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On the Regularization of Forgetting Recursive Least Square
Chi Sing Leung, Gilbert H. Young, John Sum, and Wing-kay Kan

Abstract—In this paper, the regularization of employing the
forgetting recursive least square (FRLS) training technique on
feedforward neural networks is studied. We derive our result
from the corresponding equations for the expected prediction
error and the expected training error. By comparing these error
equations with other equations obtained previously from the
weight decay method, we have found that the FRLS technique
has an effect which is identical to that of using the simple weight
decay method. This new finding suggests that the FRLS technique
is another on-line approach for the realization of the weight decay
effect. Besides, we have shown that, under certain conditions,
both the model complexity and the expected prediction error of
the model being trained by the FRLS technique are better than
the one trained by the standard RLS method.

Index Terms—Feedforward neural network, forgetting recur-
sive least square, model complexity, prediction error, regulariza-
tion, weight decay.

I. INTRODUCTION

T HE FORGETTING recursive least square (FRLS) tech-
nique [4], [8], [13], [15], [16], [25] is a fast parameter

estimation method with adaptive ability. Hence, it has recently
been applied widely in the training of feedforward neural net-
works. As in many applications, such as system identification
and time series prediction, a batch of training data set usually
cannot be obtained in advance. Therefore, conventional batch
mode training techniques such as the backpropagation, the
Newton method, and other nonlinear programming techniques,
would not be easily applied. Thus, the FRLS method or
other adaptive training methods becomes inevitable. As the
increasing popularity of using the FRLS method in neural-
network learning [4], [8], [13], [15]–[17], [25] and pruning
[15], [16], [18], it is interesting to investigate more on other
properties besides its adaptive behavior. In this paper, one
property we are concentrated on is the FRLS’s regularization
behavior.

Recently, there are many articles which are focused on the
design of a regularizer [28], the use of regularization [11],
[19] and the effect of regularization in model complexity
[21]–[23]. In general, regularization is a method which aims
at reducing the model complexity [11], [14], [19]–[23]. In
conventional batch mode training approach, regularization is
usually realized by adding an extra term or a penalty term to
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the training error function. Three commonly used methods are
the weight decay term [20], Tikhonov regularizer [3], [11],
and smooth regularizer [28].

Using the FRLS method, training error function can also be
interpreted as a kind of weighted sum square error function.
This function is not the same as those described before, that is a
sum square error function with a penalty term. In this paper, we
discuss the similarity between the objective function of FRLS
and those of adding regularized type objectives mentioned
above.

This paper is organized in nine sections. In the next section,
a preliminary on the FRLS method will be introduced. Then,
we present the main result briefly in Section III, and the
relationship between the FRLS method and the weight decay
method in Section IV. We derive, from the very first principle,
two equations describing the expected mean training error
and the expected mean prediction error. The former one
will be derived in Section V and the latter one will be
derived in Section VI. The derivation of the main result will
thus be presented in Section VII. By comparing with the
error equations obtained for recursive least square, we show
that, under certain conditions, the model complexity and the
expected prediction error of a model being trained by the FRLS
method could both be smaller than that of being trained by
using the RLS method in Section VIII. Finally, we conclude
the paper in Section IX.

II. PRELIMINARY

The model being discussed in this paper is the generalized
linear model defined as follows:

(1)

where ; ; is a mean zero Gaussian
noise; and is a nonlinear vector function depended on
the input . The vector is assumed to be the true
model parameter.

In neural-network literature, model (1) represents many
types of neural-network models. One example is the radial
basis function network [2], [9] if the th element of ,

, is defined as , where
is a fixed positive definite matrix and

is a fixed -vector. would then be the output weight vector.
In nonlinear system modeling, model (1) can also represent a
Volterra series [12].

Considering model (1), we define the estimator as follows:

(2)

where is the estimate of the true parameter. By feeding
the training data one by one, the estimatecan be updated it-
eratively based on the forgetting recursive least square method
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[16]. Let be the optimal estimation of when data have
been fed, the training can be accomplished via the following
recursive equations:

(3)

(4)

(5)

(6)

(7)

with the initial conditions

(8)

(9)

and is the forgetting factor in between zero and one.
In the theory of system identification [12], for a large, the

objective of the above recursive algorithm is to minimize the
cost function , where

(10)

where is the training data set;
; and . The weighting factor captures

the effect of the most recent training data more. For , the
weighting on is one. When ,
the weighting on is . This
factor is smaller than one. As a result, the factorserves as
a weighting factor which counts the effect of the most recent
training data more than the earlier one.

III. T HE MAIN RESULT

A criteria for measuring the performance of (2) is the mean
prediction error [1], that is the accuracy of the model in
predicting the output of an unseen data

MPE

(11)

where and are the probability density functions
of and , respectively. This MPE is depended on the
estimator and hence it is a random variable depended
on the training set, . Therefore, another
criteria would be the expected mean prediction error [21], [23],
[26] which is defined as follows:

MPE

(12)

denotes the expectation over the training set,
.

Assuming that is large enough and is very small. By
using the similar technique as depicted in papers [1], [14],
[21], [23], and [26], we can derive1 that

MPE (13)

where is the variance of the output noise and is the
th eigenvalue of the matrix

and

where denotes the expectation over the training set,
. Besides, if we define the mean training

error as follows:

MTE (14)

we could further relate the prediction error and the training
error by the following equation:

MPE MTE (15)

The derivation of (15) will be shown in the following sections.

IV. FRLS AND WEIGHT DECAY

Comparing (15) to that obtained from the standard weight
decay method [21], it would be realized that the FRLS training
method has an effect similar to the weight decay training. This
result is extremely useful. The reason can be explained as
below.

In the weight decay method, the cost function is defined as
follows:

(16)

where is the regularization factor controlling the penalty due
to large weight. The estimate is the one which minimizes

, that is,

Now, based on the finding that FRLS training method is
asymptotically identical to weight decay training, we can now
havean elegant on-line training method which can accomplish
the same effect as weight decayif .

1This equation will be derived in Section VI.
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V. DERIVATION OF THE EXPECTED MEAN TRAINING ERROR

In accordance with the theory of identification, the objective
of the FRLS is to minimize the cost function defined as (10)

where is the training data set. Differenti-
ating (10) once with respect to and equating it to zero,
we can derive the solution of

(17)

Replacing by its definition, (1), and using (17), it can
be shown that

(18)

where

(19)

Note that for , is a zero mean Gaussian noise
with variance for all . By squaring (18),
summing up for from 1 to and taking the expectation over
the set , we can thus obtain an equation for the expected
training error. Assuming that is large enough

(20)

(21)

tr

tr tr (22)

where tr is the trace operator

(23)

(24)

(25)

Therefore, the expected mean training error can be rewritten
as follows:

MTE

(26)

(27)

VI. DERIVATION OF THE EXPECTEDMEAN PREDICTION ERROR

Next, we are going to derive the equation for the expected
mean prediction error defined in (12). First, let us derive an
equation for . Using the result in (17) once again, we
can readily show that

(28)

and hence

(29)

Recall that the definition of the expected mean prediction error
is as follows:

MPE

Since is a random variable independent ofand , (12)
can be rewritten as follows:

MPE

(30)

Suppose that is large enough, we approximate
by . By using (29), we

can show that

MPE

(31)
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VII. D ERIVATION OF EQUATION FOR MPE AND MTE

Comparing (31) and (27), it can be shown that

MPE MTE tr (32)

As when is large

(33)

(34)

(35)

and

(36)

(37)

Using the asymptotic approximations, (34) and (36), for
and , we could get that

tr tr (38)

Let be an estimate of theth eigenvalue of the matrix

MPE MTE (39)

VIII. C OMPARISON WITH RECURSIVE LEAST SQUARE

Once the factor is being set to zero, it should be noted that
the algorithms (3)–(7) can be reduced to the standard recursive
least square (RLS) method. Using the similar technique, (9),
(23), and (25), the following equalities will be obtained:

(40)

(41)

(42)

Then the mean prediction error and the mean training error for
the RLS method can readily be derived

MPE

(43)

MTE

(44)

In such case the difference between the expected mean pre-
diction error and the expected mean training error would be

equal to , i.e.,

MPE MTE

MTE (45)

Suppose is very large, the second term in (45) would be
equal to .

If we define the network complexity as the effective number
of parameter, (39) and (45) reveals that the complexity of the
models being trained by using the FRLS is usually smaller
than that of using the RLS.

Apart from the difference in the model complexity, we
could also show that under certain conditions, the expected
mean prediction error generated by the network being trained
by the FRLS is smaller than that of using the RLS. Again,
we consider the asymptotic situation. We let
be . The following approximations can
readily be obtained:

(46)

(47)

(48)

(49)

Using these approximated equations and considering the fac-
tors and in (31) and (43), one can
show that

(50)

(51)

and if

(52)

or equivalently

(53)

the expected mean prediction error of using the FRLS will be
smaller than that of using the RLS.

IX. CONCLUSION

In this paper, we have presented certain analytical results
regarding the use of forgetting recursive least square method
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in the training of a linear neural network. The expected mean
prediction error and the expected mean training error are
derived from the first principle with the assumptions that the
number of training data is large and the output noiseis a
zero mean Gaussian noise. Using these error equations, we are
able to analyze and compare the behavior of the FRLS with
the RLS. First, we have shown thatthe FRLS has inherent
weight decay (regularization) effect. Second, we have shown
that the expected mean prediction error of using the FRLS can
be smaller than that of using the RLS if the forgetting factor

is set appropriately.
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