Digital Systems

John SUM
Institute of Technology Management
National Chung Hsing University
Taichung, ROC

May 11, 2020

Contents

1 Logic Gates 3
1.1 Logic Gate 3
1.2 Truth Tables 4
1.3 Digital logic circuits 5
1.4 Exercises 6
2 Arithmetical Operations 7
2.1 Decimal number 7
2.2 Binary number 9
2.3 Number Conversion 10
2.3.1 Binary to Decimal 10
2.3.2 Decimal to Binary 11
2.4 Binary Addition 12
2.5 Binary Subtraction 12
2.6 Circuit Design for Add/Sub 16
2.7 Exercises 17
3 More on Binary Number Representations 19
3.1 Fixed-point 19
3.1.1 Sign-Magnitude 19
3.1.2 2's-Compliment 21
3.1.3 Range 21
3.2 Floating-point 22
3.2.1 Representation 22
3.2.2 Interesting numbers 24
3.2.3 Arithmetic 25
3.2.4 FLOPS 26
3.3 Exercises 26

1 Logic Gates

A computer is a basically a digital system. Loosely speaking, digital system is a system that is able to perform logical and arithmetical operations ${ }^{1}$. It consists of many digital logic circuits. Some of these circuits are implemented by simple logic gates to perform those operations. Some of them are control circuits. They control the activations of the logic gates (or logic circuits) and the connections amongst them.

1.1 Logic Gate

Logic gate is the basic building block of a digital system. Common logic gates include AND gate, OR gate, NAND gate, NOR gate, XOR^{2} gate and NOT gate. Except NOT gate which is a single-input-single-output logic gate, all others are two-input-single-output logic gates.

For electronic logic gates, the inputs to the gates are electrical signals (voltage). The logical signal could be defined in many different ways. For instance, 'high' voltage refers to 'TRUE' (or '1') and 'low' voltage refers to 'FALSE' (or '0'). Another setting is that 'positive' voltage refers to 'TRUE' (or '1') and 'negative' voltage refers to 'FALSE' (or '0'). As there are only two types of signal, this kind of signal is called binary (or digital). Output signal of a logic gate is also binary.

There are many specifications for high and low signals. One specification is that 5 V for high signal and 0 V for low signal. Another specification is that 5 V for high and -5 V for low. As both input and output signals are binary (i.e. digital), a logic gate performs simple logic function which implies the name logic gate. Therefore, the systems which are composed of these logic gates are digital systems.

Logic gate is itself an electronic circuit which consists of electronic components. In the early 20 century, vacuum tubes were used for such implementation. In 1940s, semiconductor were invented. Vacuum tubes were replaced by semiconductor transistors to implement the logic gates.

[^0]
1.2 Truth Tables

The logical operation of a logic gate is defined by its truth table. Conventionally, high voltage is represented by ' 1 ' and low voltage is represented by ' 0 '. In other words, the basic operation of a logic gate is specified by its truth table.

AND GATE
X Y Z
000
010
100
111
OR GATE
X Y Z
000
011
101
111

NAND GATE
X Y Z
001
011
101
110

NOR GATE
X Y Z
001
010
100
110

XOR GATE
X Y Z
000
011

101
110

1.3 Digital logic circuits

These logic gates are the basic building blocks for any digital logic circuit that performs logic function. In the following examples, the notations are defined as follows :

Notation	Meaning	Example
\bar{X}	Inversion	If $X=1, \bar{X}=0$.
$X Y$	AND operation	$X Y=1$ only if $X=1$ and $Y=1$.
$X+Y$	OR operation	$X Y=1$ if either $X=1$ or $Y=1$.

Besides, it should be noted that the following equalities hold for AND and OR operations.

$$
A B C=A(B C)=(A B) C, \quad A+B+C=A+(B+C)=(A+B)+C
$$

Here are some illustrative examples that you can try to see if you can understand these basic operations.
Example 1: $Z=\overline{A \bar{B} C}$.

A B C Z
0001
0011
0101
0111
1001
1010
1101
1111
Example 2: $Z=\bar{A} B C+A \bar{B} \bar{C}$.

A B C Z
0000

```
0 0 1 0
```

0100
0111
1001
1010
1100
1110
Example 3: $Z=\bar{A} \bar{B} \bar{C}+\bar{A} B C+A \bar{B} \bar{C}+\bar{A} B \bar{C}$.

A B C Z
0001
0010
0101
0111
1001
1010
1100
1110
For the above examples, it is clear that such logic functions can simply be implemented by NOT gate, AND gate and OR gate only. However, in computer science, the key problem in digital logic design is to find the simplest design, the one uses the minimum number of logic gates.

1.4 Exercises

1. Design a digital circuit which consists of 8 inputs $A, B, C, D, E, F, G a n d H$ and 1 output Z with the following function.

$$
Z= \begin{cases}1 & \text { if } A B C D=E F G H \\ 0 & \text { otherwise }\end{cases}
$$

2. Design a digital circuit which consists of 8 inputs A, B, C, D, E, F, G and H and 1 output Z with the following function.

$$
Z= \begin{cases}1 & \text { if } A=\bar{E}, B=\bar{F}, C=\bar{G} \text { and } D=\bar{H} \\ 0 & \text { otherwise }\end{cases}
$$

3. Design a digital circuit which can perform the logic function $Z=A B+$ $C D$.
4. Design an AND gate using XOR gates only.
5. Design an AND gate using NAND gates only.
6. Design an OR gate using NAND gates only.
7. Design an NOR gate using NAND gates only.
8. Design an XOR gate using NAND gates only.
9. Using NAND gates only, design a digital circuit which can perform the logic function $Z=A B+C D$.
10. After the input signal and the instruction signal have been fed to a processor, the processor will do two tasks. What are they?
11. State the differences between a CISC processor and a RISC processor.

2 Arithmetical Operations

To start with, we need to know how numbers are represented in decimal and binary forms.

2.1 Decimal number

In decimal numeral system (base-ten numeral system), we have $0,1,2,3,4$, $5,6,7,8,9,10,11$, and so forth to represent positive integers. Look at the numbers, what can you see? Actually, we use symbols '0', '1', '2', '3', '4', '5', ' 6 ', ' 7 ', ' 8 ' and ' 9 ' to form the number.

For value which is in between zero and nine, we use one digit. For value which is in between ten and ninety-nine, we use two digits. For value which is in between one hundred to nine hundred and ninety-nine, we use three digits.

Let us start with the first ten numbers,
0123456789.

The last digit has reached its largest value 9 . So, return to the next line starting with two digits.
$\begin{array}{llllllll}10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ 18 & 19 .\end{array}$
The last significant digit of the last number has reached its largest value 9 . So, return to the next line starting and the first digit increments by one, we get that
20212223242526272829.
gain, the least significant digit has reached its largest value 9. So, return to the next line starting and the first digit increments by one. After repeat until the last number is 79 , the next line reads

80818283848586878889 .
Again, the least significant digit has reached its largest value 9. So, return to the next line starting and the first digit increments by one. Now, the first digit in the next line is 9 , i.e.

```
90 91 92 93 94 95 96 97 98 99.
```

Again, the least significant digit has reached its largest value 9. So, return to the next line starting and the first digit increments by one. However, the first digit has already reached its largest value. Now, we need three digits. That is,
100101102103104105106107108109.

See! That is the way we make up the positive integers. One should note three important numbers, ' 0 ', '10' and '100'. They are the first number on the line. If we unify the number of digits to be 3 , the numbers are listed as follows.

```
000 001 002 003 004 005 006 007 008 009
010 011012013014015016017018019
020 021 022 023 024 025 026 027 028 029
090 091 092 093094095096097098099
100 101 102 103 104 105 106 107 108 109
```


2.2 Binary number

Now, let us talk about the binary number. In binary numeral system, we use two symbols, ' 0 ' and ' 1 '. In each line, we only allow ' 0 ' and ' 1 '. ' 1 ' is the largest value. So, by the same principle as what we list the numbers in decimal numeral system, we can list all the numbers in binary form. The first line reads
01.

The rightmost digit has reached its largest value. So, we need to start a new line with two digits, i.e.
1011.

The rightmost digit has reached its largest value. So, we need to start a new line with two digits. However, the first digit has reached its largest value. So, we need to start with a new line with three digits, i.e.
100101.

The rightmost digit has reached its largest value. So, we need to start a new line with the second digit increments by one, i.e.
110111.

Again, if we unify the number of digits to three, the above numbers will be listed as follows.

000001
010011
100101
110111
So, you see! The numbers '0', '1', '2', '3', '4', '5', '6', '7' in decimal form show quite different appearance in binary form.
Question: How do we know '101' in binary form is ' 5 ' in decimal form? Answer: By counting.
Question: Would there be an easy way for us to identify its value in decimal form?
Answer: By using formulae.

Here are two examples.

$$
\begin{aligned}
& 101_{2}=1 \times 4+0 \times 2+1 \times 1=5_{10} . \\
& 100_{2}=1 \times 4+0 \times 2+0 \times 1=4_{10} .
\end{aligned}
$$

4,2 , and 1 are the basis for three digit binary number. For a binary number with five digits, the basis will be $16,8,4,2$ and 1 . The decimal value of ' 10110 ' is given by

$$
10110_{2}=1 \times 16+0 \times 8+1 \times 4+1 \times 2+0 \times 1=22_{10}
$$

Now, it is your turn.

2.3 Number Conversion

First of all, we need to indicate a number if is belongs to a binary number or a decimal number. For a binary number, we use subscript '2'. EG. 1012. For a decimal number, we use subscript '10'. EG. 21_{10}. In this regard, we can see that 101_{2} equals to 5_{10}, and 21_{10} equals to 10101_{2}. As an introduction, let us start with the conversion of positive decimal (resp. binary) integers.

2.3.1 Binary to Decimal

To convert a binary number to a decimal number, one needs the following table. Suppose that we want to convert a number 11011101_{2} to decimal.

Weight	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
Digit	1	1	0	1	1	1	0	1

Equivalently, the above table can be depicted as the following table.

Weight	128	64	32	16	8	4	2	1
Digit	1	1	0	1	1	1	0	1

Then, the decimal number of 11011101_{2} is done by the following formulae.

$$
\begin{aligned}
11011101_{2} & =1 \times 128_{10}+1_{10} \times 64_{10}+0 \times 32_{10} \\
& +1 \times 16_{10}+1 \times 8_{10}+1 \times 4_{10} \\
& +0 \times 2_{10}+1 \\
& =221_{10} .
\end{aligned}
$$

In summary, let an n-bit positive binary number, say X_{2}, is specified as $a_{n-1} \cdots a_{1} a_{0}$, where $a_{k} \in\{0,1\}$ for $k=0, \cdots, n-1$. Its decimal number $\left(X_{10}\right)$ can be calculated as follows :

$$
X_{10}=a_{n-1} \times 2^{n-1}+a_{n-2} \times 2^{n-2}+\cdots+a_{1} \times 2^{1}+a_{0} \times 2^{0} .
$$

As the largest number is the number with all ones, i.e. $a_{k}=1$ for $k=$ $0, \cdots, n-1$, the largest number that can be represented by an n-bit is

$$
2^{n-1}+2^{n-2}+\cdots+2^{1}+2^{0}
$$

which is equal to $2^{n}-1$.

2.3.2 Decimal to Binary

To convert a decimal number to binary, the steps are different. We apply long division. Let us have two simple examples.

Convert 5_{10} to binary number.

2	5	$' 1$
2	2	$' 0 '$
	$' 1 '$	

So, $5_{10}=101_{2}$.
Convert 50_{10} to binary number.

2	50	'0'
2	25	$' 1$
2	12	, 0^{\prime}
2	6	$' 0 '$
2	3	$' 1 '$
	$' 1$	

So, $50_{10}=110010_{2}$.

2.4 Binary Addition

Addition of two binary numbers is similar to the addition of two decimal numbers. Let have three examples.

$$
\begin{array}{r}
0101 \\
+\quad 0100 \\
\hline 1001
\end{array} \begin{aligned}
& 0011 \\
& \hline 1001
\end{aligned} \begin{gathered}
0111 \\
\\
\hline
\end{gathered}
$$

The procedure starts from the least significant bit (LSB) and then moves to left until the most significant bit (MSB) has reached.

The bitwise operation is performed by a logic circuit called full adder. Its schematic diagram and truth table are shown in Figure 1. To add two 4-bit (positive) numbers, we would need to have to connect four full-adders in the way as shown in Figure 2. For the sake of explanation, you can imagine that the steps of operation is first done at the rightmost full-adder. Then, the steps move from right to left.

It should be noted that the circuit shown in Figure 2 consists of 8 inputs (4 inputs for each binary number) and 5 outputs. That means, this adder can allow the addition of 1111 and 1111. Moreover, one should note that the D-input of the rightmost adder is set to ' 0 '.

One design of a full-adder is by combining two simpler adders called half-adders. Its schematic diagram and truth table are shown in Figure 3. From the truth table, it is clear that the outputs C and D are essentially implemented by an $X O R$ gate and an $A N D$ gate respectively. How two half-adders and an $O R$ gate can implement a full-adder is left as an exercise for you.

2.5 Binary Subtraction

Before introducing the method of binary subtraction, we need to know how negative number is represented in binary. One simple approach is by using the leftmost bit as the sign bit. For a 4-bit format, the following table lists the numbers from -7 to 7 .

(a) Schematic diagram.

A	B	D	C	Z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(b) Truth table.

Figure 1: Truth table of a full adder.

Direction of Computation

Figure 2: Schematic diagram of a 4-bit adder.

(a) Schematic diagram.

A	B	C	D
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

(b) Truth table.

Figure 3: Truth table of an half-adder.

Decimal	Binary	Decimal	Sign
0	0000	-	-
1	0001	-1	1001
2	0010	-2	1010
3	0011	-3	1011
4	0100	-4	1100
5	0101	-5	1101
6	0110	-6	1110
7	0111	-7	1111

Sign magnitude format.
While this formate is easy to understand, it is not simplest enough for subtraction operation.

Another approach is based on the idea of 2's complement. Here are the representations of -1 to -7 in 2 's complement. As a reference, the representations of 0 to 7 are given.

Decimal	Binary	Decimal	2's
0	0000	-	-
1	0001	-1	1111
2	0010	-2	1110
3	0011	-3	1101
4	0100	-4	1100
5	0101	-5	1011
6	0110	-6	1010
7	0111	-7	1001
2's complement format.			

A simple three steps procedure can help you how to convert a negative number from its decimal form to 2's complement. Let say the number is $-M_{10}$

Step 1 Convert M_{10} to binary.
Step 2 Inversion all the bits.
Step 3 Add the inversion by '1'.

Example 1: Convert -610 to its 2's complement, the following three steps give the result.

Step $16_{10} \rightarrow 0110_{2}$.
Step $20110_{2} \rightarrow 1001_{2}$.
Step $31001_{2}+0001_{2}=1010_{2}$.
Note that there are 15 numbers (from -7_{10} to 7_{10}) can be represented by 4 bits. For N bits, the range of numbers that can be represented is from $-\left(2^{N-1}-1\right)$ to $\left(2^{N-1}-1\right)$.

Example 2: Convert -91_{10} to its 2's complement, we need 8 bits.
Step $191_{10} \rightarrow 01011011_{2}$.
Step $201011011_{2} \rightarrow$ 10100100 $_{2}$.
Step $310100100_{2}+00000001_{2}=10100101_{2}$.
With the knowledge of 2's complement, it is time to learn the method of subtraction. Let start with an example.

Figure 4: Schematic diagram of a circuit for doing addition and subtraction of two positive numbers.

Example 3: The way to calculate the value of $80_{10}-26_{10}$ is by adding 80_{10} and -26_{10}, i.e.

$$
\begin{aligned}
80_{10}-26_{10} & =80_{10}+\left(-26_{10}\right) \\
& =01010000_{2}+11100110_{2} \\
& =00110110_{2}
\end{aligned}
$$

The last step is essentially the binary addition.

2.6 Circuit Design for Add/Sub

Figure 4 shows a schematic diagram of a circuit for doing both addition and subtraction of two positive numbers which are in the range of $[0,7]$. The operation of the "Normal/2's Comp" block is defined in the table below. The pin on the right side of the circuit is to control if the circuit is doing $A+B$ or $A-B$. Here, it is defined that the circuit performs $A+B$ if the signal is ' 0 '. Otherwise, it performs $A-B$.

Number	$A+B$	$A-B$
0000	0000	0000
0001	0001	1111
0010	0010	1110
0011	0011	1101
0100	0100	1100
0101	0101	1011
0110	0110	1010
0111	0111	1001

Clearly, the circuit shown in Figure 4 is not the only design. There are many others.

2.7 Exercises

Question 1

1. What are the bases for a binary number with eight digits?
2. What is the value of ' 10000000 ' in decimal form?
3. What is the value of ' 10101001 ' in decimal form?
4. What is the value of ' 11011011 ' in decimal form?
5. What is the value of ' 00101010 ' in decimal form?
6. What is the value of ' 11111111 ' in decimal form?
7. What are the bases for a binary number with sixteen digits?
8. What is the value of ' 1000000000000000 ' in decimal form?
9. What is the value of ' 1111111111111111 ' in decimal form?
10. What is the largest number (in decimal form) of a binary number with thirty-two digits?
11. What is the largest number (in decimal form) of a binary number with sixty-four digits?
(Hint: The largest value of a binary number with N digits is $2^{N}-1$. Why?)

Question 2

(a) Using an $X O R$ and an $A N D$ gates to implement a half-adder.
(b) Using two half-adders and an $O R$ to implement a full-adder.

Question 3

In the question, the binary number is of 8 -bit format.
(a) Convert 20_{10} into binary number.
(b) Represent -12_{10} 2'S complement.
(c) Show the steps of obtaining the value of $20_{10}-12_{10}$.

Question 4

In the question, the binary number is of 16 -bit format.
(a) Convert 20_{10} into binary number.
(b) Represent $-12_{10} 2$ 'S complement.
(c) Show the steps of obtaining the value of $20_{10}-12_{10}$.

Question 5

In the question, the binary number is of 16 -bit format.
(a) Convert 58_{10} into binary number.
(b) Represent -78_{10} 2'S complement.
(c) Show the steps of obtaining the value of $58_{10}-78_{10}$.
(d) Convert the answer in (c) in sign-magnitude form.

3 More on Binary Number Representations

Previous section on computer arithmetic has introduced two formats for binary number, the unsigned integer and 2 's-compliment. In fact, there are many other formats for number representation and they could be categorized as fixed-point format and floating point format. Unsigned integer and 2's-compliment are two special cases of fixed-point format.

3.1 Fixed-point

3.1.1 Sign-Magnitude

To represent a decimal number, say -4.75 , in binary format, we need to have a binary point and a sign bit. One representation called sign-magnitude format is given below.

$$
\begin{aligned}
-4.75_{10} & =-\left(2^{2}+2^{-1}+2^{-2}\right) \\
& =-\left(0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}\right) \\
& =10100.110_{2} .
\end{aligned}
$$

The general form of a $(m+q+1)$-bit format is given by

$$
\operatorname{Sign} \times\left(a_{m} \times 2^{m}+\cdots a_{1} \times 2^{1}+a_{0} \times 2^{0}+b_{1} \times 2^{-1} \cdots b_{q} \times 2^{-q}\right)
$$

where m is the number of integer bits and q is the number of fractional bits. Remember that the leftmost bit is sign bit.

To convert a fractional number into binary, we apply the method of subtraction instead of long division.

$$
0.75=2^{-1}+0.25=2^{-1}+2^{-2}
$$

Note that not all fractional number can be represented by finite number of fractional bits. Here gives you three examples.

$$
\begin{aligned}
0.236_{10} & =0.00111100011010100111111011111 \cdots \\
0.4852_{10} & =0.01111100001101100001000100110 \cdots \\
0.1_{10} & =0.00011001100110011001100110011 \cdots
\end{aligned}
$$

Even for the decimal numbers 0.1 and 0.2 , they cannot be represented by finite number of fractional bits. In this regard, these numbers have to be truncated (i.e. chopped) or rounded. To illustrate the ideas, let the number of fractional bits be 5 .

Truncation : The idea of truncation is simply by chopping. Only the first five fractional bits are kept and ignore the others. Another name for this method is called round-down.

$$
\begin{aligned}
0.236_{10} & =0.00111 \\
0.4852_{10} & =0.01111 \\
0.1_{10} & =0.00011
\end{aligned}
$$

The maximum error, called precision error, committed due to truncation is 2^{-q}. In the above examples, the precision error is 2^{-5}.

Rounding : The method of rounding is the same as what we have learnt in elementary mathematics, round to nearest number. Here are two examples.

$$
\begin{aligned}
{[0.236] } & =0.24 \text { (Round to two decimal points!) } \\
{[0.4852] } & =0.485 \text { (Round to three decimal points!). }
\end{aligned}
$$

By the same principle, by rounding the above binary numbers to five fractional bits, we get that

$$
\begin{aligned}
0.236_{10} & =0.01000 \\
0.4852_{10} & =0.10000 \\
0.1_{10} & =0.00011
\end{aligned}
$$

As compared with the numbers obtained by truncation, the first two numbers are represented differently. The precision error, committed due to truncation is $2^{-(q+1)}$. In the above examples, the precision error is 2^{-6}.

Guard bits : It is clear that precision error will be amplified if there are a large amount of numbers to be added or multiplied. To overcome such problem, the number to be operated in the CPU is converted to a higher precision format, say from 16 bits to 20 bits or 32 bits. All arithmetic operations are thus conducted in this high precision level. Here is an example. Suppose the numbers are represented in 8-bit fixed point with 5 fractional bits, i.e. $F(8,5)$. In the CPU, the number of bits is 16 .

$$
\begin{aligned}
0.4852_{10} \times 0.1_{10} & =0.10000 \times 0.00011 \\
& =000.10000 \times 000.00011
\end{aligned}
$$

$$
\begin{aligned}
& =000.1000000000000 \times 000.0001100000000 \\
& =000.0000100000000+000.0000010000000 \\
& =000.0000110000000 \\
& =000.000011
\end{aligned}
$$

The extra bits are called the guard bits.

3.1.2 2's-Compliment

To represent a fractional number in 2's-compliment, the idea and the conversion method are the same as for integer number. To make it easier to understand, we consider the number which can be represented by finite number of fractional bits.

$$
3.71875_{10}=11.10111_{2}
$$

Now, we would like to convert -3.71875_{10} into binary. Here, we assume that the number of integer bits is 2 and the number of fractional bits is 5 .

Step $13^{3.71875}{ }_{10} \rightarrow 011.10111_{2}$.
Step $2011.10111_{2} \rightarrow 100.01000_{2}$.
Step $3100.01000_{2}+000.00001_{2}=100.01001_{2}$.
So, we can check that the beauty of 2's-compliment format in subtraction preserves.

$$
\begin{aligned}
3.71875_{10}-3.71875_{10} & =3.71875_{10}+\left(-3.71875_{10}\right) \\
& =011.10111_{2}+100.01001_{2} \\
& =000.00000_{2} \\
& =0_{10} .
\end{aligned}
$$

The addition in the second line is implemented by 8 -bit full adder.

3.1.3 Range

For a fixed-point with m integer bits and q fractional bits, the maximum and minimum numbers it can be represented are given below.

$$
\operatorname{Max}=+\underbrace{111 \cdots 111}_{m \text { bits }} \cdot \underbrace{111 \cdots 111}_{q \text { bits }} . \operatorname{Min}=-\underbrace{111 \cdots 111}_{m \text { bits }} \cdot \underbrace{111 \cdots 111}_{q \text { bits }} .
$$

The maximum number is given by

$$
\begin{aligned}
\operatorname{Max} & =\sum_{i=0}^{m} 2^{i}+\sum_{j=1}^{q} 2^{-j} \\
& =2^{-q} \times\left(\sum_{i=0}^{m+q} 2^{i}\right) \\
& =2^{-q}\left(2^{m+q+1}-1\right) \\
& =2^{m+1}-2^{-q}
\end{aligned}
$$

Therefore, the binary numbers that can be represented are in the range

$$
\left[-\left(2^{m+1}-2^{-q}\right),\left(2^{m+1}-2^{-q}\right)\right]
$$

The interval between two consecutive numbers is 2^{-q}.

3.2 Floating-point

As the range of fixed-point format is finite, it is not possible to represent the numbers outside the range. In this regard, we need another format to represent large numbers. It is the floating-point format.

Recall that the speed of light is 299792458 meters per second $(\mathrm{m} / \mathrm{s})$. Sometimes, we write it approximately as $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. It is already a base10 floating-point format. Three important information in this representation, (i) the sign (i.e. ' + '), (ii) the significant (i.e. 3.0) and (iii) the exponent (i.e. 8).

3.2.1 Representation

To illustrate how a fractional number can be represented in floating-point, let us consider the same number 3.71875_{10} (equivalently 11.101112). To convert it to a floating-point, we carry the following steps. Here, we assume that there is one sign bit and the number of significant bits is 11 . The number of exponent bits is 5 and the exponent bias is 15 . It is exactly the half-precision floating-point format as defined in IEEE 754-2008 standard.

Step $13^{3.71875}{ }_{10} \rightarrow 011.10111_{2}$.
Step $2011.10111_{2} \rightarrow 1.110111 \times 2^{1}$. Significant bits are 11011100000 .

Step 3 Exponent $=1+15=16$. Exponent bits are 10000.
Step $43.71875_{10} \rightarrow 01000011011100000_{h f}$.
Step 2 is the normalization step. The subscript $h f$ stands for half-float.
Let us consider another slightly different number 24.71875_{10}. Clearly, the binary bits for the fractional part is the same. For the integer part, it is represented by 11000_{2}. So, the conversion can be done by the following steps.

Step $124.71875_{10} \rightarrow 11000.10111_{2}$.
Step $211000.10111_{2} \rightarrow 1.100010111 \times 2^{4}$.
Step 3 Exponent $=4+15=19$. Exponent bits are 10011.
Step $424.71875_{10} \rightarrow 01001110001011100_{h f}$.
To represent a negative number in floating format, simply turn the sign bit in ' 1 '. For instance,

$$
\begin{aligned}
-3.71875_{10} & =11000011011100000_{h f} \\
-24.71875_{10} & =11001110001011100_{h f}
\end{aligned}
$$

Let us consider the number 2^{-16}. Based on the normalization step, the number should be represented as follows :

$$
2^{-16}=1.00000000000 \times 2^{-16}
$$

However, the minimum power allowed is -14 . In such case, there is no scaledown normalization. Instead, normalization is performed in a manner of scale-up, i.e.

$$
2^{-16}=0.01000000000 \times 2^{-14}
$$

Those numbers smaller than 2^{-14} are called subnormal numbers. So, the conversion of 2^{-16} can be done by the following steps.

Step $12_{10}^{-16} \rightarrow 0.0000000000000001_{2}$.
Step $20.0000000000000001_{2} \rightarrow 0.01 \times 2^{-14}$.
Step 3 As the number is smaller than 2^{-14}, exponent bits are 00000 .

Step $42_{10}^{-16} \rightarrow 00000001000000000_{h f}$.
Step 3 is not the same as before. The exponent 00000 is to indicate that the number is subnormal, i.e. smaller than 2^{-14}.

To clarify this point, let us consider the number $2^{-14}+2^{-16}$. So, the conversion of 2^{-16} can be done by the following steps.

Step $1\left(2^{-14}+2^{-16}\right)_{10} \rightarrow 0.0000000000000101_{2}$.
Step $20.0000000000000101_{2} \rightarrow 1.01 \times 2^{-14}$.
Step 3 Exponent $=-14+15=1$. Exponent bits are 00001 .
Step $4\left(2^{-14}+2^{-16}\right)_{10} \rightarrow 00000101000000000_{h f}$.

3.2.2 Interesting numbers

The smallest positive subnormal number that can be represented by the above half-precision floating-point is given by

$$
\begin{aligned}
00000000000000001 & =0.00000000001_{2} \times 2^{-14} \\
& =2^{-11} \times 2^{-14} \\
& =2^{-25}
\end{aligned}
$$

The largest positive subnormal number that can be represented by the above half-precision floating-point is given by

$$
\begin{aligned}
00000011111111111 & =0.11111111111_{2} \times 2^{-14} \\
& =\left(1-2^{-11}\right) \times 2^{-14} \\
& =2^{-14}-2^{-25}
\end{aligned}
$$

Here are a few other interesting numbers.

$$
\begin{aligned}
& 00000100000000000=2^{-14} \\
& 00111100000000000=1.00000000000_{2} \times 2^{15-15} \\
&=1
\end{aligned}
$$

$$
\begin{aligned}
01111011111111111 & =1.111111111111_{2} \times 2^{15} \\
& =\left(2-2^{-11}\right) \times 2^{15} \\
& =65520_{10} .
\end{aligned}
$$

Note that the largest exponent is 11110 , not 11111 . The bit pattern 11111 is reserved for other use. Numbers larger than 65520 cannot be represented.

$$
\begin{aligned}
01111100000000000 & =\infty \\
11111100000000000 & =-\infty
\end{aligned}
$$

Here, only the 16-bit half-precision floating-point has been introduced. In many processors, the number of bits for a floating-point could be 32 bits, 64 bits and even 128 bits. Their principles of representing a number are almost the same. It consists of a sign bit, a number of bits for exponent and a number of bits for significant. For the exponent, it embraces with an exponent bias. If the exponent bits are all zeros, the number is subnormal.

3.2.3 Arithmetic

Floating-point arithmetic is more complicated than fixed-point arithmetic. For instance, addition of two numbers will need to normalize the numbers with same exponent before doing the addition.

$$
\begin{aligned}
& 1.00010010011 \times 2^{8}+1.01011000000 \times 2^{6} \\
= & 1.00010010011 \times 2^{8}+0.01010110000 \times 2^{8} \\
= & 1.01101000011 \times 2^{8} .
\end{aligned}
$$

For multiplication, the computation could be intensive (see the second step).

$$
\begin{aligned}
& \left(1.00010010000 \times 2^{8}\right) \times\left(1.01000000000 \times 2^{6}\right) \\
= & (1.00010010000 \times 1.01000000000) \times 2^{14} \\
= & (1.00010010000+0.01000100100) \times 2^{14} \\
= & 1.01010110100 \times 2^{14} .
\end{aligned}
$$

Here, the number 1.01000000000 consists of one bit ' 1 ' in the fractional part. So, there is only one addition. If there are many bits ' 1 ', the number of addition could be large.

3.2.4 FLOPS

The number of steps in performing a single floating-point arithmetic, like addition or multiplication, is more than fixed-point arithmetic. Today, the number of floating-point operations in a second (equivalently, floating-point operations per second (FLOPS)) becomes the default measure for computer performance. Today, an Nvidia GPU can have processing speed up close to 10^{15} FLOPS.

3.3 Exercises

1. Convert -32.125 in 16 -bit 2's compliment fixed-point format with 5 integer bits and 10 fractional bits.
2. Describe the steps how two fixed-point numbers are multiplied.
3. Convert -32.125 in IEEE 754 half-precision floating point format.
4. Convert the following half-precision floating numbers to decimal numbers.
(a) 1000001010101010 .
(b) 0011100010100000 .
5. Describe the steps how two floating numbers are multiplied.

[^0]: ${ }^{1}$ Precisely, a digital system can simply perform logical operations. Arithmetical operations are implemented based upon these logical operations.
 ${ }^{2}$ It should be noted that the function of XOR is not logic. However, in computer science field, we still say that it is a logic gate for convenient.

