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AbstractA simple method is presented to derive the complete solution of the Maxnet network dy-namics. Besides, the exact response time of the network is deduced.



1 IntroductionSince the beginning of neural network research, the Winner-Take-All network has played avery important role in the design of learning algorithms, in particular, most of the unsuper-vised learning algorithms (Pao 1989) such as competitive learning, self organizing map andAdaptive Resonance Theory model.Conventionally, an N-neurons winner-take-all (WTA) network is de�ned as following:limt!1hi(vi(t)) = 8>>><>>>: 1 if vi(0) > vj(0)8 j 6= i0 otherwise. (1)Many researchers have attempted to design and realize the WTA. In (Lippman 1987), adiscrete time algorithm called Maxnet is proposed.Maxnet is a fully connected neural network. Each neuron's output is positively fed back toits input and negatively fed back to other neurons' inputs. Suppose there are N neurons. Wedenote their state variables and outputs by vi(t) and hi, where i = 1; 2; : : : ; N , respectively.The dynamics of the Maxnet is given byvi(t+ 1) = hi 0@vi(t)� �Xj 6=i vj(t)1A ; (2)where 0 < � < 1N � 1 : (3)and hi(x) is a function of x de�ned as following. For all i = 1; 2; : : : ; N ,hi(x) = 8>>><>>>: x if x � 00 if x < 0: (4)In compact form, equation (2) can be written asv(t+ 1) = h (Av(t)) ; (5)1



where v(t) = (v1(t); v2(t); : : : ; vN(t))T , andA = 266666666666664 1 �� : : : ���� 1 : : : ��: : : : : : : : : : : :�� �� : : : 1 377777777777775 (6)Without loss of generality, we introduce the index �1, �2, : : :, �N to represent the neuronswith initial state in ascending order, i.e.0 < v�1 < v�2 < : : : < v�N :We assume that there are no two neurons having the same initial state.The convergence property of the Maxnet was �rst introduced by Lippman (1987). Thismay be stated as: the convergence of the Maxnet is assured if 0 < � < 1=N . Recently,Floreen (1991) and Koutroumbas et al.(1994) studied intensively on it. In Koutroumbas etal.(1994), a general updating mode which allows partially parallel is also discussed. In bothof their papers, worst case bounds on the response time of the network are derived. However,none of them has derived the complete solution of the dynamics for the network. This paperprovides a complete solution and a geometrical interpretation of network dynamics whichilluminates network behavior.In this paper, we present the explicit solution of the network. This is based on anappropriate partitioning of the state space into regions in which the network behaves linearly.Similar techniques have been employed to obtain partial results for continuous-time WTAnetwork such as Perfetti (1990) and Dempsey and McVey (1993). Furthermore, the piecewiselinear approach was used to approximate the dynamical behavior of Hop�eld network in some2



applications, such as in Gee et al. (1993). In addition, based on linear modeling techniques,interesting properties have been derived for the Grossberg shunting network (Kosko 1992)1.A formula for calculating the exact response time of the network is deduced in the remain-der of this paper. In the next section, some recent results on the properties of the Maxnetwill be stated. Then the explicit solution of the network dynamic, based on eigensubspaceanalysis, is deduced in Section 3. Based on this explicit solution, the exact response time isalso derived. Section 4 presents the conclusions.2 PreliminaryIn (Floreen 1991) and (Koutroumbas et al. 1994), some properties of the Maxnet have beenstudied and proven. Here, we state them without proof.Theorem 1 2a. If v�i(0) > v�j(0), then h�i(t) � h�j(t) for all t � 0. Equality holds only when h�i(t) =h�j(t) = 0.b. h�i(t) � h�i(t+1).Theorem 2 (Lemma 3 of (Koutroumbas et al. 1994)) If v�N (0) = v�j(0) for somej = 1; 2; : : : ; N � 1, then limt!1 h�N (t) = limt!1 h�j (t) = 0.Theorem 3 (Theorem 1 of (Koutroumbas et al. 1994)) limt!1 h�i(t) = 0 for all i =1; 2; : : : ; N � 1.1pp.94-99.2Lemma 1 of (Floreen 1991), Lemma 2 of (Koutroumbas et al. 1994).3



Theorem 4 3a. limt!1 h�N (t) exists and limt!1 h�N (t) � 0. Equality holds when condition in Theorem2 is satis�ed.b. The limit of the network is attainable after a �nite number of steps ifv�N (0) 6= v�j(0) 8j 6= N:For simplicity, let us de�ne the term neuron settling time and network response time.De�nition 1 a. For all i = 1; 2; : : : ; N � 1, Ti is called the i-th neuron settling time ifh�i(t) = 0 for all t � Ti.b. Trt is called the network response time if for all i = 1; 2; : : : ; N � 1, h�i(t) = 0 andh�N (t+ 1) = h�N (t) for all t � Trt.According to Theorem 4, we obtain the fact that (i) Trt < 1, (ii) h�i(t + 1) = h�i(t),for all i = 1; 2; : : : ; N and for all t � Trt. To visualize the overall picture given by the abovetheorems and de�nitions, a simple example is presented below.Example: Suppose that a Maxnet consists of 3 neurons and their initial state variables arev1(0) = 7, v2(0) = 5 and v3(0) = 9. Hence, �1 = 2, �2 = 1 and �3 = 3. We set � = 0:25.Figure(1) shows the values of v�1, v�2 and v�3 as functions of t. From the graphs, we observethat the settling time of the neurons are 2 and 4 steps, and the network response time is 4steps. Therefore, T1 = 2, T2 = 4 and Trt = 4. 23Theorem 1 of (Floreen 1991), Theorem 3 of (Koutroumbas et al. 1994).4



To proceed to our main result, we need the following corollary.Corollary 1 a. If v�i(0) 6= v�j(0) for all i 6= j, then 0 < T1 < T2 < : : : < TN�1 = Trt <1.b. If v�i(0) = v�i+1(0) for all i 6= N � 1, then 0 < T1 < : : : < Ti = Ti+1 < : : : < TN�1 =Trt <1.(Proof of (a)) The proof is accomplished by method of contradiction. Suppose that Ti+1 < Ti.Then we can establish that h�i(t) = v�i(t) > v�i+1(t) = h�i+1(t) = 0 at Ti+1 < t < Ti. Butthis contradicts Theorem 1. As a result, Ti < Ti+1 for all i = 1; 2; : : : ; N � 2. In addition toTheorem 4, we conclude that 0 < T1 < T2 < : : : < TN�1 = Trt <1.(Proof of b) Since v�i+1(t+1)�v�i(t+1) = (1+�)t(v�i+1(0)�v�i(0)) for all t > 0, v�i(Ti) = 0implies that v�i+1(Ti) = 0. By de�nition, Ti = Ti+1. Hence the proof is completed. 2In the next section, we proceed to derive the solution of the Maxnet using the abovecorollary.3 Network DynamicsThe dynamics of the network during 0 < t < T1 is given byvN(t+ 1) = ANvN(t); (7)where vN(t) = (v�1(t); v�2(t); : : : ; v�N (t))T and AN is an N�N matrix with diagonal elementsequal to 1 and o� diagonal elements equal to ��. Then, during 0 < t < T1, the network maybe regarded as a linear discrete-time time invariant system. The solution of this system canthen be obtained by evaluating the eigenvalues and the eigensubspace of AN .5



Lemma 1 The eigenvalues of AN are (1� (N � 1)�) and (1 + �). The corresponding eigen-subspace of (1� (N � 1)�) and (1 + �) are MN and M?N respectively, whereMN = span8<:e1N =  1pN ; 1pN ; : : : ; 1pN !T9=;and M?N = nv 2 RN jvT e1N = 0o :(Proof) Let xi = 1pN for all i, i.e. x 2MN . Then(ANx)i = (1)( 1pN )� (N � 1)�( 1pN ) (8)= (1� (N � 1)�)xi:So that, (1� (N � 1)�) is an eigenvalue for AN .Next consider w = v � (vTe1N)e1N , w 2MN?,(ANw)i = wi � �Xj 6=i wj (9)= 0@vi � NXj=1 vjN1A � �Xj 6=i  vj � NXk=1 vkN != (1 + �)0@vi � NXj=1 vjN 1A ;i.e. (ANw)i = (1+ �)wi or ANw = (1+ �)w. Hence the other eigenvalue is (1+ �). Moreover,we can replace w by  1p2 ; �1p2 ; 0; : : : ; 0!T ; 1p2 ; 0; �1p2 ; : : : ; 0!T ;: : : 1p2 ; 0; 0; : : : ; �1p2!T :6



Therefore, it can conclude that (1 � (N � 1)�) and (1 + �) are the only eigenvalues of ANbecause dim(MN ) + dim(M?N ) = N . 2With the aid of Lemma 1, the solution of the dynamics equation (7) can be written asvN(t+ 1) = (1 � (N � 1)�)(vTN (t)e1N)e1N (10)+ (1 + �) �vN(t)� (vTN (t)e1N)e1N� :That is to say, for all i = 1; 2; : : : ; N ,v�i(t) = (1� (N � 1)�)t0@ NXj=1 v�j(0)N 1A (11)+ (1 + �)t0@v�i(0) � NXj=1 v�j(0)N 1A ;for all t < T1. It is the exact solution of Maxnet in the time interval 0 � t � T1. Furthermore,the settling time of �st1 neuron is given byT1 = 26666666 log(PNj=1(v�j (0)�v�1(0))PNj=1 v�j (0) )log n(1�(N�1)�)1+� o 37777777 : (12)Once v�1 reaches zero, the corresponding output will also be zero. After T1, the networkdynamics can be modeled in a lower dimensional space. There are two cases to be considered:(i) v�2(T1) = 0 and (ii) v�2(T1) > 0. For case (i), we can simply skip the time intervalT1 � t < T2 and proceed to consider the dynamics of the network in the time intervalT2 � t < T3. In case of (ii) we can denote thatvN�1(t) = (v�2(t); v�3(t); : : : ; v�N (t))T ;7



and consider the dynamics as vN�1(t+ 1) = AN�1vN�1(t):Since AN�1 is de�ned in the same way as AN except that the dimension is N � 1, we canfollow the same principle applied to the derivation of equation (11) and Lemma 1 to deducethat v�i(t) = (1 � (N � 2)�)(t�T1) hvN�1(T1)i (13)+ (1 + �)(t�T1) (v�i(T1)� hvN�1(T1)i) ;for all i = 2; 3; : : : ; N and v�1(t) = 0;for all T1 � t < T2. Here hvN�1(T1)i = NXj=2 v�j(T1)N � 1 :Repeating the same procedure, we can derive the general solution of the Maxnet for all timet � 0. Denoting that vN�k(t) = (v�k+1(t); v�k+2(t); : : : ; v�N (t))T ;the general solution of the network at time Tk � t < Tk+1 is given byv�i(t) = (1� (N � k � 1)�)(t�Tk) hvN�k(Tk)i (14)+ (1 + �)(t�Tk) (v�i(Tk) � hvN�k(Tk)i) ;for all i = k + 1; k + 2; : : : ; N and v�i(t) = 0; (15)8



for all i = 1; 2; : : : ; k, where hvN�k(Tk)i = NXj=k+1 v�j(Tk)N � k :Besides, the settling time for �nd2 , �rd3 , : : :, �thN�1 neurons can be obtained recursively byTk+1 = 8>>>>>>>>><>>>>>>>>>: Tk + 26666666 log(PNj=k+1(v�j (Tk)�v�k+1 (Tk))PNj=k+1 v�j (Tk) )logf (1�(N�k�1)�)1+� g 37777777 if v�k+1(Tk) > 0Tk if v�k+1(Tk) = 0: (16)Since v�N (t+ 1) = v�N (t) whenever t � TN�1, the network response time is given byTrt = N�1Xi=1 2666666 log�PNk=i(v�k (Ti�1)�v�i (Ti�1))PNk=i v�k (Ti�1) �log n(1�(N�i)�1+� o 3777777 ; (17)where T0 = 0 and dxe is the smallest integer which is just greater than x.4 Geometrical InterpretationIn (Koutroumbas et al. 1994), Koutroumbas et.al. presented a brief geometrical interpreta-tion for two dynamical properties of the Maxnet: (i) once the initial state vN is located onthe hyperplane that bisects the angles between the reference axis, the limit vector will bethe null vector, and (ii) otherwise, the limit point will be on the axis that corresponds tothe node �N . Essentially, these properties can be easily visualized from equations (14), (15)and Lemma 1.To simplify the discussion, we describe the case of two neurons but the interpretation canbe extended to N neurons. From Lemma 1, it is observed that the component of v2 which isparallel to e12 will decrease at a rate (1 � �), while the component perpendicular to e12 will9



increase at a rate of (1 + �). Figure(2) shows three situations, indicated by x, y and z. x1and y1 are the components of x and y which are parallel to e. Whereas, x2 and y2 are thecomponents perpendicular to e. The lengths of the arrows indicate the corresponding ratesof change.Consider x, i.e. in region A, the magnitude of the change of x along e is ��x1 which islarger than �x2. The resultant change of x is pointing towards the axis v2. Similarly, theresultant change of x will point towards the v1 axis if x is located in the other A region. Inregion B, y1 � y2. Equality holds only when y lies on the axis v1. Therefore, the change of yalong the direction of e is also larger than that along the direction perpendicular to e. Theresultant change of y is again towards one of the axes. Consider z, which is on the line of e;its resultant change is pointing towards (0; 0).In summary, if v1(0) > v2(0) (v2(0) > v1(0)), then the limit point will be on the v1 (v2)axis. If v1(0) = v2(0), then the limit point will be (0; 0).5 ConclusionIn this paper, we have derived the complete solution of the Maxnet. This solution provides analternative approach to understand the properties of Maxnet. Besides, the exact responsetime is also deduced as long as v�N (0) 6= v�N�1(0). Since our derivation of the solutionis based on the method of eigensubspace analysis, the geometrical interpretation of thenetwork dynamics can be described vigorously. Such a technique can be readily adapted tothe analysis of similar WTA networks such as Imax (Yen and Chang 1992), Gemnet (Yanget al. 1995) and Selectron (Yen et al. 1994).10
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Figure 1: Changes of v1 (solid line), v2 (dot-dash line) and v3 (dash line) against time.
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Figure 2: The geometrical interpretation of the dynamics of the Maxnet. x; y; z are corre-sponding to three initial conditions which are located in three regions, A, B and the linealong e.
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