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Abstract-Large system development and government contracts still 
adhere to a classical life-cycle approach to software development. A 
major problem in the classical approach is the completeness and clarity of 
the user requirements. Some authors have raised the possibility of 
alternate paradigms being more timely. One such paradigm is the use of 
prototype software models. Even life-cycle adherents have expressed the 
importance of iterative modeling and cycling between specification and 
requirements analysis. This author believes that prototyping is an 
appropriate approach that can be used as a significant feature of the more 
formal life-cycle process, with little overall reduction in project control. 

This paper explores three aspects of such a development process. First, 
the underlying assumptions and the evolution of the current life-cycle 
management control method is discussed. The differing perspectives of 
the software designer and the user are discussed. A conceptual framework 
is proposed that graphically portrays this difference in perspective. 
Second, requirements are assumed to be ambiguous and incomplete. The 
contents of a requirements document are discussed with the perspective 
that requirements will always he incomplete until late in the development 
cycle. Third, prototyping activities have a primary objective of reducing 
ambiguity. Different prototyping strategies are appropriate for different 
phases of the development cycle. An altered life cycle (which includes 
prototyping as a f o m a l  part of the process) is used to trace the evolution 
of the requirements document from ambiguous objective to a system 
reference document. 

Keywords-Software life cycle; rapid prototyping; project manage- 
ment; requirements analysis; software requirements; requirements docu- 
ments. 

INTRODUCTION 

ARGE software systems development projects confront L two major obstacles. The first is that projects this large 
normally are not performed by one or two people. The 
existence of multiple levels of personnel and large expendi- 
tures (computers, salaries, etc.) makes a management process 
that controls the project mandatory. The second hurdle is 
overall system complexity. The complexity inherent [ 1 11 in 
such systems places a burden on all written documentation in 
that it be useful as an unambiguous vehicle for communica- 
tion. 

These two obstacles have led to the acceptance of a model 
for software development known as the waterfall life-cycle 
development model [7], [22], [33]. This model has been cast 
in concrete by the government’s software procurement prac- 
tices and standards [12]. The model depicts a step-by-step 
process for transforming user concepts into code. The process 
also mandates the testing steps needed to ultimately certify 

Manuscript received February 8, 1988; revised February 12, 1989. The 

The author is with IBM Corporation, Austin, TX 78758. 
IEEE Log Number 8932168. 

review of this paper was processed by Department Editor R. Balachandra. 

the final product. There is an explicit set of checkpoints, 
reviews, and documents to assist in the management control of 
the process. 

The step-by-step planning has its roots in engineering 
project management rather than being a unique child of 
software technology. Many of the basic steps are found in the 
writings of the cybernetics and general systems theory authors 
[13]. The starting point of this development model is the 
generation of system requirements. 

Software requirements tend to suffer from ambiguity. Some 
ambiguity is a result of the prose descriptions used in the 
document. In the early stages of a project the total design is not 
completely understood. This leads to incomplete descriptions 
as well as inconsistencies. 

This paper begins with the premise that requirements will 
always be incomplete when first received. The objective of the 
design process should be to gradually make the requirements 
more concrete as the design becomes more detailed. The paper 
is organized along three major areas. 

A context must be set that exposes the underlying assump- 
tions and origins of the current management control method. 
This method will be traced from early computer projects to the 
present, taking note of technology changes along the way. 
Current thinking regarding prototyping will also be discussed. 

The second major area will be the contents of a typical 
requirements document. Each document section will be 
discussed from the perspective of why, in practice, the 
document is frequently incomplete. The detailed discussion 
sets the stage for seeing how the document evolves during the 
project life as contrasted to freezing the requirements. 

The third section of the paper integrates the two notions of a 
step-by-step development process and the controlled growth of 
the requirement documents. A key premise is the use of more 
than one prototyping strategy during the project cycle. The 
approach does not eliminate the more common project 
checkpoints but does alter the timing and expectations at 
various points of the development cycle. 

EVOLUTION OF THE SOFTWARE LIFE CYCLE 
With the development of stored program computers it 

became necessary to have a systematic development approach. 
Many of the programmers were mathematicians and their 
approach to proofs and algorithms carried over into their 
computer work. One large defense system, SAGE, was 
developed in the 1950’s. Benington presented a paper that 
outlined the breakdown and organization of effort for a large 
SAGE related project at M.I.T.’s Lincoln Laboratory [4]. His 
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FEASIBILITY measured in physical terms such as size, power consumption, 
and speed. Correspondingly, price was dropping precipi- 
tously. Reliability was improving just as dramatically. The 
result was an explosion of applications and the embedding of 
computer hardware into many other complex systems. For 
example, it made little sense, in 1955, to place a 30-ton 
computer on an aircraft but similar computing power in 1975 
was only a 2-oz package [30]. The economics of hardware 
design were undergoing a significant change. 

On the software side of the house, changes were also taking 
place. As performance increased, tools for program construc- 
tion became more powerful and widespread. The computer 
was also put to work managing the complexity of the 
development process (libraries, compilation, etc.). More 
significantly, the turnaround for compilation dropped from 
one or two a day (in a batch environment) to interactive 
program development. A programmer had to use the “valu- 
able” computer time wisely by being very exact and “paper 
computing at the desk” between runs during the 1950’s and 
1960’s. Acceptable practice in the 1970’s evolved to letting the 
compiler find the typing errors as the user developed his 
application. 

The net effect was a management control system becoming 
more accepted and more rigid while the average programmer 

logies began to surface (see [27]). Even with the alternative 
was becoming less formal. Alternative development methodo- 

approaches, two significant problems are present in both the 
model stressed the feed forward of specification information classical and the new methods. The first problem is to get 
into (sub)assembly testing (verification) and operational plans unambiguous requirements from the prospective user. The 
were used as part of system evaluation (validation). second is to have a happy user when the software is delivered 

The present-day form of the model (see Fig. 1) dates to the (exactly as specified in the requirements). 
early 1970’s. The model was presented by Royce of TRW [33] A key observation is that the first problem (requirements) 
and was very powerfully presented by Boehm, also of TRW, directly affects the overall performance of the delivered 
in a classic article in 1976 [6]. The key features of this model software. As an example, the accuracy of measurements and 
were the constant verification steps that attempted to ensure the response time to a stimulus have a direct bearing on the 
that the previous transformation did not introduce unwanted safety and performance of an aircraft. Ambiguity in the 
side effects. Boehm’s work on cost estimating [7] used the requirements could result in incorrect interpretation of mea- 
steps of the model as major categories for cost allocation. By surements and, ultimately, failure of the system. 
the beginning of the 1980’s the life-cycle model was en- The second problem (a happy user) is perhaps a flippant 
trenched in the literature as standard practice. description of a very real problem. Clearly the user will be 

A similar, though a bit more complicated, way of depicting dissatisfied with incorrect execution (numbers not added 
the life cycle is found in the Hughes Aircraft Company’s correctly). Performance, however, is often a subjective 
writings [22] (see Fig. 2). The steps are the same (based on measure. In Lehman’s discussion of programming domains, 
DOD procurement) but now the later phases of testing have the discussion of E-programs [26] describes the environment 
been made more explicit and the relationship of early design of many large scale software projects. E-programs or embed- 
work to later testing phases is clearly accented. A key point to ded domain dependent software systems [ 161 interact with 
the formal model is that coding is not supposed to occur until their environment and change the original environment by 
the critical design review (CDR) has been successfully their operation. One consequence of this is that the user’s 
completed. expectation of satisfactory performance changes as he is 

The life cycle is a very attractive model because specific exposed to and uses the software system. 
documents, meetings, and deliverables are associated with each A potentially useful addition to the model of the develop- 
step of the process. For the technologists, it is a divide and ment process, then, is to view the user and software 
conquer means of dealing with the complexity of large developers as entities having separate trajectories (see Fig. 3). 
systems. For management, the model provides known check- The purpose of a formal control system (e.g., life-cycle 
points and control mechanisms. methodology) should be to insure that both entities meet at the 

While the steps and models were being formalized during end point. The span between the two trajectories represents the 
the 1970’s, another phenomenon was taking place. The gap between the user’s perception of need and the developer’s 
electronic industry saw tremendous gains in computing power perception of user needs. 
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Fig. I .  Classical software development waterfall [7, P. 361. 0 1981 
Prentice-Hall, Inc. Adapted and reprinted with permission. 
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Fig. 2. The “Vee” shaped software development model [22, p. 361. 0 
1979 Prentice-Hall, Inc. Adapted and reprinted with permission. 

User satisfaction is further complicated by the passage of 
time between requirements generation and system delivery. As 
the users gain more insight into the planned environment their 
goals and expectations change. 

Regrettably, the emphasis of the life-cycle steps is manage- 
ment of the budget and the software developers. A tacit 
assumption is made that by demonstrating control of develop- 
ment through reviews and documentation, controllability of 
the user’s trajectory is also possible. In the “Vee” of the Jensen 
and Tonies model (Fig. 4) this control implies that the user will 
follow the designers to the depth or level of detail present in the 
critical design review (CDR). My own experience and that of 
others [18] would seem to reject this assumption. 

THE ROLE OF THE REQUIREMENTS DOCUMENT IN THE SOFTWARE 
LIFE CYCLE 

The first common point of intersection of the two trajecto- 
ries is the system requirements document (SRD). In theory, 

this document should outline the user’s expectation of what 
the system must do, not how to actually implement the 
requirements [36]. The intent is for the document to promote 
communication between the user and the developer. The SRD 
is the starting point for all subsequent design activity and is 
also the criteria for validation efforts. There are, however, a 
few difficulties with this seemingly straightforward notion. 

1) Yeh and Zave point out that there are no standards about 
what should be included in a requirements document [36]. A 
later (1984) IEEE standard has been published as a guide to 
good form, but not as a mandatory industry standard [21]. 

2) Heninger reports that even writing the requirements for a 
working program with experienced maintenance personnel 
turned out to be surprisingly difficult [20]. 

3) It isn’t clear that the goal of separation of what and how 
is an achievable goal even though it is desirable [34]. 

4) Many prototyping advocates question the assumption that 
a user can prespecify the details of a system. This is not 
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Fig. 4. Customer perception of detail superimposed on the “Vee.” 

questioning the ability of the user as much as asserting the 
complexity of the task [5], [ l l ] ,  [15], [24], [27]. 

There is agreement, however, on the economic leverage of 
the requirements analysis activity. Wolverton reports a rela- 
tive cost for correcting a latent error during test and 
integration as being 36 times the equivalent cost during 
requirements analysis [35]. This financial leverage is true 
throughout the life cycle. The sooner an error or misunder- 
standing is uncovered the easier (in terms of time and effort) it 
is to correct. Yet one full leg of the development “Vee” is 
devoted to testing and correction. 

It would be highly desirable to have the testing and 
correction take place as early as possible in the development 
process. This is the objective of the validation efforts during 
the life cycle. Initially, however, the only point of reference is 
the user’s incomplete vision of the system. The written 
documentation will be in the user’s terminology and be at a 
level of detail consistent with the number of decisions made up 
to that period in time. 

A manufacturing system, for example, will have the process 
steps blocked out and be based on rough throughput calcula- 
tions. The internal behavior of the blocks will not be specified. 
The blocks will have names like “DIP Insertion” or “IR 
Reflow” even though many of the operating characteristics 
will depend on the vendor or design used to fulfill that block’s 
purpose. This is not because the requestors are trying to 
separate the what from the how. The users are documenting 
the known and relying on experience and later experimenta- 
tion to document the to be determined. 

The respective design teams, at this intersection point, bring 
a diverse background of experience and skill to the bargaining 
table. The initial SRD is, after all, the starting point for a 
contract for work as well as a system description. It is 
considered bad form for a software team to presume they 
know best and should be telling the user what is or isn’t 

important. On the other hand, it is unrealistic to believe the 
user can articulate all the functions a software system is likely 
to need. Both sides have insights that need to be expressed and 
merged. 

A key problem in fostering communication is to have a 
common terminology. This is one task that the SRD can 
perform, even if incomplete at the start. The use of block 
diagrams and visual examples assist in relating the abstract 
functions and obscure terminology to spatial and temporal 
relationships. The SRD describes what is currently understood 
about a particular acronym, function name, or major subsys- 
tem. Enos and Tilberg describe this as the environment of the 
system [ 141. 

In summary, the SRD represents a significant opportunity to 
provide a focus for discussions and common understanding at 
a point in time. The development process should assume that 
the document is incomplete, initially, and view the incom- 
pleteness of the document as a measure of the common 
understanding. Ultimately, the document should evolve to be a 
reference document. It should not only be an artifact for the 
ongoing validation that the design and implementation are 
fulfilling the user’s stated needs but should also be the basis for 
maintenance during the system’s operational life. 

ACCELERATING USER FEEDBACK THROUGH PROTOTYPING 
While agreement on terminology is a first step, the software 

system is still imperceptible. Software has no physical 
embodiment like a machine tool. As a result, even a well- 
written complete requirements document must depend on the 
mental images the descriptions evoke. This intangible aspect 
of software is a double-edged sword. 

On one edge, physical alterations are not required. Software 
can be changed quickly. The behavior can be “rewired” to 
accommodate changes in the interfaces and to incorporate new 
features that might take months of physical redesign in the 
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Fig. 5 .  A prototype altered “W” development model [17]. 0 1986 
International Business Machines Corporation. Reprinted with permission. 

hardware. The software system is often used as a design 
transient dampening medium between the hardware subsys- 
tems. 

The other edge of the sword, however, is a dependence on 
physical results such as reports, screens, or generated control 
signals to characterize what the software is doing. The 
software requirements describe the desired behavior in terms 
of generated signals, screens, etc. The testing of the software 
will be firmly based on perceived behavior along physical 
dimensions that approximate the software rather than truly 
measure the system. 

When the engineering and scientific communities are 
confronted with a complex entity it is natural for them to rely 
on models to help clarify or visualize the concept. Simple 
examples of this are wind tunnel models or organic chemistry 
molecule “kits.” A physical embodiment plays an important 
role in the conceptualization of the system. But models are 
very often abstractions or representations of the key character- 
istics, not the entire detailed system. The absence of total 
knowledge of the details is often a driving force to build the 
model. 

It is the abstraction of detail coupled with the pliability of 
software that makes prototyping attractive. If the performance 
parameters are relaxed and the data volume kept small, very 
realistic models of the desired system can be constructed. An 
important aspect is that the models can be built quickly (hence 
the term rapid prototyping) using powerful high level 
languages and hardware. 

The literature separates prototyping into three broad catego- 
ries. These are evolutionary, incremental, and throw-it-away 
prototyping. The distinction is necessary only in describing the 
final disposition of the prototype. All three focus on getting 
user feedback as soon as possible in the development cycle. 
Not all authors agree that such a split in terms is needed [ 151, 
~321. 

Throw-it-away prototyping is a consistent use of the term 
prototype. A feature or system is built, analyzed with the 
user’s help, and then discarded. Documentation, efficiency, 
and full error handling are normally ignored in the interest of 
speed of delivery. The prototyping hardware and software are 
frequently different from the intended delivery environment. 
The programs described by Boar [5] and Martin 1281 follow 
this approach. 

The evolutionary approach differs from the conventional 
life cycle in that it is intended to produce a production product 
by the convergence of successive models. Enough develop- 
ment is carried out to enable the user to perform one or more 
tasks. This results in interim deliveries. Additions and 
modification are two essential features of the environment. 
The EPROS system is a current example of this approach [ 191. 

The incremental approach uses an overall internal design, or 
at least has a framework to bound the process. A closer 
reading of Royce uncovers the advice to do it twice [33]. 
While at first glance this would appear to be a throw-it-away 
approach, his intent is to arrange that a version be constructed 
to model the critical design/operations areas (e.g., based on a 
design). Brooks advocates building it twice or in a slightly 
more cynical observation states that you will whether it is 
planned or not [ 101. Today’s high level tools have led Brooks 
to advocate not only twice but many times as you grow a 
system 1111. 

Some authors have likened the prototyping activities to 
bending the “V” into a “W.” In Goldberg’s discussion of 
software engineering [ 171 the process of developing an 
internal high level design and then prototyping the external 
screen sequences and interfaces (e.g., behaviors) can be an 
early evaluation of the system. The end result is an interface 
specification to build the production system. 

In the Fig. 5, the “Vee” has been modified along the lines 
suggested in Goldberg. Notice that prototyping has the effect 
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Fig. 6 .  Generalized table of contents for a requirements document. 

of getting the user involved in the process. More importantly, 
in terms of the trajectory model introduced earlier, the 
prototype has caused the trajectories to once again intersect. 

It appears that both the throw-it-away and incremental 
prototyping philosophies are consistent with the life cycle’s 
need for user feedback while retaining the intent of a 
controlled development for the production product. By creat- 
ing a model we are soliciting user information and attempting 
to clarify the requirements. The requirements are being tested 
as behaviors of a physical system, dummy reports, and 
simplified control examples. It is, in effect, the programming 
team’s way of asking: is this what you were trying to say? The 
prototype is also an opportunity for the software team 
members to introduce their own ideas about needed functions 
but in a physical embodiment rather than a language or 
abstract description. 

REQUIREMENTS DOCUMENT CONTENTS 
A generic table of contents for a requirements document is 

shown in Fig. 6. The target environment is some form of 
control system with real-time elements. This outline is a 
combination of items from both Yeh and Zave [36] and 
Heninger [20], along with this author’s opinions. The follow- 
ing commentary briefly discusses each section. Some prag- 
matic observations are made concerning the incomplete nature 
of the initial requirements. When appropriate, the contribu- 
tions expected from prototyping are also discussed. 

One global comment can be made. The document must 
address both functional and nonfunctional boundaries and 
behaviors [36]. These nonfunctional requirements are related 
to characteristics like security or project management that 
place boundaries on acceptable solutions. The nonfunctional 
aspects tend to apply across all the major categories. 

System Environment 

This section is an orientation section that describes the 
problem to be solved. The problem involves both hardware 
and software as well as human operators. One would expect 
this section to be block diagrams, some preliminary simulation 
results, and other descriptive material that places the proposed 
system in perspective. Global objectives or mission character- 
istics help set the context for later discussions of functions and 
data manipulations. 

As a second subsection, or as part of the narrative, a 
beginning glossary or definition of key terms would be 
needed. This would probably be in the jargon appropriate for 
the task. A later section (Section 8 listed in Fig. 6) provides the 
detailed reference materials. This first section serves as a level 
set and common ground for later discussions. 

This entire section, at first, would be provided by the user 
organization. It defines the problem as the user understands it 
and represents a nonfinancial justification for the work. 

Software Subsystem 

As the discussion of the environment implies, the software 
functions are actually only a subsystem of the total problem 
solution. The specific functions or problem elements delegated 
to the software would be discussed as a separate but consistent 
section of the requirements document. 

It is possible that the computer has already been chosen for 
economic reasons or by edict. This is an example of a situation 
where the how (rather than the what) becomes part of the 
requirements. In theory it is desirable to allow the software 
designers total freedom. In practice, the software may be a 
subset of a large existing installed base. The software 
idiosyncrasies of that installed base become important envi- 
ronmental notes for the project. 

The software system has two unique perspectives that need 
to be described. The user sees the system in terms of its 
external behavior. This may be data logging devices, printers, 
bar code readers, etc. The anticipated input and output (110) 
devices, and their characteristics should be enumerated. But 
the perspective of the user is employed to determine what is 
visible and recognizable. 

For the software practitioner, a system’s I/O takes on a 
totally different perspective. Looking out, from within the 
CPU, the programmer sees channels, registers, mass storage 
devices, etc. These are capabilities the designer will use to 
construct alternative designs that drive and service the external 
devices seen by the user. 

The original (preprototyping) document should have the 
user’s “looking-in” perspective well organized and consistent 
with current thinking about reporting (Section 4 in Fig. 6). If 
the computer choice is still open, requesting the first portion of 
this section is meaningless. The software perspective “look- 
ing-out” falls between the two. There should be some ground 
rules for what the design team can expect (e.g., minimum 
capabilities). But unless a computer has been chosen, part of 
the prototyping task (and the programmer’s creativity) will be 
spent fleshing out this section. 
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Control Activities 

There are two types of actions that a system is called upon to 
handle. The first type is planned activities and responses. The 
second is the unplanned or failure mode activities. Require- 
ments documents normally concentrate on the first since these 
are the primitives that help describe the system. An enumera- 
tion of the inputs and outputs will normally be a good starting 
set. 

It may be impossible to identify internal conditions until 
after some design has been completed. The possibility always 
exists that a derived value, through some algorithm, may be 
replaced by a direct read device (see Fig. 6, section 5). So at 
best, we can expect a complete list of known input and output 
lines/sensors. This list will expand and contract as more 
design takes place during later steps in the cycle. 

It is ironic that requirements focus on planned operation but 
the real complexity of the system tends to be in the error 
handling and response to unexpected events. Unexpected 
normally translates into equipment failure or operator error. A 
programming response may be to report an error or turn a 
subsection off. This may be unacceptable on a fighter during 
combat. 

This is an area where the prototyping activities can be a 
catalyst for discussion and design decisions. This type of 
“what i f  ’ requires a lot of iteration between programmers, 
engineers, and users. Playing “what i f ’  would occur during 
later phases of prototyping, usually after the initial “sce- 
narios” can be demonstrated. This section should grow as 
more is learned (i.e., discovered) about the system. 

In formation Reporting 

A response to a condition or event may or may not result in 
notification to an outside source. An inquiry by an operator 
may be viewed as an event or the system may have 
periodically scheduled reporting duties (transaction summar- 
ies, etc.). Reports frequently are not real time problems, as 
compared to an alarm condition or a control point violation. 

Ideally the requirements document would enumerate the 
reports and discuss the contents and calculation of each field. 
This is a level of detail that will not be known. This is also an 
area of tremendous human factors impact and personal taste. 
One would not expect the user to give much thought, initially, 
to screen layouts. This is clearly a task for prototyping efforts. 

Logging requirements are dependent on the definition of 
failure modes and events of interest. Logs tend to focus on 
exception conditions rather than standard transactions (a 
journal tape being the exception that proves the rule). The area 
of exceptions, as discussed above, is often the weakest part of 
the conceptual design. This is an area of the requirements that 
one would anticipate to be sparse in the initial requirements 
document. 

Initially, one would expect the reporting section to be 
generic. As the design progresses, reports and screens will 
evolve to standard names centered about their use in the 
system (i.e., WIP Report, Magazine Contents, etc.). Program- 
mers would like to have standard names, such as SAXM0032, 
but users tend to truncate the nickname to the “32” report or 

the “late job tickler.” I believe, as these nicknames become 
understood, the requirements documentation should retain the 
user name and keep programming conventions in the glossary 
and cross-reference. 

Maintenance and Evolution 
Maintenance considerations warrant a separate section. As a 

number of studies demonstrate, maintenance and operation are 
50 percent or more of the total cost of a software project [7] ,  
[25]. Ease of maintenance must include planned changes as 
well as repairs. The work by Lientz and Swanson [25] points 
out that a large portion of what we call maintenance is actually 
enhancement or perfective maintenance. Maintenance must be 
planned and designed into the software; it won’t happen by 
accident [3 I]. 

Reliability is an attribute that engineering understands. It is 
reasonable to expect that the initial SRD will have mean time 
to failure (MTTF) and mean time to repair (MTTR) targets. 
This doesn’t concede that the targets will be reasonable (e.g., 
MTTF = 100 OOO years) but will give an insight to criticality 
of the software system. This section should also attempt to 
define what a failure is. The definition of failure will change 
over the design cycle but an initial stake in the ground is 
needed. 

Heninger found that a useful device for determining what 
was subject to change in a system could be extracted by 
compiling a list of “unchangeable facts or axioms” [20].  The 
next step was to review the list with the designers and take 
careful notes of their reactions. If a debate ensued it was a sure 
bet that the axiom belonged in the possible change (pliable) 
category. Being able to pinpoint areas that may change is vital 
information for the design team that partitions software 
functions into modules [3 11. 

The actual deployment of the system may be planned in 
multiple stages. There may be valid reasons for adding 
functions over time. While this is arguably a system project 
management issue, there are maintenance implications as well. 

System Constraints 
This section deals with the first of two major nonfunctional 

categories. The system constraints are factors that broadly 
impact the delivered product itself. Security, for example, 
must be considered as a design quality for software routines 
and will impact the choice of I/O devices later in the design 
cycle. 

Human factors and other design philosophies in this 
category have a broad scope and cross the more definable 
boundaries of the prior sections in numerous places. It is fair 
to assume that the requirements document will give broad 
treatment to these topics rather than a detailed enumeration of 
how security or human factors must be handled. These 
requirements are likely to be stated as objectives and be treated 
as context data, much the way section 1 in Fig. 6 was goal 
oriented. 

These broad scope topics present an area where the testing 
team can begin to lay a solid foundation for performance and 
acceptance criteria. Unlike the responses to events and 
reports, which have soft meanings initially, these nonfunc- 
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tional requirements often have corporate definitions or govern- 
ment regulations in place. The testing team is in an excellent 
position to interpret and refine these regulations. In fact, the 
test team will probably teach the design team and the prototype 
will become a vital component in the education process. 

System Development Constraints 
In sharp contrast to section 7 in Fig. 6 ,  these constraints 

impact the management of the design team directly. Both 
Boehm [7] and Brooks [lo] have discussed the impact of 
available time and development methods on the resulting 
product. The constraints will certainly impact the developed 
product. But where the constraints of section 7 are technical 
issues for the product, the constraints of this section would be 
administrative in nature. 

Clearly, this section is just as soft and negotiable as the 
other sections. Anyone who has participated in a large 
software development project will vouch for the changeability 
of this section. Interestingly, prototyping can also have a 
positive (and negative) impact on this section. A “working” 
model has motivational and political value. It will be difficult 
to explain, however, that it is all done with mirrors and can’t 
be shipped. 

Glossary and Cross Reference 
This is a dynamic but vital section of the requirements 

document. As the SRD evolves, a new language that repre- 
sents commonality between hardware and software designers 
will evolve. I/O signals and reports will begin to take on 
unique names. Response definitions will begin to tie accuracy 
requirements and timings to specific I/O lines and channels. 
An index that relates requirements to design decisions is 
mandatory. 

The maintenance of the code once it has been deployed will, 
in all likelihood, be by groups not originally involved in the 
design. Their training will be greatly enhanced if the require- 
ments document can be used as a reference to design decisions 
and other controlling design documents. 

From the preceding discussion it should come as no surprise 
that a software project manager is faced with two options. If 
the requirements are complete and detailed, then a lot of the 
design and modeling has already taken place. Other than 
turning out code to schedule there is probably little challenge 
in the project. 

On the other hand, if design is actually needed, then the 
probability of having complete requirements is pretty small. 
This will require a development approach that accepts incom- 
plete requirements, which is an underlying premise for 
prototyping . 

CLASSICAL FORMALITY OF REQUIREMENTS VERSUS PROTOTYPING 
One aspect of prototyping is hard to depict in a diagram. 

Prototyping is meant to be multiple iterations and not a single 
step. In fairness this is also true of the waterfall model. Part of 
prototyping’s power is derived from confronting the software 
designers with the consequences of their decisions “on the 
terms of the users” [23]. So just like the waterfall model, there 
is iteration between system decomposition and prototyping. 

This raises the issue of when to stop or what is the end 
objective. 

It is not uncommon for a requirements document, at the 
beginning, to have gaps or inconsistencies in the description. 
The gaps are usually in the level of detail. Operating 
characteristics are normally given as ranges of values rather 
than specific operating points. Relationships will not have a 
crisp timing definition. Some ordering of events will be given 
but often as a flow diagram with imprecise timings. It would 
be rare for sample operator displays to be included in the 
original document, unless an existing process is being auto- 
mated. Because of the ranges of values and a fuzzy scope of 
objectives, overlap and conflict of requirements are common. 

The requirements analysis phase, under the classic model, 
tends to be a subtractive process. The inconsistencies, after 
lengthy analysis and encoding into a formal language, can be 
weeded out of the document. A consistent data base does not 
imply a complete set, however. It is the completeness that 
escapes even the formal description. Once again we are 
confronted with the assumption that the user will articulate all 
features. 

A prototype approach also does not guarantee complete- 
ness. It does, however, present both the developer and the 
requestor with a visual image and allows other sensory data to 
create dissonance. Jorgensen [23] relates examples of knowl- 
edge by experience as opposed to description. He uses the 
example of riding a bicycle. Even experienced cyclists are 
unable to give a full account of what is needed. It is something 
that you develop a feel for operating. Prototyping can be a 
very tactile and visual environment that gives the prospective 
users a feel for the environment. Other mechanisms of 
cognition can then be brought into use to help judge 
completeness. The iteration of a prototyping environment 
tends to be both additive and subtractive. 

An objective of the formal approach is to freeze the 
requirements document. It is not clear that the objective of 
prototyping should be any different. The fundamental distinc- 
tion is the means, not the end. The prototype approach 
attempts to first expand the requirements and explore many 
alternatives before narrowing and freezing the necessary 
components. 

Under an incremental approach or the throw-it-away philos- 
ophy there is little intent to deliver the prototype for 
production use. As noted earlier the “rapid” nature depends 
on not faithfully producing all the features at real-time 
performance. Boar succinctly describes this as “no one 
expects a wind tunnel model to carry passengers” [ 5 ] .  There is 
a cautionary note needed. The prototype, no matter how 
realistic, is still only a model. The scenarios will be contrived 
and represent only a small fraction of the potential function. 
The short cuts taken to develop a quick version would be a 
maintenance nightmare if the prototype was promoted to 
production use. 

I believe judgement is needed to determine the stopping 
point for both the formal and prototyping approaches to 
analysis. As will be shown in the next section, the prototypes 
go through evolution and refinement. But the shift from one 
phase to the next can be accomplished by specific deliverables. 
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Fig. 7.  The “sawtooth” of successive prototype baselines. 

Agreement can be reached concerning what features or 
functions the next prototype must display. 

The transition from system decomposition of software 
requirements, for instance, occurs after both groups agree on a 
list of functions and have flagged the subset of those functions 
that are considered critical. The critical functions become the 
focus of the next phase of prototyping. 

The acid test, with any software, is whether the user will 
authorize work to continue. Lengthy formal documents are 
often accompanied with political struggles and anxiety over 
“will the user sign?” Clearly, if the user is not satisified with 
the prototype (assuming the performance cutbacks are well 
understood), any more formal design steps would be ludicrous 
until those issues are resolved. 

INTEGRATING THE LIFE CYCLE AND PROTOTYPING METHODS 
The throw-it-away and the incremental prototyping strate- 

gies are each complementary activities to the classical life 
cycle. The use of only one of the strategies, however, is not 
adequate. The primary distinction between the two is that the 
incremental strategy assumes an overall design. Using an 
existing design would be counterproductive during the early 
exploratory system decomposition phase of software develop- 
ment. 

The prototyping strategy should change from throw-it-away 
to incremental as the project matures. The shift in prototyping 
methods can be timed with the phases of life cycle. As shown 
by the cartouche items in Fig. 7, a successive group of 

prototype baselines are created that parallel the development 
baselines associated with the life cycle. I call this a sawtooth 
development strategy. 

This section discusses how the sawtooth creates an en- 
vironment conducive to creativity and user feedback. This ap- 
proach is different because it doesn’t throw away project 
controls or familiar checkpoints. It is not a replacement of the 
life cycle with a prototype methodology. The approach 
exploits the feedback and user involvement of prototyping but 
doesn’t rely on a single strategy throughout development. The 
thrust is to evolve the requirements document, a document 
that is the typical stumbling block during the analysis and 
decomposition phases of a nonprototyping approach. The 
early feedback and common visions provided by the proto- 
types keep both the programmers and users on similar (though 
not identical) trajectories. 

The throw-it-away strategy appears well suited for trying 
many alternatives and exposing ideas to various groups. The 
iterations between a concept description and system decompo- 
sition seem to fall into the same type of environment. We have 
seen that screen definitions and reporting descriptions are 
intially nonexistent. The climate is ripe for the use of report 
generator tools and display mock-ups to generate user feed- 
back on what is being requested. 

During an in-house (single internal development) project it 
is likely that the software group assisted the engineering 
organization with support tools for test beds and experiments. 
These are also throw-away types of programs. 
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The study of alternatives should settle down to a stable set of 
user interfaces and a refinement of the software subsystems 
and reporting sections of the requirements document. The 
working prototype can then become a working baseline for 
further development. Overall understanding of the system 
should be at a point where serious discussions concerning the 
relationships (timing) of events can begin. In the classic life 
cycle this is roughly the period between the system require- 
ments review and a system design review. 

There would be common agreement, at this point, on what 
were the critical functions both externally and internally. For 
example, a particular search function or a transformation path 
might surface as a time-critical item. If the Pareto principle is 
accepted, then only about 20 percent of the proposed system 
will actually require strong control. 

The next prototyping iterations are aimed primarily at 
narrowing the ranges of control values. The result will be 
alterations to the earlier prototype to reflect what has been 
identified as the key functions and elements. Notice that 
during the early steps the operator interfaces took the center 
stage and some representative functions were modeled. Now 
with some system experience because of the prototyping 
efforts a true selection of critical functions can be examined. I 
have labeled this the Critical Services prototype block in Fig. 
7. 

Armed with this information the preliminary design should 
rapidly take form. A critical shift in prototype strategy should 
take place. With a preliminary design the notion of iterative 
prototyping becomes realistic, since it requires a consistent 
overall plan. There would appear to be a fine line between a 
working prototype and the shell normally present if a top- 
down system integration approach was being followed. In fact 
making the transition from an incremental prototype into the 
subsystem test leg of the “Vee” appears to be a natural 
transition. Some of the advantages of a top-down approach, 
such as the morale improvement from always having some- 
thing working [ll],  appear to be achievable by the proper 
staggering of prototype baselines. 

Returning for a moment to the trajectory framework, it is 
reasonable to argue that some guidance has been given to the 
user’s trajectory by keeping a working model in front of them. 
As depicted in Fig. 7, the irregular “W” has become a 
sawtooth figure with the points reaching out to capture the user 
with questions pertinent to the user’s own interests. After 
getting a feel for the screens and overall interface we have 
started to ask detailed questions about relationships. 

With the relationships stabilized, we begin to model and 
demonstrate the relationships flagged as critical. The prelimi- 
nary design comes to life as part of the external behavior of the 
top-down shell. The users may or may not descend that extra 
notch to the detailed design, but we have kept a constant watch 
on their perceptions of the design objectives. We have also set 
up the user to be a participant in the testing phases, long before 
acceptance testing. 

Planning and execution for the testing team follow a similar 
trajectory. Instead of always working with a paper model or 
description of the requirements they have a working model. 
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Fig 8. The requirements document evolves over the life cycle 

Perhaps they are given control of the baseline models from the 
beginning with the objective of making the top-down shell the 
test bed for subsystem testing. An independent test team is 
normally used for integration testing. This team could also 
assist in moving the top-down shell to real hardware (if 
different). Getting the necessary testing “probes” installed 
could take place during the code and unit test time frame of the 
life cycle. 

DOCUMENT MAINTENANCE OVER THE ENTIRE LIFE CYCLE 

The requirements document has undergone some evolution 
as well during this downward leg of the cycle. As Fig. 8 
displays, the requirements document goes through successive 
changes to reach a reference document state. The successive 
steps provide, in a way, a rolling validation effort with 
continued user feedback (because of the prototypes). 

From the original incomplete user requirements the docu- 
ment is augmented to identify screens, reports and functions 
with the aid of user feedback and a throw-it-away mode of 
prototyping. The identification of event relationships is com- 
plementary to system decomposition and activity focusing on 
critical services. 

Data and experience with critical functions assist in the 
setting of ranges for events. Subsequent design helps to fix the 
ranges as values and insures consistency in function descrip- 
tions and responses. At this point the requirements document 
is complete and a complement to detailed design, software 
specification documents, and coding activities. 

MANAGEMENT REVIEWS AND ORIENTATION 

The management checkpoints and documents have not 
changed significantly when compared to the classical waterfall 
model. It can be argued that these throw-it-away and incre- 
mental activities were taking place but without formal sanc- 
tion. So, in a way, nothing totally new is being proposed. 
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A shift is occuring, however, in the timing of reviews. The 
freezing of some documents is being postponed. The testing 
team may need an advanced staffing profile. There is certainly 
greater user interaction, which can be time consuming for both 
groups. 

There is a significant orientation change needed. Rigid 
controls and formal change control procedures may need to be 
delayed, perhaps until after the preliminary design. The 
reports, screens, and housekeeping routines may need a much 
looser application of controls than the level of control needed 
for the critical services. 

We still need to emphasize that the prototypes are only 
models and shells. It should be comforting to management that 
visible progress can be demonstrated. I doubt if a higher stack 
of paper at each review is that reassuring. With a working 
changeable model, the user sees the software organization as 
responsive and sees them more frequently, perhaps even 
perceiving them as team members. 

CONCLUSIONS 
The dramatic increase in the performance to price ratio of 

computing hardware has made the development of powerful 
high level languages and programmer tools a viable economic 
pursuit. These productivity improvements, while not as 
extreme as the hardware improvements, have weakened the 
underpinnings of the classical software life cycle. Alternative 
approaches, such as prototyping, have been employed with 
success. 

A sawtooth process has been proposed that creates a hybrid 
of the classical life cycle and a combination of prototyping 
strategies. One key aspect has been the use of the prototypes to 
influence the user’s perception of the design (e.g., the 
trajectory). This, coupled with a top-down integration plan, it 
is argued, would still allow a controlled software development 
project. Such an approach would have the effect of getting 
earlier user feedback (e.g., validation) but also serve as an 
ongoing focus for the user’s evolving perception of the 
system. The integration of the prototypes and the shifting of 
life-cycle events has been examined. No loss of management 
control is created by using this approach. 

This paper has also examined a generic requirements 
document. The author has offered some rationale why the 
requirements may be incomplete when first received. The 
sawtooth process incrementally transforms the operating 
values from a range of numbers toward more precise values. 
The benefit of using a combination of prototyping develop- 
ment strategies has been discussed as a viable approach for this 
transformation. This approach addresses a frequent problem, 
the ambiguity of the requirements document, without forcing a 
freeze of the document. The frozen document, in the classical 
life cycle, often needs frequent unfreezing (change control) as 
the user’s perception of needs changes. 
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