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Analysis for a Class of Winner-Take-All Model
John P. F. Sum, Chi-Sing Leung, Peter K. S. Tam,Member, IEEE,Gilbert H. Young, W. K. Kan, and Lai-wan Chan

Abstract— Recently we have proposed a simple circuit of
winner-take-all (WTA) neural network. Assuming no external
input, we have derived an analytic equation for its network
response time. In this paper, we further analyze the network
response time for a class of winner-take-all circuits involving self-
decay and show that the network response time of such a class
of WTA is the same as that of the simple WTA model.

Index Terms—Inputless winner-take-all neural network, net-
work response time, self-decay.

I. INTRODUCTION

T HE winner-take-all (WTA) network has been playing a
very important role in the design of most of the design

of the unsupervised learning neural networks [2], such as
competitive learning and Hamming networks. To realize a
WTA model, various methods have recently been proposed.
Lippman proposed a discrete-time algorithm called Maxnet
in order to realize the Hamming network [3]. Majaniet al.
[4] and Dempsey and McVey [5] proposed models based
on the Hopfield network topology [6]. Lazzaroet al. [7]
designed and fabricated a series of compact CMOS integrated
circuits for realizing the WTA function. Recently, Seiler and
Nossek [8] have proposed an inputless WTA cellular neural-
network-based on Chua’s CNN [9]. In order to improve on
the robustness of this CNN type WTA, Andrew [10] extended
Seiler-Nossek model by introducing a clipped total feedback.

Except maxnet, the dynamical equations for most of the
above models are governed by many parameters. Therefore,
the design and analysis of such networks are complicated.
To alleviate such design difficulty, we have recently proposed
in [1] a simple analog circuit for WTA with its dynamical
equation being governed by just one parameter. It not just
simplifies the task for designing the network, but also makes
the analysis on the network response time become feasible. In
[1], an analytic equation for the response time of such a WTA
circuit has been derived and confirmed by intensive computer
simulation.

As we have mentioned that WTA is an important component
in many unsupervised learning models, the information on its
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Fig. 1. The input–output characteristic ofh:

response time is important for investigating. Yet, only a few
publications have appeared to provide in-depth analysis on
the network response time. In this paper, we apply the same
technique to analyze the network reponse time of a class of
WTA network which involves self-decay. We will show that
the network response time of the decay type WTA is indeed
the same as the nondecay type WTA.

The rest of this paper is organized as follows. The next
section will introduce the simple and the general self-decay
type WTA model. Certain properties governing the derivation
of the analytic equation for the network response time will
be stated in Section III. Section IV reviews the network re-
sponse time of the nondecay model. In Section V, the network
response time for the self-decay type WTA model will be
derived. Comparing with the network reponse times of both
models, it will be found that the network response time for
the simple nondecay WTA is actually identical to the one for
the self-decay type. In order to confirm that the analytical
equation can closely approximate the actual network response
time, intensive computer simulations have been carried out
for the self-decay type model. The result will be reported
in Section VI. Using the results obtained in Sections V and
VI, three simple methods for designing the WTA model will
be presented in Section VII. Finally, a conclusion will be
presented in Section VIII.

II. NETWORK MODEL

We consider an -neurons fully connected inputless WTA
neural network. For theth neuron, the state
potential (state variable) and the output of the neuron are
denoted by and , respectively, for simplicity, we
assume that is a piecewise linear function of as shown
in Fig. 1

if
if
if .

(1)
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Fig. 2. The network architecture of the proposed WTA neural network. The
hollow circles correspond to excitatory connections while the solid black
circles correspond to inhibitory connections.

A. Simple WTA Model

In our proposed model [1], the output of each neuron is
connected to all the other neurons and itself, in the same way
as Maxnet. The connection is excitatory if the output is self-
fedback. It is inhibitory when the connection is interneuron.
The network dynamics can be described as follows:

(2)

for all and Fig. 2 shows the structure
of this simple model. The condition onis used to assure that

if the th neuron is not the winning neuron for all
time and when the output of the nonwinning
neurons have reached zero.

B. General Model

For some models such as the one described by Seiler-Nossek
[8], a decay term is usually involved in the dynamical
equation

(3)

where In this case, even for the winner, the state
potential will also decay to zero as and is too large.
This general WTA model has been proposed for a long time.
However, the bound on its response time has not been studied.

III. PROPERTIES

To simplify the discussion, it is assumed that the initial
state potentials can be arranged in a strictly ascending or-
der, i.e., for a suitable index
set Now, let us present some properties of
the simple WTA model (2) which are useful for the later
discussion.

Lemma 1: if then

1)
2) and equality holds when both

and
3) if

Proof: From (2)

As and can be located in one of the three regions:
and there are six cases to be con-

sidered

if
if
if
if
if
if

(4)

That is to say, is nonnegative. Therefore,
it is obvious that for all

if and Equality
holds when or In other
words, it corresponds to the case that The
proof of Lemma 1(c) can be accomplished by substituting

into (2) and noting that
Theorem 1: If

then

for all
Proof: The proof is directly implied from Lemma 1(a).

Theorem 1 and Lemma 1 imply that the time for
reaching zero is finite.

Theorem 2: If ,
then there exists , such that

Proof: Since is strictly negative for all
is a strictly monotonically decreasing function with

regard to time So, there exists such that
The proof is completed with the results from Theorem 1.
Instead of considering the dynamics of the state, ,

we can consider the output dynamics. It aids to the later
discussions on the network response time. Since

(5)

whenever we can express in terms of
i.e.,

if

if

if .

(6)

Using (6) and Lemma 1, the following Lemma and Theorem
are deduced.

Lemma 2: For all if , then

1) , equality holds when and
2) if
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Proof: As
implies that Equality holds when

or i.e.,
Proof of Lemma 2(a) is completed. Proof of Lemma 2(b)
is similar to the proof of Lemma 1. Since

The equality holds when
, i.e., Then the proof of

Lemma 2(b) is completed.
Theorem 3: If then there

exists , such that

Proof: The proof is directly implied from Theorem 2.
Noted that Theorem 1 and Lemma 1 hold true once

Although Theorem 3 holds true only when
it can be generalized to any or It is especially
important in the discussion of the response time of the network.

So far, we have not analyzed whether the neuron will
reach one earlier than the neuron reaching zero. At the
end of the next section, we will show that it is not assured.
For instance, when and

in which the 2nd neuron will be the last one
settling down. We have tried 100 tests; the initial states were
initialized randomly. It is found that there are only seven
exceptions including the one mentioned. For the rest of the
93 cases, and will reach zero first and then reaches
one last. For all of the exceptional cases, the response time is
less than three time units. In order to simplify discussion, we
assume the following.

Assumption 1:The winner neuron is the last one set-
tling.

Theorem 4: If
then there exists such that
for

Proof: According to Lemma 1(3), there
exist such that

Based on the definition of , the above implies that
there exists such that

In the sequel, we can deduce that the response time of the
network is finite.

Theorem 5: If
then there exists such that

if
if

where
Proof: According to Theorem 4,

when From Lemma 2(a), we deduce
that This brings out the following two cases
to be considered: 1) and 2)
In the former case, since In the latter

case, needs time to rise to one. Since the output dynamics
of is governed by

(7)

for all So

for all When

The inequality holds true since Therefore,
Hence the proof is completed.

Theorem 5 shows clearly that our proposed network can
function as a WTA neural network and its response time is
finite. The only restriction is that if
It is worthy noting that this condition is a far more relaxed
one than that of the design conditions derived in the Seiler-
Nossek model [8]. Besides, our analysis does not depend
on the number of neurons in the network. Consequently, the
optimal design of our WTA network as well as the analysis of
the network response time can be made relatively simple.

It should be noted that Theorems 1–4 hold true for the
general model as well. However, Theorem 5 holds true only
when In case will decay to zero. This
property for the general model can be stated in the following
Theorem.

Theorem 6: If , then there
exists such that

where and will satisfy one of the
following conditions: 1) If 2)
If will converge to a constant value between
zero and one; and 3) If

Proof: Follow Theorem 4, at time
for all and

(8)

As and

Obviously, when Hence the out-
put of the winner node will decrease to zero. Similarly,
when the output of the winner
node will rise to one. when

for all time Then the
proof is completed.
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IV. NETWORK RESPONSETIME OF THE SIMPLE WTA MODEL

We can proceed to see what will happen immediately after
Once and from Theorems 2–4

and

Obviously, the output dynamic is now governed by an -
dimensional first-order differential equation. Let us denote

for all and

when is just greater than , where denotes transpose. Note
that is the index of the neuron for which the initial state
potential is the largest. When we get that

(9)

and when is just greater than we can deduce that

(10)

where

for Just after the network dynamical
equation is changed from (9)–(10). It indicates that system (2)
is a reduced-dimension system. Hence can be evaluated
using the following Lemma.

Lemma 3: The eigenvalues of are and one.
The corresponding eigensubspace of and one are

and , respectively, where

and

Proof: See Appendix.
For all

(11)

for all Obviously, the output of the neuron
will be the first one reaching zero since if
Hence, can be evaluated by setting

(12)

Substituting into (11), we can readily show that

for all
Based on the assumption and (11), we can readily deduce

that

(13)

and

(14)

(15)

for all and Similarly, we can
evaluate the difference using the same
idea and obtain that

(16)

as long as and are greater than zero.
Now, consider the time just after it is readily deduced

that

(17)

Setting , we can deduce as follows:
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Since the above equation becomes

Therefore, using the result obtained in (16), we obtain that

(18)

Using the same technique, we can obtainto recur-
sively

(19)

and

(20)

Denote the network response time and define it as
Then can be written explicitly as follows:

(21)

It is interesting to note that the network response time is
dependent solely onand the initial conditions of the neurons
only.

V. NETWORK RESPONSETIME OF THE GENERAL WTA MODEL

Consider the case when we can obtain similar equa-
tions as (9) and (10)

(22)

where

(23)

for Using the results obtained in (9)
for the eigenvalues of can be stated as follows:

(24)

(25)

Thus, similar to that of (11), we can have an equation for
as follows:

(26)

for all Therefore, the settling time for is
given as follows:

(27)

Following the same steps as above, the network response time
can be obtained and represented as follows:

(28)
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Fig. 3. The average response time of the network for different values of epsilon. The horizontal axis corresponds to the value of epsilon while the
vertical axis corresponds to the response time.

Comparing (21) and (28), the network response time for our
general WTA model is the same as that of the simple WTA
model

(29)

VI. SIMULATION VERIFICATION

Equation (21) indicates that the network response time relies
on two factors: the initial conditions of the neurons’ state
potentials and the parameter But, one may query about
the consistency of (21) and the actual network response time
because an assumption has been made prior to the derivation
of the equation.

In order to demonstrate that the deduced response time can
indeed reflect the actual response time, extensive simulations
were carried out for different values ofFour different values
of were examined: 0.6, 0.7, 0.8, and 0.9. For each value of

and particular size of the WTA, 25 sets of simulation
were carried out. The size varied from 4, 8–100. In each set
of simulation, 100 runs of the experiment with different initial
states (randomly chosen with a uniform probability density
function) were carried out.

It is found that when the size of the WTA neural network
is small, both the evaluated and experimental values of the
settling time are short. As the size of the WTA neural network
increases from to , both the evaluated and
experimental values of the settling time manifest trends of
steady increase. However, the rate of increase is very small. If
we take the average values of the response time for the sizes
from to and compare the decreasing trend
with respect to the value of, an interesting observation is
noted: as shown in Fig. 3, both trends of decreasing suggest
an exponential decay. Therefore, using the results shown in

Fig. 3, we can design a network with appropriate component
values.

VII. D ESIGN EXAMPLES

As mentioned in the introductory section and the discussion
on Section III, the inclusion of the self-decay can provide a
flexibility in the design of a WTA. For example, if we want
the output of the winner node to decay to zero, we can set

Here we give three examples showing how to design
the values of and based on the results obtained above.

Example 1: Suppose we want to have
and the network response time is about two time units.

Referring to Fig. 3, we can set to be 0.5. Then, we set
to make sure that the output of the winner node

will decay to zero.
Example 2: Suppose we want to have

equal to a constant value in between zero and one. The
network response time is about two time units. Again, we
set to be 0.75. As is the condition for that

equal to a constant, we set
Example 3: Suppose we want to have

and the network response time is about two time unit. We set
to be 0.75. To ensure that the output of the winner node reach
one, we can set

VIII. C ONCLUSION

In summary, we have reviewed and analyzed the properties
of a simple WTA model which has been proposed recently.
In particular, as analytic equation for its response time (the
time when is presented—(21). Using the same
technique, we have derived an analytic equation (28) for
the response time of a general class of WTA which has
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a dynamical equation involving self-decay. Comparing both
equations, it is found that the network response time of the
simple model can be treated as an upper bound for a more
general1 class of WTA models. Finally, one should note that
the results presented in this paper are preliminary. A more
general model with nonunity neuron gain, or infinity gain, and
nonunity self-feedback synaptic weight is deserved for further
research.

APPENDIX

PROOF OF LEMMA 3

Let for all i.e., Then

(30)

Hence as And is an
eigenvalue for

Next consider , i.e., ,

(31)

Hence, and the other eigenvalue is one. If is
replaced by any one of the following vectors:

it can be concluded that and one are the only
eigenvalues of because

And the proof for Lemma 3 is completed.
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1As one reviewer has pointed out that the model being discussed is
not really general. A more general model with nonunity neuron gain and
nonunity self-feedback synaptic weight should be analyzed for practical
implementation.
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