Note on the Maxnet Dynamics

John P.F.Sum and Peter K.S.Tam
Department of Electronic Engineering,
Hong Kong Polytechnic University,

Hung Hom, Kowloon.

April 17, 1996



Abstract

A simple method is presented to derive the complete solution of the Maxnet network dy-

namics. Besides, the exact response time of the network is deduced.



1 Introduction

Since the beginning of neural network research, the Winner-Take-All network has played a
very important role in the design of learning algorithms, in particular, most of the unsuper-
vised learning algorithms (Pao 1989) such as competitive learning, self organizing map and
Adaptive Resonance Theory model.

Conventionally, an N-neurons winner-take-all (WTA) network is defined as following:

1 if0;(0) > v;(0)V j #1i
lim hi(vi(1)) = ’ (1)

t— 00
(0 otherwise.

Many researchers have attempted to design and realize the WTA. In (Lippman 1987), a
discrete time algorithm called Maznet is proposed.

Maxnet is a fully connected neural network. Each neuron’s output is positively fed back to
its input and negatively fed back to other neurons’ inputs. Suppose there are N neurons. We
denote their state variables and outputs by v;(¢) and h;, where ¢t = 1,2,..., N, respectively.

The dynamics of the Maxnet is given by

Ui(t + 1) = hZ (Ui(t) — GZU]‘(ZL)) 5 (2)

where

and h;(x) is a function of « defined as following. For all i = 1,2,... N,

rz ifz>0
hi(x) = (4)
0 ifz <.

In compact form, equation (2) can be written as
u(t +1) = h(Au(l)), (5)
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where v(t) = (v1(t),va(1), ..., UN(t))T, and

1 —e —c
—c 1 —c
A= (6)
—€ —c 1
Without loss of generality, we introduce the index my, 7, ..., mx to represent the neurons

with initial state in ascending order, i.e.

0<vr <vpp, < oot < Vg

We assume that there are no two neurons having the same initial state.

The convergence property of the Maxnet was first introduced by Lippman (1987). This
may be stated as: the convergence of the Maxnet is assured if 0 < ¢ < 1/N. Recently,
Floreen (1991) and Koutroumbas et al.(1994) studied intensively on it. In Koutroumbas et
al.(1994), a general updating mode which allows partially parallel is also discussed. In both
of their papers, worst case bounds on the response time of the network are derived. However,
none of them has derived the complete solution of the dynamics for the network. This paper
provides a complete solution and a geometrical interpretation of network dynamics which
illuminates network behavior.

In this paper, we present the explicit solution of the network. This is based on an
appropriate partitioning of the state space into regions in which the network behaves linearly.
Similar techniques have been employed to obtain partial results for continuous-time WTA
network such as Perfetti (1990) and Dempsey and McVey (1993). Furthermore, the piecewise

linear approach was used to approximate the dynamical behavior of Hopfield network in some



applications, such as in Gee et al. (1993). In addition, based on linear modeling techniques,
interesting properties have been derived for the Grossberg shunting network (Kosko 1992)*.

A formula for calculating the exact response time of the network is deduced in the remain-
der of this paper. In the next section, some recent results on the properties of the Maxnet
will be stated. Then the explicit solution of the network dynamic, based on eigensubspace
analysis, is deduced in Section 3. Based on this explicit solution, the exact response time is

also derived. Section 4 presents the conclusions.

2 Preliminary

In (Floreen 1991) and (Koutroumbas et al. 1994), some properties of the Maxnet have been

studied and proven. Here, we state them without proof.

Theorem 1 ?

a. If vr0) > Vr,0), then hpy 2 heyy for all t > 0. Equality holds only when hy, ) =

Theorem 2 (Lemma 3 of (Koutroumbas et al. 1994)) If v, (0) = v, (0) for some

J=12,...,N =1, then limy_oo by (t) = limy_oo hr,(t) = 0.

Theorem 3 (Theorem 1 of (Koutroumbas et al. 1994)) lim;_ o, hr, (1) =0 forall i =

1,2,...,N—1.

=

1pp.94-99.

2Lemma 1 of (Floreen 1991), Lemma 2 of (Koutroumbas et al. 1994).



Theorem 4 3

a. limyyoo hry (1) exists and limy_yoo hry (t) > 0. Equality holds when condition in Theorem

2 is satisfied.

b. The limit of the network is attainable after a finite number of steps if

vry(0) 7 vr, (0) V5 # N.

For simplicity, let us define the term neuron settling time and network response time.

Definition 1 a. Ffor all « = 1,2,...,N — 1, T; is called the i-th neuron settling time if

he (1) =0 for allt > T;.

b. T,: is called the network response time if for all ¢ = 1,2,...,N — 1, hy(t) = 0 and

hay(@ 4+ 1) = hey (1) for all t > T,y

According to Theorem 4, we obtain the fact that (i) T,+ < oo, (ii) hx(t + 1) = hy, (1),
forall: =1,2,..., N and for all ¢ > T,;. To visualize the overall picture given by the above

theorems and definitions, a simple example is presented below.

Example: Suppose that a Maxnet consists of 3 neurons and their initial state variables are
v1(0) =7, v2(0) = 5 and v3(0) = 9. Hence, m; = 2, 73 = 1 and 73 = 3. We set € = 0.25.
Figure(1) shows the values of v,,, v,, and v,, as functions of t. From the graphs, we observe
that the settling time of the neurons are 2 and 4 steps, and the network response time is 4

steps. Therefore, T7 = 2, Ty = 4 and T,;, = 4.

3Theorem 1 of (Floreen 1991), Theorem 3 of (Koutroumbas et al. 1994).



To proceed to our main result, we need the following corollary.
Corollary 1 a. If v (0) # v, (0) forall i # 3, then 0 < Ty < Ty < ... <Tn_y =T, < 0.

b. If v (0) = vr, (0) foralli # N —1, then 0 < Ty < ... <T; =T < ... < Ty =

Tm‘ < 0.

(Proof of (a)) The proof is accomplished by method of contradiction. Suppose that T;41 < T;.
Then we can establish that hr (1) = vr(t) > vr, (t) = by (1) =0 at Ty <t < T;. But
this contradicts Theorem 1. As a result, T; < T;1q for all: =1,2,..., N — 2. In addition to
Theorem 4, we conclude that 0 < T} < Ty < ... <Tn_1 =T, < .

(Proof of b) Since vy, (t4+1) — v (t+1) = (14 €)' (vr,, (0) —v,,(0)) for all ¢ > 0, vy, (1) =0

implies that v, (7}) = 0. By definition, T; = T;4;. Hence the proof is completed.

In the next section, we proceed to derive the solution of the Maxnet using the above

corollary.

3 Network Dynamics

The dynamics of the network during 0 < ¢ < T} is given by
on(t+1) = Avoy(t), (7)

where v () = (v, (1), Vay (1), . ., vny (1))T and Ay is an N x N matrix with diagonal elements
equal to 1 and off diagonal elements equal to —e. Then, during 0 < ¢ < T}, the network may
be regarded as a linear discrete-time time invariant system. The solution of this system can
then be obtained by evaluating the eigenvalues and the eigensubspace of Ay.
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Lemma 1 The eigenvalues of Ay are (1 — (N —1)e) and (1 +¢€). The corresponding eigen-

subspace of (1 — (N —1)e) and (1 + €) are My and My respectively, where

Mstpan{m: (jN,jN,...,jN)T}

and

My = {Q € RN|QT§1N = 0}.

(Proof) Let #; = &= for all 7, i.e. z € My. Then

= 7N
A = (1 ! N -1 ! 8
(Anz); = ()ﬂyﬁﬁ—( -—)d;ﬁv) (8)

= (1—=(N—=1)e)a,.

So that, (1 — (N — 1)e) is an eigenvalue for Ay.

Next consider w = v — (QTQIN)QlN, w € My~

(Anvw); = wi—e) w, (9)

Le. (Ayw), = (14 €)w; or Ayw = (1 + €)w. Hence the other eigenvalue is (14 ¢€). Moreover,

we can replace w by
1 —1
\/27\/2707"'70 ’

(%,o,;_l,...,o)i



Therefore, it can conclude that (1 — (N — 1)e¢) and (1 + €) are the only eigenvalues of Ay

because dim(My) 4+ dim(My) = N.

With the aid of Lemma 1, the solution of the dynamics equation (7) can be written as

on(t+1) = (1= (N =1De)(uy(Den)ean (10)

+ (146 (vnt) = (h(Ben)ery) -

That is to say, for all e =1,2,..., NV,

onlt) = (1_(N_w( ””;50)) (1)

for all t < Ty. It is the exact solution of Maxnet in the time interval 0 <¢ < T}. Furthermore,

the settling time of 7§ neuron is given by

N
log { S (v, 0)=0m, ) }

L, v, (0)
T, = 2= : (12)

log {H=57

Once v,, reaches zero, the corresponding output will also be zero. After T}, the network
dynamics can be modeled in a lower dimensional space. There are two cases to be considered:
(i) vey(Th) = 0 and (ii) vy, (71) > 0. For case (i), we can simply skip the time interval
Ty < t < Ty and proceed to consider the dynamics of the network in the time interval

Ty <t <Ts. In case of (ii) we can denote that

QN—I(t) = (UM (t)v Uﬂs(t)v K] UWN(t))Tv



and consider the dynamics as
oy (t+1) = Av_on 4 (D).

Since An_p is defined in the same way as Ay except that the dimension is N — 1, we can
follow the same principle applied to the derivation of equation (11) and Lemma 1 to deduce

that

v (t) = (1= (N =2)0 " oy 4 (T1) (13)

+ (149" (on (Th) = (uy 1 (T))

forallz =2,3,..., N and

for all 77 <t < T;. Here

N Urn (Tl)
1)) = ! .
(un—1(T1)) ]Z:; N —1
Repeating the same procedure, we can derive the general solution of the Maxnet for all time

t > 0. Denoting that
T
QN—k(t) = (UWk+1 (t)7 UWk+2 (t)7 ce UWN(t)) )
the general solution of the network at time T} <t < Tyy4 is given by

on(t) = (L= (N =k =1 oy (Th) (14)

+ (L) (0n (Th) — (ono(Th))

foralli=k+4+1,k+2,...,N and

v (1) =0, (15)



foralls =1,2,...,k, where

>, (Th)
(on_n(Th)) = > :
j=k+1 N—k
Besides, the settling time for 734, 75%, ..., 7{_| neurons can be obtained recursively by
lo Zj\;k+1 (UWJ (T) =g 41 (Tk))
) Zjvzk+1 UTFJ (Tg) .
Lot log{ (=0 —Z=TT | if vy, (T) >0
Thy1 = TTe (16)
Tk if vr,,, (Ty) = 0.
Since vy (t + 1) = vg (t) whenever ¢t > Ty_y, the network response time is given by
N-1 |log { Zg:i(“”fv(Ti—l)—% (Ti-1)) }
~ Z —; Ur (Ti-1)
=2, T : (17)
= og {4577}

where Ty = 0 and [x] is the smallest integer which is just greater than .

4 Geometrical Interpretation

In (Koutroumbas et al. 1994), Koutroumbas et.al. presented a brief geometrical interpreta-
tion for two dynamical properties of the Maxnet: (i) once the initial state vy is located on
the hyperplane that bisects the angles between the reference axis, the limit vector will be
the null vector, and (ii) otherwise, the limit point will be on the axis that corresponds to
the node my. Essentially, these properties can be easily visualized from equations (14), (15)
and Lemma 1.

To simplify the discussion, we describe the case of two neurons but the interpretation can
be extended to N neurons. From Lemma 1, it is observed that the component of v, which is

parallel to e;, will decrease at a rate (1 — €), while the component perpendicular to e, will



increase at a rate of (1 4 ¢). Figure(2) shows three situations, indicated by x, y and z. x;
and y; are the components of x and y which are parallel to e. Whereas, x5 and y, are the
components perpendicular to e. The lengths of the arrows indicate the corresponding rates
of change.

Consider z, i.e. in region A, the magnitude of the change of x along e is —ex; which is
larger than exy. The resultant change of z is pointing towards the axis vo. Similarly, the
resultant change of x will point towards the v; axis if x is located in the other A region. In
region B, y; > y3. Equality holds only when y lies on the axis v;. Therefore, the change of y
along the direction of e is also larger than that along the direction perpendicular to e. The
resultant change of y is again towards one of the axes. Consider z, which is on the line of ¢;
its resultant change is pointing towards (0, 0).

In summary, if v1(0) > v3(0) (v2(0) > v1(0)), then the limit point will be on the vy (vy)

axis. If v1(0) = v5(0), then the limit point will be (0,0).

5 Conclusion

In this paper, we have derived the complete solution of the Maxnet. This solution provides an
alternative approach to understand the properties of Maxnet. Besides, the exact response
time is also deduced as long as v, (0) # vy, _,(0). Since our derivation of the solution
is based on the method of eigensubspace analysis, the geometrical interpretation of the
network dynamics can be described vigorously. Such a technique can be readily adapted to
the analysis of similar WTA networks such as Imax (Yen and Chang 1992), Gemnet (Yang

et al. 1995) and Selectron (Yen et al. 1994).
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Figure 1: Changes of vy (solid line), vy (dot-dash line) and vs (dash line) against time.
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Figure 2: The geometrical interpretation of the dynamics of the Maxnet. z,y,z are corre-
sponding to three initial conditions which are located in three regions, A, B and the line

along e.
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