
10 IEEE TRANSACTIONS ON ENGINEEIUNG MANAGEMENT, VOL. 37, NO. I , FEBRUARY 1990

Software Proj
and

ect Management U
Ambiguous Specifi

hder Incom
cations

PI Lete

ROBERT B. ROWEN

Abstract-Large system development and government contracts still
adhere to a classical life-cycle approach to software development. A
major problem in the classical approach is the completeness and clarity of
the user requirements. Some authors have raised the possibility of
alternate paradigms being more timely. One such paradigm is the use of
prototype software models. Even life-cycle adherents have expressed the
importance of iterative modeling and cycling between specification and
requirements analysis. This author believes that prototyping is an
appropriate approach that can be used as a significant feature of the more
formal life-cycle process, with little overall reduction in project control.

This paper explores three aspects of such a development process. First,
the underlying assumptions and the evolution of the current life-cycle
management control method is discussed. The differing perspectives of
the software designer and the user are discussed. A conceptual framework
is proposed that graphically portrays this difference in perspective.
Second, requirements are assumed to be ambiguous and incomplete. The
contents of a requirements document are discussed with the perspective
that requirements will always he incomplete until late in the development
cycle. Third, prototyping activities have a primary objective of reducing
ambiguity. Different prototyping strategies are appropriate for different
phases of the development cycle. An altered life cycle (which includes
prototyping as a f o m a l part of the process) is used to trace the evolution
of the requirements document from ambiguous objective to a system
reference document.

Keywords-Software life cycle; rapid prototyping; project manage-
ment; requirements analysis; software requirements; requirements docu-
ments.

INTRODUCTION

ARGE software systems development projects confront L two major obstacles. The first is that projects this large
normally are not performed by one or two people. The
existence of multiple levels of personnel and large expendi-
tures (computers, salaries, etc.) makes a management process
that controls the project mandatory. The second hurdle is
overall system complexity. The complexity inherent [1 11 in
such systems places a burden on all written documentation in
that it be useful as an unambiguous vehicle for communica-
tion.

These two obstacles have led to the acceptance of a model
for software development known as the waterfall life-cycle
development model [7], [22], [33]. This model has been cast
in concrete by the government’s software procurement prac-
tices and standards [12]. The model depicts a step-by-step
process for transforming user concepts into code. The process
also mandates the testing steps needed to ultimately certify

Manuscript received February 8, 1988; revised February 12, 1989. The

The author is with IBM Corporation, Austin, TX 78758.
IEEE Log Number 8932168.

review of this paper was processed by Department Editor R. Balachandra.

the final product. There is an explicit set of checkpoints,
reviews, and documents to assist in the management control of
the process.

The step-by-step planning has its roots in engineering
project management rather than being a unique child of
software technology. Many of the basic steps are found in the
writings of the cybernetics and general systems theory authors
[13]. The starting point of this development model is the
generation of system requirements.

Software requirements tend to suffer from ambiguity. Some
ambiguity is a result of the prose descriptions used in the
document. In the early stages of a project the total design is not
completely understood. This leads to incomplete descriptions
as well as inconsistencies.

This paper begins with the premise that requirements will
always be incomplete when first received. The objective of the
design process should be to gradually make the requirements
more concrete as the design becomes more detailed. The paper
is organized along three major areas.

A context must be set that exposes the underlying assump-
tions and origins of the current management control method.
This method will be traced from early computer projects to the
present, taking note of technology changes along the way.
Current thinking regarding prototyping will also be discussed.

The second major area will be the contents of a typical
requirements document. Each document section will be
discussed from the perspective of why, in practice, the
document is frequently incomplete. The detailed discussion
sets the stage for seeing how the document evolves during the
project life as contrasted to freezing the requirements.

The third section of the paper integrates the two notions of a
step-by-step development process and the controlled growth of
the requirement documents. A key premise is the use of more
than one prototyping strategy during the project cycle. The
approach does not eliminate the more common project
checkpoints but does alter the timing and expectations at
various points of the development cycle.

EVOLUTION OF THE SOFTWARE LIFE CYCLE
With the development of stored program computers it

became necessary to have a systematic development approach.
Many of the programmers were mathematicians and their
approach to proofs and algorithms carried over into their
computer work. One large defense system, SAGE, was
developed in the 1950’s. Benington presented a paper that
outlined the breakdown and organization of effort for a large
SAGE related project at M.I.T.’s Lincoln Laboratory [4]. His

oO18-9391/90/02oO-oO10$01 .oO O 1990 IEEE

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

ROWEN: SOFTWARE PROJECT MANAGEMENT 11

FEASIBILITY measured in physical terms such as size, power consumption,
and speed. Correspondingly, price was dropping precipi-
tously. Reliability was improving just as dramatically. The
result was an explosion of applications and the embedding of
computer hardware into many other complex systems. For
example, it made little sense, in 1955, to place a 30-ton
computer on an aircraft but similar computing power in 1975
was only a 2-oz package [30]. The economics of hardware
design were undergoing a significant change.

On the software side of the house, changes were also taking
place. As performance increased, tools for program construc-
tion became more powerful and widespread. The computer
was also put to work managing the complexity of the
development process (libraries, compilation, etc.). More
significantly, the turnaround for compilation dropped from
one or two a day (in a batch environment) to interactive
program development. A programmer had to use the “valu-
able” computer time wisely by being very exact and “paper
computing at the desk” between runs during the 1950’s and
1960’s. Acceptable practice in the 1970’s evolved to letting the
compiler find the typing errors as the user developed his
application.

The net effect was a management control system becoming
more accepted and more rigid while the average programmer

logies began to surface (see [27]). Even with the alternative
was becoming less formal. Alternative development methodo-

approaches, two significant problems are present in both the
model stressed the feed forward of specification information classical and the new methods. The first problem is to get
into (sub)assembly testing (verification) and operational plans unambiguous requirements from the prospective user. The
were used as part of system evaluation (validation). second is to have a happy user when the software is delivered

The present-day form of the model (see Fig. 1) dates to the (exactly as specified in the requirements).
early 1970’s. The model was presented by Royce of TRW [33] A key observation is that the first problem (requirements)
and was very powerfully presented by Boehm, also of TRW, directly affects the overall performance of the delivered
in a classic article in 1976 [6]. The key features of this model software. As an example, the accuracy of measurements and
were the constant verification steps that attempted to ensure the response time to a stimulus have a direct bearing on the
that the previous transformation did not introduce unwanted safety and performance of an aircraft. Ambiguity in the
side effects. Boehm’s work on cost estimating [7] used the requirements could result in incorrect interpretation of mea-
steps of the model as major categories for cost allocation. By surements and, ultimately, failure of the system.
the beginning of the 1980’s the life-cycle model was en- The second problem (a happy user) is perhaps a flippant
trenched in the literature as standard practice. description of a very real problem. Clearly the user will be

A similar, though a bit more complicated, way of depicting dissatisfied with incorrect execution (numbers not added
the life cycle is found in the Hughes Aircraft Company’s correctly). Performance, however, is often a subjective
writings [22] (see Fig. 2). The steps are the same (based on measure. In Lehman’s discussion of programming domains,
DOD procurement) but now the later phases of testing have the discussion of E-programs [26] describes the environment
been made more explicit and the relationship of early design of many large scale software projects. E-programs or embed-
work to later testing phases is clearly accented. A key point to ded domain dependent software systems [161 interact with
the formal model is that coding is not supposed to occur until their environment and change the original environment by
the critical design review (CDR) has been successfully their operation. One consequence of this is that the user’s
completed. expectation of satisfactory performance changes as he is

The life cycle is a very attractive model because specific exposed to and uses the software system.
documents, meetings, and deliverables are associated with each A potentially useful addition to the model of the develop-
step of the process. For the technologists, it is a divide and ment process, then, is to view the user and software
conquer means of dealing with the complexity of large developers as entities having separate trajectories (see Fig. 3).
systems. For management, the model provides known check- The purpose of a formal control system (e.g., life-cycle
points and control mechanisms. methodology) should be to insure that both entities meet at the

While the steps and models were being formalized during end point. The span between the two trajectories represents the
the 1970’s, another phenomenon was taking place. The gap between the user’s perception of need and the developer’s
electronic industry saw tremendous gains in computing power perception of user needs.

Validation m;‘i \m\
Volldatlon

\Vi\ Verification

\m------, Verification \m\ Test

\I------, Verification \m\
“.El Re -Va I id ate

Fig. I . Classical software development waterfall [7, P. 361. 0 1981
Prentice-Hall, Inc. Adapted and reprinted with permission.

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 31, NO. I , FEBRUARY 1990

Validation

Validation

. . .
Experimenl

Detail Drgn un i t resf

F > Time
C D R ~

-

Fig. 2. The “Vee” shaped software development model [22, p. 361. 0
1979 Prentice-Hall, Inc. Adapted and reprinted with permission.

User satisfaction is further complicated by the passage of
time between requirements generation and system delivery. As
the users gain more insight into the planned environment their
goals and expectations change.

Regrettably, the emphasis of the life-cycle steps is manage-
ment of the budget and the software developers. A tacit
assumption is made that by demonstrating control of develop-
ment through reviews and documentation, controllability of
the user’s trajectory is also possible. In the “Vee” of the Jensen
and Tonies model (Fig. 4) this control implies that the user will
follow the designers to the depth or level of detail present in the
critical design review (CDR). My own experience and that of
others [18] would seem to reject this assumption.

THE ROLE OF THE REQUIREMENTS DOCUMENT IN THE SOFTWARE
LIFE CYCLE

The first common point of intersection of the two trajecto-
ries is the system requirements document (SRD). In theory,

this document should outline the user’s expectation of what
the system must do, not how to actually implement the
requirements [36]. The intent is for the document to promote
communication between the user and the developer. The SRD
is the starting point for all subsequent design activity and is
also the criteria for validation efforts. There are, however, a
few difficulties with this seemingly straightforward notion.

1) Yeh and Zave point out that there are no standards about
what should be included in a requirements document [36]. A
later (1984) IEEE standard has been published as a guide to
good form, but not as a mandatory industry standard [21].

2) Heninger reports that even writing the requirements for a
working program with experienced maintenance personnel
turned out to be surprisingly difficult [20].

3) It isn’t clear that the goal of separation of what and how
is an achievable goal even though it is desirable [34].

4) Many prototyping advocates question the assumption that
a user can prespecify the details of a system. This is not

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

ROWEN: SOFTWARE PROJECT MANAGEMENT 13

I Operation I rn ~

1 1
I

: Experiment

...................

15yrl ’-’ ,’:,

Cus tomer Percept ion
o f key r e q u i r e m e n t s

CDR c >
T i m e

Fig. 4. Customer perception of detail superimposed on the “Vee.”

questioning the ability of the user as much as asserting the
complexity of the task [5], [l l] , [15], [24], [27].

There is agreement, however, on the economic leverage of
the requirements analysis activity. Wolverton reports a rela-
tive cost for correcting a latent error during test and
integration as being 36 times the equivalent cost during
requirements analysis [35]. This financial leverage is true
throughout the life cycle. The sooner an error or misunder-
standing is uncovered the easier (in terms of time and effort) it
is to correct. Yet one full leg of the development “Vee” is
devoted to testing and correction.

It would be highly desirable to have the testing and
correction take place as early as possible in the development
process. This is the objective of the validation efforts during
the life cycle. Initially, however, the only point of reference is
the user’s incomplete vision of the system. The written
documentation will be in the user’s terminology and be at a
level of detail consistent with the number of decisions made up
to that period in time.

A manufacturing system, for example, will have the process
steps blocked out and be based on rough throughput calcula-
tions. The internal behavior of the blocks will not be specified.
The blocks will have names like “DIP Insertion” or “IR
Reflow” even though many of the operating characteristics
will depend on the vendor or design used to fulfill that block’s
purpose. This is not because the requestors are trying to
separate the what from the how. The users are documenting
the known and relying on experience and later experimenta-
tion to document the to be determined.

The respective design teams, at this intersection point, bring
a diverse background of experience and skill to the bargaining
table. The initial SRD is, after all, the starting point for a
contract for work as well as a system description. It is
considered bad form for a software team to presume they
know best and should be telling the user what is or isn’t

important. On the other hand, it is unrealistic to believe the
user can articulate all the functions a software system is likely
to need. Both sides have insights that need to be expressed and
merged.

A key problem in fostering communication is to have a
common terminology. This is one task that the SRD can
perform, even if incomplete at the start. The use of block
diagrams and visual examples assist in relating the abstract
functions and obscure terminology to spatial and temporal
relationships. The SRD describes what is currently understood
about a particular acronym, function name, or major subsys-
tem. Enos and Tilberg describe this as the environment of the
system [141.

In summary, the SRD represents a significant opportunity to
provide a focus for discussions and common understanding at
a point in time. The development process should assume that
the document is incomplete, initially, and view the incom-
pleteness of the document as a measure of the common
understanding. Ultimately, the document should evolve to be a
reference document. It should not only be an artifact for the
ongoing validation that the design and implementation are
fulfilling the user’s stated needs but should also be the basis for
maintenance during the system’s operational life.

ACCELERATING USER FEEDBACK THROUGH PROTOTYPING
While agreement on terminology is a first step, the software

system is still imperceptible. Software has no physical
embodiment like a machine tool. As a result, even a well-
written complete requirements document must depend on the
mental images the descriptions evoke. This intangible aspect
of software is a double-edged sword.

On one edge, physical alterations are not required. Software
can be changed quickly. The behavior can be “rewired” to
accommodate changes in the interfaces and to incorporate new
features that might take months of physical redesign in the

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 37, NO. I , FEBRUARY 1990

I 1 \
’ Sf1 Rqrn’tr /,,
.

Operation L’

Hdwr/ ftw

......

Customer Percept ion
of key r e q u i r e m e n t s Debug

c > Time
C D R ~

Fig. 5 . A prototype altered “W” development model [17]. 0 1986
International Business Machines Corporation. Reprinted with permission.

hardware. The software system is often used as a design
transient dampening medium between the hardware subsys-
tems.

The other edge of the sword, however, is a dependence on
physical results such as reports, screens, or generated control
signals to characterize what the software is doing. The
software requirements describe the desired behavior in terms
of generated signals, screens, etc. The testing of the software
will be firmly based on perceived behavior along physical
dimensions that approximate the software rather than truly
measure the system.

When the engineering and scientific communities are
confronted with a complex entity it is natural for them to rely
on models to help clarify or visualize the concept. Simple
examples of this are wind tunnel models or organic chemistry
molecule “kits.” A physical embodiment plays an important
role in the conceptualization of the system. But models are
very often abstractions or representations of the key character-
istics, not the entire detailed system. The absence of total
knowledge of the details is often a driving force to build the
model.

It is the abstraction of detail coupled with the pliability of
software that makes prototyping attractive. If the performance
parameters are relaxed and the data volume kept small, very
realistic models of the desired system can be constructed. An
important aspect is that the models can be built quickly (hence
the term rapid prototyping) using powerful high level
languages and hardware.

The literature separates prototyping into three broad catego-
ries. These are evolutionary, incremental, and throw-it-away
prototyping. The distinction is necessary only in describing the
final disposition of the prototype. All three focus on getting
user feedback as soon as possible in the development cycle.
Not all authors agree that such a split in terms is needed [151,
~321.

Throw-it-away prototyping is a consistent use of the term
prototype. A feature or system is built, analyzed with the
user’s help, and then discarded. Documentation, efficiency,
and full error handling are normally ignored in the interest of
speed of delivery. The prototyping hardware and software are
frequently different from the intended delivery environment.
The programs described by Boar [5] and Martin 1281 follow
this approach.

The evolutionary approach differs from the conventional
life cycle in that it is intended to produce a production product
by the convergence of successive models. Enough develop-
ment is carried out to enable the user to perform one or more
tasks. This results in interim deliveries. Additions and
modification are two essential features of the environment.
The EPROS system is a current example of this approach [191.

The incremental approach uses an overall internal design, or
at least has a framework to bound the process. A closer
reading of Royce uncovers the advice to do it twice [33].
While at first glance this would appear to be a throw-it-away
approach, his intent is to arrange that a version be constructed
to model the critical design/operations areas (e.g., based on a
design). Brooks advocates building it twice or in a slightly
more cynical observation states that you will whether it is
planned or not [101. Today’s high level tools have led Brooks
to advocate not only twice but many times as you grow a
system 1111.

Some authors have likened the prototyping activities to
bending the “V” into a “W.” In Goldberg’s discussion of
software engineering [171 the process of developing an
internal high level design and then prototyping the external
screen sequences and interfaces (e.g., behaviors) can be an
early evaluation of the system. The end result is an interface
specification to build the production system.

In the Fig. 5, the “Vee” has been modified along the lines
suggested in Goldberg. Notice that prototyping has the effect

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

ROWEN: SOFTWARE PROJECT MANAGEMENT 15

Model Control System Requirements Document

1) System Env i ronment
System objectives. natural language problem statement
Definition of key terminology

Sof tware Subsystem
K n o w n computer charactsristicr
1/0 devices os seen by user looking in
1/0 devices (IS seen by software looking out

Control Activities (Sof tware Funct ions)
Definition of Condition
Response to condition. with constraints (timing etc.)
Definition and response to undesired events

I n fo rma t ion Report ing
Standard Reports
Standard Displays (softcopy)
Logging Requirements

Maintenance & Evolut ion
Reliability
Immutable F O C ~ S
Pliable Facets
Projected phases (time skewed operational capabilities)

System Constraints (Non-funct ional)

security

System Development Constraints (non- func t iona l)

Human Factors

Prolect Manogement (time. resources etc.)

Glossary & Cross Reference

Fig. 6 . Generalized table of contents for a requirements document.

of getting the user involved in the process. More importantly,
in terms of the trajectory model introduced earlier, the
prototype has caused the trajectories to once again intersect.

It appears that both the throw-it-away and incremental
prototyping philosophies are consistent with the life cycle’s
need for user feedback while retaining the intent of a
controlled development for the production product. By creat-
ing a model we are soliciting user information and attempting
to clarify the requirements. The requirements are being tested
as behaviors of a physical system, dummy reports, and
simplified control examples. It is, in effect, the programming
team’s way of asking: is this what you were trying to say? The
prototype is also an opportunity for the software team
members to introduce their own ideas about needed functions
but in a physical embodiment rather than a language or
abstract description.

REQUIREMENTS DOCUMENT CONTENTS
A generic table of contents for a requirements document is

shown in Fig. 6. The target environment is some form of
control system with real-time elements. This outline is a
combination of items from both Yeh and Zave [36] and
Heninger [20], along with this author’s opinions. The follow-
ing commentary briefly discusses each section. Some prag-
matic observations are made concerning the incomplete nature
of the initial requirements. When appropriate, the contribu-
tions expected from prototyping are also discussed.

One global comment can be made. The document must
address both functional and nonfunctional boundaries and
behaviors [36]. These nonfunctional requirements are related
to characteristics like security or project management that
place boundaries on acceptable solutions. The nonfunctional
aspects tend to apply across all the major categories.

System Environment

This section is an orientation section that describes the
problem to be solved. The problem involves both hardware
and software as well as human operators. One would expect
this section to be block diagrams, some preliminary simulation
results, and other descriptive material that places the proposed
system in perspective. Global objectives or mission character-
istics help set the context for later discussions of functions and
data manipulations.

As a second subsection, or as part of the narrative, a
beginning glossary or definition of key terms would be
needed. This would probably be in the jargon appropriate for
the task. A later section (Section 8 listed in Fig. 6) provides the
detailed reference materials. This first section serves as a level
set and common ground for later discussions.

This entire section, at first, would be provided by the user
organization. It defines the problem as the user understands it
and represents a nonfinancial justification for the work.

Software Subsystem

As the discussion of the environment implies, the software
functions are actually only a subsystem of the total problem
solution. The specific functions or problem elements delegated
to the software would be discussed as a separate but consistent
section of the requirements document.

It is possible that the computer has already been chosen for
economic reasons or by edict. This is an example of a situation
where the how (rather than the what) becomes part of the
requirements. In theory it is desirable to allow the software
designers total freedom. In practice, the software may be a
subset of a large existing installed base. The software
idiosyncrasies of that installed base become important envi-
ronmental notes for the project.

The software system has two unique perspectives that need
to be described. The user sees the system in terms of its
external behavior. This may be data logging devices, printers,
bar code readers, etc. The anticipated input and output (110)
devices, and their characteristics should be enumerated. But
the perspective of the user is employed to determine what is
visible and recognizable.

For the software practitioner, a system’s I/O takes on a
totally different perspective. Looking out, from within the
CPU, the programmer sees channels, registers, mass storage
devices, etc. These are capabilities the designer will use to
construct alternative designs that drive and service the external
devices seen by the user.

The original (preprototyping) document should have the
user’s “looking-in” perspective well organized and consistent
with current thinking about reporting (Section 4 in Fig. 6). If
the computer choice is still open, requesting the first portion of
this section is meaningless. The software perspective “look-
ing-out” falls between the two. There should be some ground
rules for what the design team can expect (e.g., minimum
capabilities). But unless a computer has been chosen, part of
the prototyping task (and the programmer’s creativity) will be
spent fleshing out this section.

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

16 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 37, NO. I , FEBRUARY 1990

Control Activities

There are two types of actions that a system is called upon to
handle. The first type is planned activities and responses. The
second is the unplanned or failure mode activities. Require-
ments documents normally concentrate on the first since these
are the primitives that help describe the system. An enumera-
tion of the inputs and outputs will normally be a good starting
set.

It may be impossible to identify internal conditions until
after some design has been completed. The possibility always
exists that a derived value, through some algorithm, may be
replaced by a direct read device (see Fig. 6, section 5). So at
best, we can expect a complete list of known input and output
lines/sensors. This list will expand and contract as more
design takes place during later steps in the cycle.

It is ironic that requirements focus on planned operation but
the real complexity of the system tends to be in the error
handling and response to unexpected events. Unexpected
normally translates into equipment failure or operator error. A
programming response may be to report an error or turn a
subsection off. This may be unacceptable on a fighter during
combat.

This is an area where the prototyping activities can be a
catalyst for discussion and design decisions. This type of
“what i f ’ requires a lot of iteration between programmers,
engineers, and users. Playing “what i f ’ would occur during
later phases of prototyping, usually after the initial “sce-
narios” can be demonstrated. This section should grow as
more is learned (i.e., discovered) about the system.

In formation Reporting

A response to a condition or event may or may not result in
notification to an outside source. An inquiry by an operator
may be viewed as an event or the system may have
periodically scheduled reporting duties (transaction summar-
ies, etc.). Reports frequently are not real time problems, as
compared to an alarm condition or a control point violation.

Ideally the requirements document would enumerate the
reports and discuss the contents and calculation of each field.
This is a level of detail that will not be known. This is also an
area of tremendous human factors impact and personal taste.
One would not expect the user to give much thought, initially,
to screen layouts. This is clearly a task for prototyping efforts.

Logging requirements are dependent on the definition of
failure modes and events of interest. Logs tend to focus on
exception conditions rather than standard transactions (a
journal tape being the exception that proves the rule). The area
of exceptions, as discussed above, is often the weakest part of
the conceptual design. This is an area of the requirements that
one would anticipate to be sparse in the initial requirements
document.

Initially, one would expect the reporting section to be
generic. As the design progresses, reports and screens will
evolve to standard names centered about their use in the
system (i.e., WIP Report, Magazine Contents, etc.). Program-
mers would like to have standard names, such as SAXM0032,
but users tend to truncate the nickname to the “32” report or

the “late job tickler.” I believe, as these nicknames become
understood, the requirements documentation should retain the
user name and keep programming conventions in the glossary
and cross-reference.

Maintenance and Evolution
Maintenance considerations warrant a separate section. As a

number of studies demonstrate, maintenance and operation are
50 percent or more of the total cost of a software project [7] ,
[25]. Ease of maintenance must include planned changes as
well as repairs. The work by Lientz and Swanson [25] points
out that a large portion of what we call maintenance is actually
enhancement or perfective maintenance. Maintenance must be
planned and designed into the software; it won’t happen by
accident [3 I].

Reliability is an attribute that engineering understands. It is
reasonable to expect that the initial SRD will have mean time
to failure (MTTF) and mean time to repair (MTTR) targets.
This doesn’t concede that the targets will be reasonable (e.g.,
MTTF = 100 OOO years) but will give an insight to criticality
of the software system. This section should also attempt to
define what a failure is. The definition of failure will change
over the design cycle but an initial stake in the ground is
needed.

Heninger found that a useful device for determining what
was subject to change in a system could be extracted by
compiling a list of “unchangeable facts or axioms” [20]. The
next step was to review the list with the designers and take
careful notes of their reactions. If a debate ensued it was a sure
bet that the axiom belonged in the possible change (pliable)
category. Being able to pinpoint areas that may change is vital
information for the design team that partitions software
functions into modules [3 11.

The actual deployment of the system may be planned in
multiple stages. There may be valid reasons for adding
functions over time. While this is arguably a system project
management issue, there are maintenance implications as well.

System Constraints
This section deals with the first of two major nonfunctional

categories. The system constraints are factors that broadly
impact the delivered product itself. Security, for example,
must be considered as a design quality for software routines
and will impact the choice of I/O devices later in the design
cycle.

Human factors and other design philosophies in this
category have a broad scope and cross the more definable
boundaries of the prior sections in numerous places. It is fair
to assume that the requirements document will give broad
treatment to these topics rather than a detailed enumeration of
how security or human factors must be handled. These
requirements are likely to be stated as objectives and be treated
as context data, much the way section 1 in Fig. 6 was goal
oriented.

These broad scope topics present an area where the testing
team can begin to lay a solid foundation for performance and
acceptance criteria. Unlike the responses to events and
reports, which have soft meanings initially, these nonfunc-

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

ROWEN: SOFTWARE PROJECT MANAGEMENT 17

tional requirements often have corporate definitions or govern-
ment regulations in place. The testing team is in an excellent
position to interpret and refine these regulations. In fact, the
test team will probably teach the design team and the prototype
will become a vital component in the education process.

System Development Constraints
In sharp contrast to section 7 in Fig. 6 , these constraints

impact the management of the design team directly. Both
Boehm [7] and Brooks [lo] have discussed the impact of
available time and development methods on the resulting
product. The constraints will certainly impact the developed
product. But where the constraints of section 7 are technical
issues for the product, the constraints of this section would be
administrative in nature.

Clearly, this section is just as soft and negotiable as the
other sections. Anyone who has participated in a large
software development project will vouch for the changeability
of this section. Interestingly, prototyping can also have a
positive (and negative) impact on this section. A “working”
model has motivational and political value. It will be difficult
to explain, however, that it is all done with mirrors and can’t
be shipped.

Glossary and Cross Reference
This is a dynamic but vital section of the requirements

document. As the SRD evolves, a new language that repre-
sents commonality between hardware and software designers
will evolve. I/O signals and reports will begin to take on
unique names. Response definitions will begin to tie accuracy
requirements and timings to specific I/O lines and channels.
An index that relates requirements to design decisions is
mandatory.

The maintenance of the code once it has been deployed will,
in all likelihood, be by groups not originally involved in the
design. Their training will be greatly enhanced if the require-
ments document can be used as a reference to design decisions
and other controlling design documents.

From the preceding discussion it should come as no surprise
that a software project manager is faced with two options. If
the requirements are complete and detailed, then a lot of the
design and modeling has already taken place. Other than
turning out code to schedule there is probably little challenge
in the project.

On the other hand, if design is actually needed, then the
probability of having complete requirements is pretty small.
This will require a development approach that accepts incom-
plete requirements, which is an underlying premise for
prototyping .

CLASSICAL FORMALITY OF REQUIREMENTS VERSUS PROTOTYPING
One aspect of prototyping is hard to depict in a diagram.

Prototyping is meant to be multiple iterations and not a single
step. In fairness this is also true of the waterfall model. Part of
prototyping’s power is derived from confronting the software
designers with the consequences of their decisions “on the
terms of the users” [23]. So just like the waterfall model, there
is iteration between system decomposition and prototyping.

This raises the issue of when to stop or what is the end
objective.

It is not uncommon for a requirements document, at the
beginning, to have gaps or inconsistencies in the description.
The gaps are usually in the level of detail. Operating
characteristics are normally given as ranges of values rather
than specific operating points. Relationships will not have a
crisp timing definition. Some ordering of events will be given
but often as a flow diagram with imprecise timings. It would
be rare for sample operator displays to be included in the
original document, unless an existing process is being auto-
mated. Because of the ranges of values and a fuzzy scope of
objectives, overlap and conflict of requirements are common.

The requirements analysis phase, under the classic model,
tends to be a subtractive process. The inconsistencies, after
lengthy analysis and encoding into a formal language, can be
weeded out of the document. A consistent data base does not
imply a complete set, however. It is the completeness that
escapes even the formal description. Once again we are
confronted with the assumption that the user will articulate all
features.

A prototype approach also does not guarantee complete-
ness. It does, however, present both the developer and the
requestor with a visual image and allows other sensory data to
create dissonance. Jorgensen [23] relates examples of knowl-
edge by experience as opposed to description. He uses the
example of riding a bicycle. Even experienced cyclists are
unable to give a full account of what is needed. It is something
that you develop a feel for operating. Prototyping can be a
very tactile and visual environment that gives the prospective
users a feel for the environment. Other mechanisms of
cognition can then be brought into use to help judge
completeness. The iteration of a prototyping environment
tends to be both additive and subtractive.

An objective of the formal approach is to freeze the
requirements document. It is not clear that the objective of
prototyping should be any different. The fundamental distinc-
tion is the means, not the end. The prototype approach
attempts to first expand the requirements and explore many
alternatives before narrowing and freezing the necessary
components.

Under an incremental approach or the throw-it-away philos-
ophy there is little intent to deliver the prototype for
production use. As noted earlier the “rapid” nature depends
on not faithfully producing all the features at real-time
performance. Boar succinctly describes this as “no one
expects a wind tunnel model to carry passengers” [5] . There is
a cautionary note needed. The prototype, no matter how
realistic, is still only a model. The scenarios will be contrived
and represent only a small fraction of the potential function.
The short cuts taken to develop a quick version would be a
maintenance nightmare if the prototype was promoted to
production use.

I believe judgement is needed to determine the stopping
point for both the formal and prototyping approaches to
analysis. As will be shown in the next section, the prototypes
go through evolution and refinement. But the shift from one
phase to the next can be accomplished by specific deliverables.

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

18 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 31, NO. 1, FEBRUARY 1990

Study

. ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ .

I . ,

\ ~

-2 S f t Rqrn’ts v Prlrn Dsgn

Operation U m Ac c e tan c e

Perf mance m
Hdw /Sftw @

Sys m l&T a
Sub ys l&T a

U it Test

Code &
Debug

c w C D R ~ 3 Time

Fig. 7. The “sawtooth” of successive prototype baselines.

Agreement can be reached concerning what features or
functions the next prototype must display.

The transition from system decomposition of software
requirements, for instance, occurs after both groups agree on a
list of functions and have flagged the subset of those functions
that are considered critical. The critical functions become the
focus of the next phase of prototyping.

The acid test, with any software, is whether the user will
authorize work to continue. Lengthy formal documents are
often accompanied with political struggles and anxiety over
“will the user sign?” Clearly, if the user is not satisified with
the prototype (assuming the performance cutbacks are well
understood), any more formal design steps would be ludicrous
until those issues are resolved.

INTEGRATING THE LIFE CYCLE AND PROTOTYPING METHODS
The throw-it-away and the incremental prototyping strate-

gies are each complementary activities to the classical life
cycle. The use of only one of the strategies, however, is not
adequate. The primary distinction between the two is that the
incremental strategy assumes an overall design. Using an
existing design would be counterproductive during the early
exploratory system decomposition phase of software develop-
ment.

The prototyping strategy should change from throw-it-away
to incremental as the project matures. The shift in prototyping
methods can be timed with the phases of life cycle. As shown
by the cartouche items in Fig. 7, a successive group of

prototype baselines are created that parallel the development
baselines associated with the life cycle. I call this a sawtooth
development strategy.

This section discusses how the sawtooth creates an en-
vironment conducive to creativity and user feedback. This ap-
proach is different because it doesn’t throw away project
controls or familiar checkpoints. It is not a replacement of the
life cycle with a prototype methodology. The approach
exploits the feedback and user involvement of prototyping but
doesn’t rely on a single strategy throughout development. The
thrust is to evolve the requirements document, a document
that is the typical stumbling block during the analysis and
decomposition phases of a nonprototyping approach. The
early feedback and common visions provided by the proto-
types keep both the programmers and users on similar (though
not identical) trajectories.

The throw-it-away strategy appears well suited for trying
many alternatives and exposing ideas to various groups. The
iterations between a concept description and system decompo-
sition seem to fall into the same type of environment. We have
seen that screen definitions and reporting descriptions are
intially nonexistent. The climate is ripe for the use of report
generator tools and display mock-ups to generate user feed-
back on what is being requested.

During an in-house (single internal development) project it
is likely that the software group assisted the engineering
organization with support tools for test beds and experiments.
These are also throw-away types of programs.

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

ROWEN: SOFTWARE PROJECT MANAGEMENT 19

The study of alternatives should settle down to a stable set of
user interfaces and a refinement of the software subsystems
and reporting sections of the requirements document. The
working prototype can then become a working baseline for
further development. Overall understanding of the system
should be at a point where serious discussions concerning the
relationships (timing) of events can begin. In the classic life
cycle this is roughly the period between the system require-
ments review and a system design review.

There would be common agreement, at this point, on what
were the critical functions both externally and internally. For
example, a particular search function or a transformation path
might surface as a time-critical item. If the Pareto principle is
accepted, then only about 20 percent of the proposed system
will actually require strong control.

The next prototyping iterations are aimed primarily at
narrowing the ranges of control values. The result will be
alterations to the earlier prototype to reflect what has been
identified as the key functions and elements. Notice that
during the early steps the operator interfaces took the center
stage and some representative functions were modeled. Now
with some system experience because of the prototyping
efforts a true selection of critical functions can be examined. I
have labeled this the Critical Services prototype block in Fig.
7.

Armed with this information the preliminary design should
rapidly take form. A critical shift in prototype strategy should
take place. With a preliminary design the notion of iterative
prototyping becomes realistic, since it requires a consistent
overall plan. There would appear to be a fine line between a
working prototype and the shell normally present if a top-
down system integration approach was being followed. In fact
making the transition from an incremental prototype into the
subsystem test leg of the “Vee” appears to be a natural
transition. Some of the advantages of a top-down approach,
such as the morale improvement from always having some-
thing working [ll], appear to be achievable by the proper
staggering of prototype baselines.

Returning for a moment to the trajectory framework, it is
reasonable to argue that some guidance has been given to the
user’s trajectory by keeping a working model in front of them.
As depicted in Fig. 7, the irregular “W” has become a
sawtooth figure with the points reaching out to capture the user
with questions pertinent to the user’s own interests. After
getting a feel for the screens and overall interface we have
started to ask detailed questions about relationships.

With the relationships stabilized, we begin to model and
demonstrate the relationships flagged as critical. The prelimi-
nary design comes to life as part of the external behavior of the
top-down shell. The users may or may not descend that extra
notch to the detailed design, but we have kept a constant watch
on their perceptions of the design objectives. We have also set
up the user to be a participant in the testing phases, long before
acceptance testing.

Planning and execution for the testing team follow a similar
trajectory. Instead of always working with a paper model or
description of the requirements they have a working model.

~

S ludv

-~ ~

E xper ment Expm t Tools

Reseorch
Notebooks ~~~

~~~ 

c o n c e p t  

user I n t e r f a c e  ~i -~ - ~~ -- 
Sys Decornp 

User  
R e q m  i s  ~ 

~- ~ cr t  c l  Servtces 

~ ~- -1 

~ 

\ 
~ Rqmi:_ To-Dn Shell  

Relations, ~ 

L/ Prim Dsgn 
~~~ --- 

Reqm tsl
Ronges

1 Detai l Dsgn i
~~

’ / -

Reqmis ’
V0I”eS I

L //’
Fig 8. The requirements document evolves over the life cycle

Perhaps they are given control of the baseline models from the
beginning with the objective of making the top-down shell the
test bed for subsystem testing. An independent test team is
normally used for integration testing. This team could also
assist in moving the top-down shell to real hardware (if
different). Getting the necessary testing “probes” installed
could take place during the code and unit test time frame of the
life cycle.

DOCUMENT MAINTENANCE OVER THE ENTIRE LIFE CYCLE

The requirements document has undergone some evolution
as well during this downward leg of the cycle. As Fig. 8
displays, the requirements document goes through successive
changes to reach a reference document state. The successive
steps provide, in a way, a rolling validation effort with
continued user feedback (because of the prototypes).

From the original incomplete user requirements the docu-
ment is augmented to identify screens, reports and functions
with the aid of user feedback and a throw-it-away mode of
prototyping. The identification of event relationships is com-
plementary to system decomposition and activity focusing on
critical services.

Data and experience with critical functions assist in the
setting of ranges for events. Subsequent design helps to fix the
ranges as values and insures consistency in function descrip-
tions and responses. At this point the requirements document
is complete and a complement to detailed design, software
specification documents, and coding activities.

MANAGEMENT REVIEWS AND ORIENTATION

The management checkpoints and documents have not
changed significantly when compared to the classical waterfall
model. It can be argued that these throw-it-away and incre-
mental activities were taking place but without formal sanc-
tion. So, in a way, nothing totally new is being proposed.

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

20 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT. VOL. 37. NO. I , FEBRUARY 1990

A shift is occuring, however, in the timing of reviews. The
freezing of some documents is being postponed. The testing
team may need an advanced staffing profile. There is certainly
greater user interaction, which can be time consuming for both
groups.

There is a significant orientation change needed. Rigid
controls and formal change control procedures may need to be
delayed, perhaps until after the preliminary design. The
reports, screens, and housekeeping routines may need a much
looser application of controls than the level of control needed
for the critical services.

We still need to emphasize that the prototypes are only
models and shells. It should be comforting to management that
visible progress can be demonstrated. I doubt if a higher stack
of paper at each review is that reassuring. With a working
changeable model, the user sees the software organization as
responsive and sees them more frequently, perhaps even
perceiving them as team members.

CONCLUSIONS
The dramatic increase in the performance to price ratio of

computing hardware has made the development of powerful
high level languages and programmer tools a viable economic
pursuit. These productivity improvements, while not as
extreme as the hardware improvements, have weakened the
underpinnings of the classical software life cycle. Alternative
approaches, such as prototyping, have been employed with
success.

A sawtooth process has been proposed that creates a hybrid
of the classical life cycle and a combination of prototyping
strategies. One key aspect has been the use of the prototypes to
influence the user’s perception of the design (e.g., the
trajectory). This, coupled with a top-down integration plan, it
is argued, would still allow a controlled software development
project. Such an approach would have the effect of getting
earlier user feedback (e.g., validation) but also serve as an
ongoing focus for the user’s evolving perception of the
system. The integration of the prototypes and the shifting of
life-cycle events has been examined. No loss of management
control is created by using this approach.

This paper has also examined a generic requirements
document. The author has offered some rationale why the
requirements may be incomplete when first received. The
sawtooth process incrementally transforms the operating
values from a range of numbers toward more precise values.
The benefit of using a combination of prototyping develop-
ment strategies has been discussed as a viable approach for this
transformation. This approach addresses a frequent problem,
the ambiguity of the requirements document, without forcing a
freeze of the document. The frozen document, in the classical
life cycle, often needs frequent unfreezing (change control) as
the user’s perception of needs changes.

REFERENCES
[I]

(21

W. W. Agresti, Ed., “New paradigms for software development,”
IEEE Tutorial, IEEE EH0245-1, 1986.
M. Alavi, “An assessment of the prototyping approach to information

systems development,” Commun. Ass. Comput. Mach., vol. 27, no.
6, pp. 556-563, June 1984.
P. C. Belford, A. F. Bond, D. G. Henderson, and L. S . Sellers,
“Specifications: A key to effective software development,” in Proc.
2nd Int. Conf. Software Eng., Oct. 13-15, 1976, pp. 71-79.
H. D. Benington, “Production of large computer programs,” Annals
History Comput., vol. 5 , no. 4, pp. 350-361, Oct. 1983.
B. H. Boar, Application Prototyping, A Requirements Definition
Strategy for the 80’s.
B. W. Boehm, “Software engineering,” IEEE Trans. Comput., vol.
C-25, no. 12, pp. 1226-1241, Dec. 1976.
B. W. Boehm, Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall, 1981. 0 1981 Prentice-Hall.
B. W. Boehm, “A spiral model of software development and
enhancement,” ACM SIGSOFT Software Eng. Notes, vol. 11, no.

R. J. Boland, Jr., “The process and product of system design,”
Management Sri., vol. 24, no. 9, pp. 887-898, May 1978.
F. P. Brooks, Jr., The Mythical Man Month. Reading, MA:
Addison-Wesley, 1975.
F. P. Brooks, Jr., “No silver bullet: Essence and accidents of software
engineering,” IEEE Comput. Mag., vol. 20, no. 4, pp. 10-19, Apr.
1987.
Defense System Software Development, Military Standard DOD-
STD-2167, June 4, 1985.
N. L. Enger, “Classical and structured systems life cycle phases and
documentation,” in Systems Analysis and Design, A Foundation for
the ~ O ’ S , Cotterman et al., Eds. New York: North-Holland, 1980,

J . C. Enos and R. L. Van Tilberg, “Software design,” in Software
Engineering, R. W. Jensen and C. C. Tonies, Eds. Englewood
Cliffs, NJ: Prentice-Hall, 1979.
C. A. Floyd, “A systematic look at prototyping” in Approaches to
Prototyping, Proc. Work. Conf. Prototyping (Namur, Belgium),
Oct. 1983.
R. V. Giddings, “Accommodating uncertainty in software design,”
Commun. Ass. Comput. Mach., vol. 27, no. 5, pp. 428-434, May
1984.
R. Goldberg, “Software engineering: An emerging discipline,” IBM
Syst. J., vol. 25, no. 3/4, pp. 334-353, 1986. 0 1986 International
Business Machines Corporation.
H . Gomaa, “The impact of rapid prototyping on specifying user
requirements,” ACMSoftware Eng. Notes, vol. 8, no. 2, pp. 17-28,
Apr. 1983.
S . Hehatpour , “Experience with evolutionary prototyping in a large
software project,” ACM Software Eng. Notes, vol. 12, no. 1, pp.
38-41, Jan. 1987.
K. L. Heninger, “Specifying software requirements for complex
systems: New techniques and their application,” IEEE Trans. Soft-
ware Eng., vol. SE-6, no. 1, pp. 2-13, Jan. 1980.
IEEE Guide to Software Requirements Specifications, ANSIIIEEE
Standard 830-1984, Feb. 1984.
R. W. Jensen and C. C. Tonies, Software Engineering. Englewood
Cliffs: Prentice-Hall, 1979. 0 1979 Prentice-Hall.
A. H. Jorgensen, “On the psychology of prototyping,” in Approaches
to Prototyping, Proc. Work. Conf. Prototyping (Namur, Belgium),
Oct. 1983.
G. B. Langle, R. L. Leitheiser, and J. D. Naumann, “A survey of
applications systems prototyping in industry,” Inform. and Manag.,
no. 7, pp. 273-284, July 1984.
B. P. Lientz and E. B. Swanson, Software Maintenance Manage-
ment. Reading, MA: Addison-Wesley, 1980.
M. M. Lehman, “Programs, life cycles, and the laws of software
evolution,” Proc. IEEE, vol. 68, no. 9, pp. 1060-1076, Sept. 1980.
D. D. McCracken, “The changing face of applications programming,”
Datamation, pp. 25-30, Nov. 15, 1978.
J. Martin, FourthGeneration Languages. Englewocd Cliffs, NJ:
Prentice-Hall, 1985.
K. Matsumura, H. Mizutani, and M. Arai, “An application of
structural modeling to software requirements analysis and design,”
IEEE Trans. Software Eng., vol. SE-13, no. 4 , pp. 461-471, Apr.
1987.
J. D. Musa, Ed., “Stimulating software engineering progress, a report
of the software engineering planning group,” ACM Software Eng.
Notes, vol. 8 , no. 2, pp. 29-54, Apr. 1983.

New York: Wiley, 1984.

4, pp. 14-24, Aug. 1986.

pp. 1-24.

New York: Springer-Verlag, 1984, pp. 1-18.

New York: Springer-Verlag, 1984, pp. 279-289.

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

ROWEN: SOFTWARE PROJECT MANAGEMENT 21

D. L. Parnas, “Designing software for ease of extension and
contraction,” IEEE Trans. SoftwareEng., vol. SE-5, no. 2, pp. 128-
137, Mar. 1979.
R. Patton, “Prototyping-A nomenclature problem,” A C M Software
Eng. Note, vol. 8, no. 2, pp. 14-16, Apr. 1983.
W. W. Royce, “Managing the development of large software systems:
Concepts and techniques,” in WESCON Tech. Papers, Aug. 25-28,

W. Swartout and R. Balzer, “On the inevitable intertwining of
specification and implementation,” Commun. Ass. Comput. Mach.,
vol. 25, no. 7, pp. 438-440, July 1982.
R. W. Wolverton, “Software costing,” in Handbook of Software
Engineering, C . R . Vick and C. V. Ramamoorthy, Eds. New York:
Van Nostrand Reinhold, 1984.
R. T. Yeh and P. Zave, “Specifying software requirements,” Proc.
IEEE, vol. 68, no. 9, pp. 1077-1085, Sept. 1980.

1970, pp. A. l 1-9.

Robert B. Rowen received the B.S.E.E. degree
from the University of Wisconsin-Madison in 1972,
the M.S.E.E. degree from the University of Minne-
sota, and the M.B.A. degree from St. Edwards
University in Austin, TX. In December 1988, he
received the Ph.D. degree in electrical engineering
from the University of Texas at Austin.

He has held various professional and rnanage-
ment assignments at IBM since 1972. Currently he
is an Advisory Systems Analyst in the manufactur-
ing engineering function at IBM in Austin, TX. His

research interest is focused on manufacturing software systems, project
management, and expert systems. A major facet of this work is software
requirements and user involvement in the development process.

Dr. Rowen is a member of the IEEE Engineering Management Society,
SMEICASA, ACM, and AAAI.

Authorized licensed use limited to: National Chung Hsing University. Downloaded on February 22, 2009 at 21:13 from IEEE Xplore. Restrictions apply.

