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Yet Another Algorithm which can Generate Topography Map
John Sum, Chi-sing Leung, Lai-wan Chan, and Lei Xu

Abstract—This paper presents an algorithm to form a topo-
graphic map resembling to the self-organizing map. The idea
stems on defining an energy function which reveals the local
correlation between neighboring neurons. The larger the value of
the energy function, the higher the correlation of the neighbor-
hood neurons. On this account, the proposed algorithm is defined
as the gradient ascent of this energy function. Simulations on
two-dimensional maps are illustrated.

Index Terms—Kohonen net, neural network, self-organizing
map.

I. INTRODUCTION

I N recent decades, many researchers have attempted to
mimic the mammalian sensory ordered map, in particular

the topography map. Goodhill [4], Kohonen [5], and Willshaw
and van der Malsburg [12] have proposed self-organizing
algorithms based on the idea of competition. Durbin and
Willshaw [2] on the other hand considered the map formation
as a process similar to that of elastic string. Linsker proposed
a multilayered probabilistic network structure and defined the
learning algorithm based on the idea of maximum mutual
information. In [11] van Velzen applied the idea of Ising spin
to define a Hamiltonian. By minimizing this Hamiltonian, he
derived an algorithm and network model, Ising spin network,
to generate a topographic map. Recently, the idea of minimum
description length (MDL) has also been applied to define
such an algorithm [13]. Some of these algorithms can be
described as gradient algorithms because they are embedded
with well-defined objective functions which not only ease the
formulation of the convergence proof but also suggest possible
physical interpretations for the algorithms [3].

This paper will be organized into six sections. In the next
section, the algorithm of self-organizing map (SOM) will
be briefly reviewed and its mechanism is reinterpreted. In
accordance with this new interpretation, we suggest the idea
of maximum neighborhood coupling. Using this idea, the
proposed algorithm is elucidated in Section III. In Section IV,
a simple simulated example is presented to demonstrate the
topographical property. Section V presents the connection
between the proposed algorithm and two other algorithms.
Finally, the conclusion is presented in Section VI.

II. PRELIMINARY REVIEW OF SELF-ORGANIZING MAP

SOM was proposed by Kohonen in the early 1980’s [5] and
was based on the idea of competition and neighborhood update
concepts. As its mechanism is simple, it has been widely
applied to solve many engineering problems [1], [6], [7], [14].
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For clarity, we assume that the SOM consists ofneurons.
The input to the SOM is denoted by and the weight
vectors are denoted by . The neurons
are arranged in lattice form. The neighborhood relationship
amongst these neurons is defined by the connection matrix

, where in means that theth and
th neurons are neighbor. In Kohonen’s definition [6], the set

consisting of all the neighborhood neurons of theth neuron
is denoted by and is called theth neighborhood set.

The mechanism of SOM is defined as follows:

if ,
otherwise

(1)

where is the index of the winning neuron. The vectoris
the input pattern presented at stepand is the step size
satisfying the conditions for stochastic approximation (see [8,
Theorem 4.3.1]). The winning neuronis defined as the one
whose weight vector is the closest to the input, i.e.,

Two points should be noted from the step (1). First, the winner
and its neighbors are now closer to the input pattern than
before. Second, they move closer to each other.

Although the map is able to search for the location of the set
of data and self-organize to an ordered map by repeating (1), it
has been proven that there is no energy function reflecting the
mechanism of SOM [16]. Thus SOM does not have a physical
meaning such as maximum entropy or maximum likelihood,
etc., except in the special case thatis an identity matrix. In
such case, SOM learning reduces to K-means clustering which
objective function is an approximated maximum likelihood
function ([15, ch. 6]).

III. FROM NEW INTERPRETATION TO THENEW ALGORITHM

Considering the points noted in the above section, it is
possible to interpret the topological map formation based on
an idea similar to correlation. Imagine that each of the weight
vectors is the center of a set of data. Assume that the set
is of fixed size. Once an ordered map is formed, each set
is overlapped to its neighbor sets and the total area of the
overlapping between neighbor sets should be large.

Suppose that theth neuron will fire if the input pattern be-
longs to its corresponding set, then the maximum overlapping
between two neighboring neurons is equivalent to the max-
imum correlation between their outputs. Therefore the algo-
rithm should also be interpreted as one which tries to maximize
the correlation between the outputs of the neighboring neurons.

With this new interpretation, an alternative algorithm can be
defined. It is accomplished by a probabilistic neural network.
This network consists of input neurons and output
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neurons, Fig. 1. Each of the output neuron is fully connected
to the neurons in the input layer via a weight vector, denoted
by . The response of each of the output neuron is binary,
{0, 1}, governed by the Gaussian probability

(2)

where . We denote this probability by . Note that it
is a conditional probability dependent on input. Assume that
once neighboring neurons output one, a coupling energy,,
will be generated. This coupling energy reflects the correlation
between the output of theth and th neurons, the larger the
average coupling energy, the larger the average correlation
between the neighboring neurons. As theth and th output
neurons response independently, the ensemble average of the
coupling energy between theth and th neuron is given as
follows:

(3)

where means the expectation ofgiven an input . For
simplicity, let be a value which indicates the neighborhood
relation between output neurons

if th and th neuron are neighbor
otherwise.

(4)

Then the coupling energy (3) can be rewritten as follows:

(5)

where . Summing over , we can
obtain the average network coupling energy

(6)

Inspired by the algorithm of maximum likelihood competitive
learning (MLCL) [10], we have

(7)

As our objective is to maximize the correlation between
neighboring neurons, the network parameters, i.e.,s, should
maximize the following cost function:

(8)

Fig. 1. The network structure of the proposed network model.

where is the input data set.
Since is a Gaussian function with mean and variance

, taking the gradient of the cost function (8), the algorithm
can be defined as follows:

(9)

(10)
Notice that this algorithm cannot be further reduced to SOM.
While , (9) and (10) reduce to simple competitive
learning (CL).

IV. SIMULATION

Fig. 2 shows a simulated example using (9) and (10). The
map is of size 15 15, each of the weight vectors is
two dimensional (2-D). Initially, all the weight vectors are
randomly distributed inside the unit square. Then during each
step of update, an input datais selected randomly from the
unit square. In this simulation, is decreasing with time

for all . The parameters and are
set to be 0.16 and 0.02, respectively. corresponds to the
largest integer below . It is found that the map stretches
to larger size as decreases, see Fig. 2(d)–(i) and note that
the size of the map increases from to

. Simulations for the maps with size 10
10 and 20 20 are carried out under the conditions. All of

them can form ordered maps as well.
Remark 1: It should be noted that while the value ofis

too small, no ordered map can be formed as the algorithm will
reduce to simple competitive learning while .

Remark 2: In case the value of is too large, say
. Then all the exponential terms in (10) will
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 The topographic map formation in the simulation of 15� 15 map at the time when (a)t = 0, (b) t = 10
6, (c) t = 2 � 10

6, (d) t = 3 � 10
6,

(e) t = 4 � 10
6, (f) t = 5 � 10

6, (g) t = 6 � 10
6, (h) t = 7 � 10

6, and (i) t = 8 � 10
6.

be close to one and all the values of will be equal. As a
results, all the weight vectors will converge to the sample
mean, i.e., the center of the unit square.

Remark 3: Similarly, once the weight vectors are initialized
very closed to the center of the unit square, no map can be
formed in general unless the valueis turned to very small.
In accordance with our simulation results on one-dimensional
(1-D) and 2-D maps, the recommended range of thevalue
is [0.15, 0.25].

V. CONNECTION WITH OTHER ALGORITHMS

Suppose that the weight vectors and the input patterns are
confined to have unit length, i.e., and for
all and , the probability function
can be written as follows:

given input

(11)

where is the transpose of . Hence, the cost function (8)
and (10) can be expressed as follows:

(12)

(13)

This is just the van Velzen algorithm [11]. Therefore, our
proposed algorithm can be treated as a generalization of his
model.
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TABLE I
SUMMARY OF THE SIMILARITIES AND DIFFERENCES

BETWEEN SOM AND THE PROPOSEDALGORITHM

Furthermore, suppose that the matrix is defined as an
identity matrix. The algorithm (9) and (10) reduce to

(14)

and

(15)

(16)

The cost function (8) reduces to

(17)

where is the input data set. This is exactly
the algorithm of MLCL.

VI. CONCLUSION

In summary, this paper has presented a new interpretation
of the mechanism of SOM. Consider that SOM is an algorithm
maximizing the correlation of the outputs of the neighboring
neurons, a cost function expressing this objective is defined
and hence an alternative algorithm is deduced. Furthermore,
we have shown that the proposed algorithm can be reduced to
van Velzen algorithm [11] and maximum likelihood competi-
tive learning [10]. For clarity, the similarities and differences
between SOM and the proposed algorithm are summarized in
Table I. As the algorithm proposed by van Velzen is based on
the idea of Ising spinning, it is suspected that our algorithm
can also be interpreted in the same manner. Recently, many
researchers are looking for a meaningful interpretation for
the mechanism of SOM, this paper may shed light on this
direction.
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