleven commands (MOV, ADD, SUB, MUL, DIV, CMP, SHL, SHR, DEF,
MSK and IF) are provided for instructing the above circuit. The syntax and
the descriptions of these commands are depicted in Table 1.

Table 1: Commands for using the CPU.

Syntax Description
MOV X Y Copy the content of Y to X
ADD X Y OUT = X + Y .
SUB X Y OUT = X − Y .
MUL X Y OUT = X × Y .
DIV X Y OUT = X/Y .
CMP X Y OUT = b1b2b3b4b5b6b7b8.

bi = 0 if Xi = Yi.
bi = 1 if Xi ̸= Yi.

SHL X Y OUT is the content of X
shifting left Y bits.

SHR X Y OUT is the content of X
shifting right Y bits.

DEF X N Define X as the number N.
MSK X M Mask the value of X by M.
IF ELSE Condition statement.

A command is also called an instruction. The set of instruction available

21

for instructing a CPU is called instruction set. For a general purpose CPU,
like Intel CORE i5, the total number of instructions is large. So, this type
of processors is called complex instruction set processor. For some special
purpose processors, like GPU and digital signal processors, they are used for
specialized purposes, matrix multiplication for instance. Only a small set of
instructions for arithmetic operations is enough. This type of processors is
called reduced instruction set processor.

4.2 Command Descriptions

1. For the ”CMP” command, if X = 0110 and Y = 1101, OUT = 1011.

2. For ”SHL” and ”SHR” commands, the content of Y can only be one
of the following.

Y Meaning
10000000 (Shift 7 bits)
01000000 (Shift 6 bits)
00100000 (Shift 5 bits)
00010000 (Shift 4 bits)
00001000 (Shift 3 bits)
00000100 (Shift 2 bits)
00000010 (Shift 1 bits)
00000001 (No shift)

For example, if
X = 00011000, Y = 00000100,

the OUT of ”SHL X Y” is 01100000 and the OUT of ”SHR X Y” is
00000110.

3. For the ”DEF” command, N must be a number in decimal form. X
can only be a memory location. ”DEF” command is not applicable for
assigning values to a register. It is used to assign a value to a memory
location. For example, ”DEF M1 12” means that memory location M1
will be assigned with a value 12. Therefore, M1 = 00001100.

4. For the ”MSK” command, it is used for masking a register (either IA
or IB) by the mask M (in binary). The mask must be 8 bits long.

22

Suppose that the content of IA and M are defined as follows :

IA = 01001001,M = 11110000.

Then, the output OUT will be ”01000000”. The last four bits are
masked. Here is an example.

DEF M1 45

MOV IA M1

MSK IA 00001111

MOV M2 OUT

Initially, M1 is assigned with value 45. In binary form, the content
reads ”00101101”. Thus, the output OUT is ”00001101”.

5. The ”IF-ELSE” command is an advanced level command. It is for
conditional statement. Once it is executed, the CPU will performs
multiple steps in order to make it works. You do not need to know
the detail how it works. In term of its usage, it is simple. Here is an
example.

DEF M1 1

DEF M2 2

DEF M3 1

MOV IA M1

IF IA == 0

MOV IA M2

MOV IB M3

ADD IA IB

MOV M4 OUT

ELSE

MOV IA M1

MOV IB M2

ADD IA IB

23

MOV M4 OUT

ENDIF

Command ”IF” checks if the content of IA is identical to ”0”. If it is,
it will perform M2 +M3 and output the result to M4. Otherwise, it
will perform M1 +M2 and output the result to M4.

DEF M1 1

DEF M2 2

DEF M3 1

MOV IA M1

IF IA == 0

MOV IA M2

MOV IB M3

ADD IA IB

MOV M4 OUT

ENDIF

In this example, the CPU performs M2 +M3 only if IA is zero. Oth-
erwise, it performs nothing.

6. For the ”IF-ELSE” command, the following conditions are allowed for
you to define. Here NUM must be stated in decimal form but not in
binary.

IA == NUM

IA > NUM

IA >= NUM

IA < NUM

IA <= NUM

24

4.3 Exercises

Question 1

Refer to the artificial CPU and its commands, what will be the content of
M4 if the following commands are executed?

DEF M1 0

DEF M2 2

DEF M3 5

MOV IA M1

IF IA == 0

MOV IA M2

MOV IB M3

ADD IA IB

MOV M4 OUT

ELSE

MOV IA M1

MOV IB M2

ADD IA IB

MOV M4 OUT

ENDIF

Answer:

(a) 2.

(b) 7.

(c) 5.

(d) 0.

Question 2

What will be the content ofM4 if the following program segment is executed?

DEF M1 16

DEF M2 22

DEF M3 10

25

MOV IA M1

MOV IB M2

CMP IA IB

MOV M4 OUT

MOV IA M2

MOV IB M3

CMP IA IB

MOV IA OUT

MOV IB M4

ADD IA IB

MOV M4 OUT

Answer:

(a) 28.

(b) 30.

(c) 32.

(d) 34.

Question 3

Refer to the artificial CPU and its commands, what will be the content of
M4 if the following commands are executed?

DEF M1 0

DEF M2 2

DEF M3 5

MOV IA M1

IF IA == 0

MOV IA M2

SHL IA 00000100

MOV IA OUT

MOV IB M2

ADD IA IB

MOV M4 OUT

ELSE

26

MOV IA M3

SHL IA 00000100

MOV IA OUT

MOV IB M3

ADD IA IB

MOV M4 OUT

ENDIF

Answer:

(a) 4.

(b) 6.

(c) 8.

(d) 10.

Question 4

Three numbers have been stored in M1, M2 and M3. Which of the following
program segments can correctly give the output of the following formulae?

M4 = M1 +M2×M3.

Answer:

(a) ----------------

MOV IA M1

MOV IB M2

MUL IA IB

MOV IA OUT

MOV IB M3

ADD IA IB

MOV M4 OUT

(b) ----------------

MOV IA M1

MOV IB M2

ADD IA IB

27

MOV IA OUT

MOV IB M3

MUL IA IB

MOV M4 OUT

(c) ----------------

MOV IA M2

MOV IB M3

MUL IA IB

MOV IA OUT

MOV IB M1

ADD IA IB

MOV M4 OUT

(d) ----------------

MOV IA M2

MOV IB M3

ADD IA IB

MOV IA OUT

MOV IB M1

MUL IA IB

MOV M4 OUT

Question 5

Given that there are five memories M1, M2, M3, M4 and M5. Here is the
program segment to instruct the circuit.

MOV IA M1

MOV IB M2

MUL IA IB

MOV M5 OUT

MOV IA M3

MOV IB M4

MUL IA IB

28

MOV IA OUT

MOV IB M5

ADD IA IB

MOV M5 OUT

Which of the following mathematical equation is identical to the operation
of the following program segment?
Answer:

(a) M5 = M1 +M2×M3 +M4.

(b) M5 = (M1 +M2)×M3 +M4

(c) M5 = M1× (M2 +M3)×M4.

(d) M5 = M1×M2 +M3×M4.

Question 6

Given that there are five memories M1, M2, M3, M4 and M5. Here is the
program segment to instruct the circuit.

MOV IA M1

MOV IB M2

MUL IA IB

MOV IA OUT

MOV IB M3

MUL IA IB

MOV IA OUT

MOV IB M4

SUB IA IB

MOV M5 OUT

which of the following mathematical equation is identical to the operation
of the following program segment?
Answer:

(a) M5 = M4−M1×M2×M3.

29

(b) M5 = M4− (M1 +M2)×M3

(c) M5 = M1×M2×M3−M4.

(d) M5 = (M1 +M2)×M3−M4.

Question 7

If the content in M1 is either ’1’ or ’0’, which of the following mathematical
equation is identical to the operation of the following program segment?

MOV IA M1

IF IA == 0

MOV IA M2

SHL IA 00000100

MOV IA OUT

MOV IB M2

ADD IA IB

MOV M4 OUT

ELSE

MOV IA M3

SHL IA 00000100

MOV IA OUT

MOV IB M3

ADD IA IB

MOV M4 OUT

ENDIF

Answer:

(a) M1× (9×M2) + (1−M1)× (9×M3).

(b) M1× (5×M2) + (1−M1)× (5×M3).

(c) (1−M1)× (9×M2) +M1× (9×M3).

(d) (1−M1)× (5×M2) +M1× (5×M3).

30

5 Computer Organization

Generally speaking, a computer is a huge logic circuit. For clarity, this huge
logic circuit is partitioned into different sub-systems namely central process-
ing unit, memory, input/output device, network communication device. To
manage the usage of these hardware units, an operating system is needed.

5.1 Hardware

5.1.1 CPU & Registers

The central processing unit (CPU) is responsible for doing arithmetic and
logic operations. (CPU) would not just have an ADD/SUB system in it. A
CPU consists of at least a unit called Arithmetic/Logic Unit (ALU), an
Instruction Decode unit and a Control unit. To improve the performance
of a CPU, registers (normally tens of Bytes) and cache memory (normally
a few hundred KBytes) are usually embedded inside the CPU.

5.1.2 Memory

Memory (primary storage) is used for temporarily storing the data or instruc-
tion that are needed for the CPU. Usually, this primary memory is called
RAM (random access memory). It is workable only when power is off. Once
the power is off, the content in the RAM will be gone. For storing the data
permanently, we need secondary storages – the hard-disk, the CD or USB
flash memory. In term of memory capacity, RAM usually ranges from a few
hundred mega bytes (MBytes) to a few giga bytes (GBytes). The memory
capacity of a USB flash memory can now be made to 128 GBytes. Hard-disk
or the latest solid state drive (SSD) has the largest capacity up to tera bytes
(TBytes).

One should note that the access speed of different types of memory are
quite different. By access speed, it means the time for transferring data
from the memory to the CPU. Since registers and cache are embedded in the
CPU, it is clear that the access speed is the fastest. RAM is mounted on
the mother board. While its location is still close to the CPU, transferring
data between CPU and RAM is 1000 times slower than registers. For the
secondary storages like hard-disk, the access speed is even slower. Normally,
it is 1000 times slower than RAM.

31

5.1.3 I/O devices

Input devices are those devices that can let user to enter information to the
computer. Keyboard, scanner and mouse are three common input devices.
Output devices are those devices that can let user to know what is happening
in the computer. Monitor and loudspeaker are two common output devices.

5.1.4 NetCom devices

Strictly speaking, network communication device is not belongs to be part
of a computer. Recall that the usage of the first generation electronic com-
puter did not require network communication. But nowadays, the usage of
computer is attached to Internet access. So, network communication device
turns out to be an important part in a computer. Without such, the usage
of a computer will be so limited.

In a computer, the network communication device is referred to the In-
ternet communication device. It is used for making communication via the
Internet. In a smartphone, there are two communication devices. One is
used for making Internet communication. The other is for making telecom-
munication.

5.2 Operating systems

Once you have understood that a computer is just a combination of various
logic circuits and devices for input/output, what you need to know more is the
operating system. Operating system is a complicated program. It consists of
many lines of machine code (instruction)3. Operating system starts running
when the computer is power on and then stops when the power is off. The
main purposes of the operating system is to manage the file system, the
memory, the input/output devices, see Figure 6. So that, computer user can
interact with the operating system via either command prompt or GUI to
control the computer.

Common operating systems are Window XP, Windows 7/8, Apple iOS for
personal computers, Andorid, iOS, Window Phone 8 for smart phones. Unix
and Linux are two common operating systems for network of computers.

3Recall that machine codes are sequence of electrical signals feeding to the CPU.

32

Operating System

Input Output Memory CPU Network

WORD EXCEL Chrome LINE SPSS

Figure 6: Operating system provides services to support the application sys-
tems.

6 More on Binary Number Representations

Previous section on computer arithmetic has introduced two formats for bi-
nary number, the unsigned integer and 2’s-compliment. In fact, there are
many other formats for number representation and they could be catego-
rized as fixed-point format and floating point format. Unsigned integer and
2’s-compliment are two special cases of fixed-point format.

6.1 Fixed-point

6.1.1 Sign-Magnitude

To represent a decimal number, say −4.75, in binary format, we need to
have a binary point and a sign bit. One representation called sign-magnitude
format is given below.

−4.7510 = −
(
22 + 2−1 + 2−2

)
= −

(
0× 23 + 1× 22 + 0× 21 + 0× 20 + 1× 2−1 + 1× 2−2 + 0× 2−3

)
= 10100.1102.

The general form of a (m+ q + 1)-bit format is given by

Sign×
(
am × 2m + · · · a1 × 21 + a0 × 20 + b1 × 2−1 · · · bq × 2−q

)
,

33

where m is the number of integer bits and q is the number of fractional bits.
Remember that the leftmost bit is sign bit.

To convert a fractional number into binary, we apply the method of sub-
traction instead of long division.

0.75 = 2−1 + 0.25 = 2−1 + 2−2.

Note that not all fractional number can be represented by finite number of
fractional bits. Here gives you three examples.

0.23610 = 0.00111100011010100111111011111 · · ·
0.485210 = 0.01111100001101100001000100110 · · ·

0.110 = 0.00011001100110011001100110011 · · ·
Even for the decimal numbers 0.1 and 0.2, they cannot be represented by
finite number of fractional bits. In this regard, these numbers have to be
truncated (i.e. chopped) or rounded. To illustrate the ideas, let the number
of fractional bits be 5.

Truncation : The idea of truncation is simply by chopping. Only the first
five fractional bits are kept and ignore the others. Another name for this
method is called round-down.

0.23610 = 0.00111

0.485210 = 0.01111

0.110 = 0.00011.

The maximum error, called precision error, committed due to truncation is
2−q. In the above examples, the precision error is 2−5.

Rounding : The method of rounding is the same as what we have learnt in
elementary mathematics, round to nearest number. Here are two examples.

[0.236] = 0.24 (Round to two decimal points!)

[0.4852] = 0.485 (Round to three decimal points!).

By the same principle, by rounding the above binary numbers to five frac-
tional bits, we get that

0.23610 = 0.01000

0.485210 = 0.10000

0.110 = 0.00011.

34

As compared with the numbers obtained by truncation, the first two numbers
are represented differently. The precision error, committed due to truncation
is 2−(q+1). In the above examples, the precision error is 2−6.

Guard bits : It is clear that precision error will be amplified if there are
a large amount of numbers to be added. To overcome such problem, the
number to be operated in the CPU is converted to a higher precision format,
say from 16 bits to 20 bits or 32 bits. All arithmetic operations are thus
conducted in this high precision level. Here is an example. Suppose the
numbers are represented in 8-bit fixed point with 5 fractional bits, i.e. F (8, 5).
In the CPU, the number of bits is 16.

0.485210 × 0.110 = 0.10000× 0.00011

= 000.10000× 000.00011

= 000.1000000000000× 000.0001100000000

= 000.0000100000000 + 000.0000010000000

= 000.0000110000000

= 000.000011

The extra bits are called the guard bits.

6.1.2 2’s-Compliment

To represent a fractional number in 2’s-compliment, the idea and the conver-
sion method are the same as for integer number. To make it easier to under-
stand, we consider the number which can be represented by finite number of
fractional bits.

3.7187510 = 11.101112.

Now, we would like to convert −3.7187510 into binary. Here, we assume that
the number of integer bits is 2 and the number of fractional bits is 5.

Step 1 3.7187510 → 011.101112.

Step 2 011.101112 → 100.010002.

Step 3 100.010002 + 000.000012 = 100.010012.

35

So, we can check that the beauty of 2’s-compliment format in subtraction
preserves.

3.7187510 − 3.7187510 = 3.7187510 + (−3.7187510)

= 011.101112 + 100.010012

= 000.000002

= 010.

The addition in the second line is implemented by 8-bit full adder.

6.1.3 Range

For a fixed-point with m integer bits and q fractional bits, the maximum and
minimum numbers it can be represented are given below.

Max = +111 · · · 111︸ ︷︷ ︸
m bits

. 111 · · · 111︸ ︷︷ ︸
q bits

. Min = − 111 · · · 111︸ ︷︷ ︸
m bits

. 111 · · · 111︸ ︷︷ ︸
q bits

.

The maximum number is given by

Max =
m∑
i=0

2i +
q∑

j=1

2−j

= 2−q ×
(m+q∑

i=0

2i
)

= 2−q
(
2m+q+1 − 1

)
= 2m+1 − 2−q.

Therefore, the binary numbers that can be represented are in the range[
−
(
2m+1 − 2−q

)
,
(
2m+1 − 2−q

)]
.

The interval between two consecutive numbers is 2−q.

6.2 Floating-point

As the range of fixed-point format is finite, it is not possible to represent
the numbers outside the range. In this regard, we need another format to
represent large numbers. It is the floating-point format.

36

Recall that the speed of light is 299792458 meters per second (m/s).
Sometimes, we write it approximately as 3.0× 108m/s. It is already a base-
10 floating-point format. Three important information in this representation,
(i) the sign (i.e. ’+’), (ii) the significant (i.e. 3.0) and (iii) the exponent (i.e.
8).

6.2.1 Representation

To illustrate how a fractional number can be represented in floating-point, let
us consider the same number 3.7187510 (equivalently 11.101112). To convert
it to a floating-point, we carry the following steps. Here, we assume that
there is one sign bit and the number of significant bits is 11. The number of
exponent bits is 5 and the exponent bias is 15. It is exactly the half-precision
floating-point format as defined in IEEE 754-2008 standard.

Step 1 3.7187510 → 011.101112.

Step 2 011.101112 → 1.110111× 21. Significant bits are 11011100000.

Step 3 Exponent = 1 + 15 = 16. Exponent bits are 10000.

Step 4 3.7187510 → 01000011011100000hf .

Step 2 is the normalization step. The subscript hf stands for half-float.
Let us consider another slightly different number 24.7187510. Clearly,

the binary bits for the fractional part is the same. For the integer part, it
is represented by 110002. So, the conversion can be done by the following
steps.

Step 1 24.7187510 → 11000.101112.

Step 2 11000.101112 → 1.100010111× 24.

Step 3 Exponent = 4 + 15 = 19. Exponent bits are 10011.

Step 4 24.7187510 → 01001110001011100hf .

To represent a negative number in floating format, simply turn the sign
bit in ’1’. For instance,

−3.7187510 = 11000011011100000hf

−24.7187510 = 11001110001011100hf

37

Let us consider the number 2−16. Based on the normalization step, the
number should be represented as follows :

2−16 = 1.00000000000× 2−16.

However, the minimum power allowed is −14. In such case, there is no scale-
down normalization. Instead, normalization is performed in a manner of
scale-up, i.e.

2−16 = 0.01000000000× 2−14.

Those numbers smaller than 2−14 are called subnormal numbers. So, the
conversion of 2−16 can be done by the following steps.

Step 1 2−16
10 → 0.00000000000000012.

Step 2 0.00000000000000012 → 0.01× 2−14.

Step 3 As the number is smaller than 2−14, exponent bits are 00000.

Step 4 2−16
10 → 00000001000000000hf .

Step 3 is not the same as before. The exponent 00000 is to indicate that
the number is subnormal, i.e. smaller than 2−14.

To clarify this point, let us consider the number 2−14 + 2−16. So, the
conversion of 2−16 can be done by the following steps.

Step 1 (2−14 + 2−16)10 → 0.00000000000001012.

Step 2 0.00000000000001012 → 1.01× 2−14.

Step 3 Exponent = −14 + 15 = 1. Exponent bits are 00001.

Step 4 (2−14 + 2−16)10 → 00000101000000000hf .

6.2.2 Interesting numbers

The smallest positive subnormal number that can be represented by the above
half-precision floating-point is given by

0 00000 00000000001 = 0.000000000012 × 2−14

= 2−11 × 2−14

= 2−25.

38

The largest positive subnormal number that can be represented by the above
half-precision floating-point is given by

0 00000 11111111111 = 0.111111111112 × 2−14

=
(
1− 2−11

)
× 2−14

= 2−14 − 2−25.

Here are a few other interesting numbers.

0 00001 00000000000 = 2−14.

0 01111 00000000000 = 1.000000000002 × 215−15

= 1.

0 11110 11111111111 = 1.111111111112 × 215

=
(
2− 2−11

)
× 215

= 6552010.

Note that the largest exponent is 11110, not 11111. The bit pattern 11111
is reserved for other use. Numbers larger than 65520 cannot be represented.

0 11111 00000000000 = ∞
1 11111 00000000000 = −∞

Here, only the 16-bit half-precision floating-point has been introduced.
In many processors, the number of bits for a floating-point could be 32 bits,
64 bits and even 128 bits. Their principles of representing a number are
almost the same. It consists of a sign bit, a number of bits for exponent
and a number of bits for significant. For the exponent, it embraces with an
exponent bias. If the exponent bits are all zeros, the number is subnormal.

6.2.3 Arithmetic

Floating-point arithmetic is more complicated than fixed-point arithmetic.
For instance, addition of two numbers will need to normalize the numbers

39

with same exponent before doing the addition.

1.00010010011× 28 + 1.01011000000× 26

= 1.00010010011× 28 + 0.01010110000× 28

= 1.01101000011× 28.

For multiplication, the computation could be intensive (see the second step).(
1.00010010000× 28

)
×
(
1.01000000000× 26

)
= (1.00010010000× 1.01000000000)× 214

= (1.00010010000 + 0.01000100100)× 214

= 1.01010110100× 214.

Here, the number 1.01000000000 consists of one bit ’1’ in the fractional part.
So, there is only one addition. If there are many bits ’1’, the number of
addition could be large.

6.2.4 FLOPS

The number of steps in performing a single floating-point arithmetic, like
addition or multiplication, is more than fixed-point arithmetic. Today, the
number of floating-point operations in a second (equivalently, floating-point
operations per second (FLOPS)) becomes the default measure for computer
performance. Today, an Nvidia GPU can have processing speed up close to
1015 FLOPS.

6.3 Exercises

1. Convert −32.125 in 16-bit 2’s compliment fixed-point format with 5
integer bits and 10 fractional bits.

2. Describe the steps how two fixed-point numbers are multiplied.

3. Convert −32.125 in IEEE 754 half-precision floating point format.

4. Convert the following half-precision floating numbers to decimal num-
bers.

(a) 1000001010101010.

40

(b) 0011100010100000.

5. Describe the steps how two floating numbers are multiplied.

41

