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Abstract. Advances in mobile agent research have brought in a new method for network routing, ant
routing. Recently, we have derived some preliminary results regarding the agent population growth
property and the jumping behavior for an ant routing algorithm. The focus was on the expected num-
ber of agents in a node. In practice, the number of agents propagating on each network channel is
also critical as the network channel bandwidth is limited. In this paper, we first propose two extended
ant routing algorithms, and then provide an in-depth analysis on the population growth behavior of
the propagating agents for these algorithms, both at nodes (hosts) and on edges (channels) of the
network.
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1. Introduction

To meet the requirement of rapid growth of the network-centric programming [6,
8, 12, 15, 22, 28], and applications due to the widespread availability of the Internet
and popularity of the WWW [19, 20, 29], use of mobile agents appears to be an
attractive technique evolved in the last few years. A mobile agent is a program that
acts on behalf of a user to perform intelligent decision-making tasks, and is capable
of migrating autonomously from node to node in a network. Usually, the main task
of a mobile agent is determined by user specified applications, which can range from
online shopping and distributed computation to real-time device control. Successful
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examples can be seen in many new program paradigms such as Aglets [16, 18],
Voyager [21], Agent Tcl [10], Tacoma [14], Knowbots [13] and Telescript [30].

As the communication between two agents (for instance the server agent and the
user agent) is established within one single host, and it does not involve message
transmission between the host machines of these agents (the server machine and
the user machine), use of agent programming can significantly reduce the network
(bandwidth) usage for message transmission [29]. Due to the tremendous growth
of the size of the Internet and the latest development of mobile computing [1, 2,
23, 24, 27], the demand for low-usage network management technologies, such as
mobile agent based network management, increases drastically.

In recent years, many intelligent mobile agent based network management tech-
niques have been proposed and implemented [3, 9, 25, 31]. In a typical agent based
network management system, the server first dispatches the delegated mobile agents
to the network on behalf of the network manager. The agents then wander around
the network and gather the information about the current status of the network.
Once the agents have traversed back to the server, they hand-in their summary
reports for network management. As the reports are given to the server only when
their trips are over, there is little communication between the agents, and the server
during the whole process, making the network traffic relatively light.

Network routing is another problem in network management [26] using mobile
agent techniques. Ant routing (or ant-like routing method) [5, 7, 31-34] is a recently
proposed mobile agent based network routing algorithm for use in these environ-
ments. The idea mimics the path searching process of an ant. Once a request for
sending a message is received by a server, the server will generate a number of
mobile agents like ants. These agents will then move out from the server to search
for the corresponding destination host. When an agent has reached the destination,
it traverses back to the source host, the server, following the path searched, and
leave marks (just like the pheromone) on the hosts along the path. When a certain
number of agents have been back (others may have been dead, or are still in the
searching process), the source host will evaluate the costs of the paths collected,
and pick up the optimal path for sending the message. If a connection is needed,
the server will then send out an allocator agent to reserve resources in the hosts
along the path.

It can be seen that for both network management and routing, agents have to
be generated frequently in the network. When there are too many agents in the
network, it will introduce too much overhead on host machines, which will even-
tually become always busy, and thus, indirectly block the network traffic. There-
fore, an analysis on the agents’ population change, and its growth behavior is
necessary.

The objective of this paper is two-fold. First, two extended ant routing algorithms
to our previous preliminary analysis will be introduced. Second, the agent propaga-
tion behaviors in the ant routing algorithms in both synchronous and asynchronous
modes will be analyzed.

The paper is organized as follows. In the next section, the network model and
two variant ant routing algorithms will be introduced. To simplify the analysis, we
first analyze the behavior of these algorithms in a synchronous mode in Section 3.
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Then we extend the results to an asynchronous mode in Section 4. Finally, the
conclusion is presented in Section 5. Throughout the paper, nodes and hosts are
used interchangeably, as well as edges and channels.

2. Network model and ant routing

Let G = {V, E} be a graph corresponding to a fixed network, where V' is the set
of hosts, and E is the edge set. The connectivity of the graph is described by a
connection matrix C. For example, suppose the graphical structure of a network is
shown in Figure 1, the connection matrix C will be given as follows:

1010
C =

oo
—
—
—

Throughout the paper, we assume that the topology of a network is a connected
graph in order to ensure that communication is able to be made between any two
host machines.

White, Pagurek and Oppacher [32] proposed an adaptive mobile agents algo-
rithm for network routing and connection management. The essential idea of their
algorithm can be sketched as follows.

1. Once a unicast! request has been request, m ant agents (the explorer agents) are
created and sent out into the network.

2. The explorer agents traverse the network from the source to destination. At
each immediate node, the explorer agent will select randomly a neighbor node
to move forward. For the example in Figure 1, if the agent has moved from node
A to node B, and node C and node D are connected to node B, the allowable
moves will be either A - B— Cor A— B— D,butnot A - B — A.

3. Once the destination node has been reached, the explorer agent will traverse
backward to the source node.

4. In the source node, each returned explorer agent® will compare its explored path
with other returned explorer agent. For each returned explorer agent, if the cost
of the corresponding traverse path is acceptable, then an allocator agent will thus
be sent out immediately, and allocate network resources on the nodes and links
used in the path.

A

Figure 1. A simple network structure.
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5. When the path is no longer required, a deallocator agent traverses the path, and
de-allocates the network resources used on the nodes and links.

It should be noted that the performance of this ant routing algorithm is deter-
mined by the costs of the paths being searched by the explorer agents. Besides, it
should be noted the forward-only move can make the explorer agent get stuck in
any terminal node. Let us take Figure 1 as an example. Suppose an explorer agent
is sent out from node B to node D. By chance, it moves to node C in the first
jump and then to node A in the second jump. As the explorer agent can only move
forward, it finally gets stuck in node A.

In order to alleviate the problem of being-stuck, we modify the algorithm pre-
sented in [32] as follows.

2.1. Algorithm I

Suppose a request for sending a message is received in the i host at time ¢, the
host will thus generate k ant agents. Then each agent will randomly select one
neighboring host with probability P(j|i) = P(i — j) = 1/(]Q;| + 1), and go. The
parameter |(),] is the total number of neighboring hosts of the i host. Assume that
when an ant has reached the j* host, it will check whether the host is its destination.
It will then turn back to the source host and report the path being searched if the
j" host is its destination. Otherwise, the agent will select randomly, one neighboring
host of the j”* host and go. In the source machine, the server will pick up the path
which is of minimum number of hops. Then, the message is sent along this path to
the destination machine.

2.2.  Algorithm 11

Suppose that a request for sending a message is received in the i host at time ¢, the
host will thus generate k ant agents. Then each agent will randomly select a neigh-
boring host with probability P(j|i) = P(i — j) =1 — a/|Q,|, and go. The parameter
|Q;| is the total number of neighboring hosts of the i host, and the parameter
a(0 < @ < 1) is the dying rate of an agent. Similar to Algorithm I, the agent can die
at any intermediate hop at a constant dying rate. While an ant agent has reached
the j** host, it will check whether the host is its destination. It will then turn back
to the source host, and report the path being searched if the j” host is its destina-
tion. Otherwise, the agent will select randomly a neighboring host of the j” host
and go. In the source machine, the server will pick up the path which is of mini-
mum number of hops. Then, the message is sent along this path to the destination
machine.

It should be noted that the essential idea of this algorithm looks similar to what
White, Pagurek and Oppacher in [32] proposed. As in each jumping step, there is
only a (1 — ) chance for an agent to survive. Therefore, the expected number of
steps an agent can jump is equal to Y5, k(1 — @)¥, which is equal to constant value
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1 — a/a?. Using the same technique, it is able to determine the probability of the
event that {steps > t}.

=)

P{steps > t} = > a(l —a) = (1 - a)".
k=t

One can design the allowable search step ¢, as follows:

ty = migl{P{steps >t} > €}
>

_ | loge
"~ |loga ]

where € is a small positive number.

3. Agent population: synchronous mode

In the synchronous mode, we assume that the propagation delay of an agent jumping
from one hop to any of its neighbors is constant. We will use the following notation:

p:(t): the number of agents running in the i"* host at time ¢

r(t): the number of requests initiated at time ¢ in the i host

k: the number of agents being generated once a request has been received
m: the expected number of requests received in a host

Besides, we assume that the network is a connected graph. The dynamical change
of the agent population in the network can be given by the following equations:

pit)

pi(t+1) =kri(t) + > 8u(1); (1)
i€Q; I=1
1 if the ["* agent selects the j* host to go
B u(t) = o ¢ @
0 otherwise;
Z Bjil(t) =1, (3)
jeqy;

where 8, (¢) indicates the selection of the [ agent in the i host.

3.1. Algorithm 1

In accordance with Algorithm I, P(8,,(¢) = 1) = P(jli) = 1/[Q,;| + 1, for all I =
1,2,---, p;(¢). Taking the expectation on both sides of Equation (1), it is readily
shown that the evolution behavior of ant routing follows Markov property,

Edp, 0+ DIFO. 70} = k() + X =20,
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where p(t) = [pi(1), p2(1), ..., py (1), 17, 7(1) = [, (1), 1r2(0), ..., ry(0)]". In the
compact form, it can be rewritten as follows:

E{p(t+DIp(0), 7(0)} = Ap(t) + kr (1), 4)

where 4 = (a;;)y.y and a; = 1/(|Q;] +1) if j € Q,, j # i, and otherwise zero.
Suppose that a survival agent, is an agent running after the current step of transi-
tion, a;; is the expected delivery rate of a survival agent transmitted from i to j €

Q,. By defining the following recurrent relation, 1:7(t +1)=E{p(t+ 1)|1:7(t), ?(t)},
the dynamical equation for the expected number of agent in the network, can be
obtained.

Pt +1) = Ap(t) + ki (t) = Ap(t) + kmé, )
where € = (1,1, ..., 1)7. In our previous preliminary analysis, we have proved the

following property.

Theorem 1 [n Algorithm I, the expected number of agents running in each host is
smaller than or equal to (max,;{|Q;|} + Dkm.

Proof: Since matrix 4 can be decomposed into UDU ! with D being a diagonal
matrix whose elements are the eigenvalues of matrix A4, [I — A] can be expressed
as U[I — D]U. Thus, |[I — A]|| = (1 — 0(A)) and

II—A" <(1-0o(A4)!
= (1+ max{[{y[}).

Here, |.| means infinity norm of a matrix. Since ||km[I — A]7'é|| < max;{1 +
|Q;|}em, the expected number of agents running in each host is then smaller than
or equal to max;{1 + |Q,;|}km; the proof is thus completed. Q.E.D.

We can furthermore show the following theorems.

Theorem 2 In Algorithm I, the number of agents propagating through any edge is
smaller than or equal to km.

Proof: The proof is accomplished by mathematical induction. Consider the j”* row
in Equation (5),

pi(1)

pit+1)=km+ T+ 0]

i€Q;

Let f(¢) be the average number of agents propagating out from the i host at time
t, we can thus rewrite the above equation as follows:

fit+1) = %m(km—i— > f,-(t)). (6)

Obviously, f;(1) < km for all i = 1,..., N implies fj(t + 1) < km. Since the ini-
tial value of £,(0) is zero, and f,(1) is equal to km/(1 + |Q,]) (which is smaller
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than km). Therefore, by the principle of mathematical induction, the proof is com-
pleted. Q.E.D.

With this result and by definition—f,(r) = p,(t)/(1 + |9,]), it can readily be
shown that p;(¢) < (1 + |Q;|)km and the following Theorem is true.

Theorem 3 In Algorithm I, the expected number of agents jumping in the i host is
smaller than or equal to (|Q;| + 1)km.

Theorem 3 shows that the upper bound of the expected number of agents in a
node depends on the local parameter |();|, which is the size of the neighbor set. If
a node is added to the network, determining value k& does not need to check the
global parameter max;{|();|}. It can be done by simply checking the computational
power of the machine. Another nice outcome is the proof that the number of agents
propagating out a node is smaller than or equal to km. Therefore, simple rules for
controlling the agents flowing in the network, and computing the number of agents
being processed in the network can be obtained.

3.2.  Algorithm 11

In accordance with Algorithm II,

11—«

||

Py (1) =1) = P(jli) = ()
for all / =1,2,..., p,(t). Taking the expectation on both sides of Equation (1)
with the definition of P(§;,(¢) = 1) as in Equation (7), it is readily shown that the
evolution behavior of this ant routing algorithm can be expressed by the following
equation.

Pt +1) = A, p(t) + kmé, (8)

where 4, = (a;;)y,y and a; = (1 — a)/|Q,] if j € Q;, j # i, and zero otherwise.
Similar to that of Algorithm I, we are able to analyze the growth behavior of agents
in the nodes and edges. The first result on the expected number of agents in a host
can be stated by the following theorem.

Theorem 4 If P(5;,(t) =1) = (1 —a)/|Q] forall | = 1,2, ..., p,(t), the expected
number of agents running in the i'* host is smaller than or equal to a~'km.

Proof: Since 4, < (1 —a)l, ie. A— (1 — )l is negatively semidefinite, 1A3(t)
will converge. The limit of p(¢) is expressed by the following relation: lim,_,  p(¢) =
[I — A, 'kme. Observe that [I — A4,]7" < a7'I, it is readily shown that
lim, . p(t) = a~'kmeé, and thus the expected number of agents running in the i
host is smaller than or equal to a~'km. Q.E.D.
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Similarly, let f(¢) be the expected number of agents propagating from the i
node, i.e.

A l—a .,
fi(t) = mpi(f)

we can further obtain the following theorem.

Theorem 5 If P(5;,(t) =1) =1—«a/|Q]| forall | = 1,2, ..., p,(t), the number of
agents propagating from the i'"" node is smaller than or equal to (1 — a)km/(a|Q;]).

Similar to that of Algorithm I, one beauty of these results is that the upper bounds
of the expected number of agents in the node, which is a~'km, is independent of the
global parameter max;{|(;|}. Another nice outcome is the proof that the number
of agent being propagating out a node, is smaller than or equal to km/(a|€;]). It
is also independent of the global parameter max;{|(};|}. Therefore, simple rules for
controlling the agents flowing in the network, and computing the number of agents
being processed in the network, can be obtained. Figure 2 shows the differences

|
|
|
|
|
|
:
¥

(1-aplha)km
alpha Omega

(1-aplha)km
alpha Omega

A
|
|
|
|
|
|
|
|

Figure 2. A schematic diagram showing the agent populations in a node and its adjacent channels:
(a) Algorithm I, and (b) Algorithm II.
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1
2
2 1
3
3 1 4

Figure 3. A simple network with uneven transition delays.

between the results obtained for Algorithm I and for Algorithm II. The solid-line
arrow corresponds to an outgoing channel while the dashed-line arrow corresponds
to an incoming channel. The values shown in the figure are the bound values.

4. Agent population: Asynchronous mode

In the asynchronous mode, we assume that the propagation delay of an agent jump-
ing from one hop to any of its neighbors, is not constant. This might happen when
there are uneven transition delays. To simplify the discussion, we first give a sim-
ple example to show our approach to analysis. An example is shown in Figure 3.
The transition delay between any two neighboring hosts is depicted by the num-
ber labelled on their edge. For notational convenience, the nodes are labelled by
numbers.

Let p,(¢) be the expected number of agents taking over the random variables §;;s

in the i host (i = 1, ..., 4) at the ¢ step, given p,(7), ..., ps(7) for 7 < 1.
. ps(t—1)
t+1)=kr(t)+ ——— 9
pue+ 1) = k(0 + B ©)
R D5 (t p,(t —2
ot 1) = kry(ry 4 220y Pl =) (10)

Q5] +1 Q) +1

NG I X0 N X0
Q[ +1 Q) +1  [Q +1
Pt=2) | p(0)

p,(t +1) = kr(t 12

ps(t+1) =krs(t) +

(11)

Next, let us define ; = (P1> P2» P3» Pa)T, Equations (9) to (12) can be rewritten
as follows:

Pat+1) =T py(t) + Tiap4(t = 1) + Ti3p 4(t = 2) + k7 (1), (13)
where
0 O 0 0
1
T, = 0 ? 15[ +1 ?
0 [0 +1 0 [+ 1
0 O L 0

1041
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— 1 —
0 0 g O
0 0 0 O
T, = 1 )
o 0 0 0
. 0 0 0 0]
0 0 0 0 7
0 0 0
_ [0+
Ts=lo 0 o0 0
1
0 e O 0
Taking the expectation on both sides with respect to the random vectors 7(¢), F(t —
1), ..., F(1), it is readily to obtain the following recursive equation:
Pa(t+1) =T p,(t) + Tiap 4(t = 1) + T3P 4(t = 2) + kme, (14)

for all t > 2. As Tyy, T}, and T;; are all non-negative, it can readily be derived that
1Pt +1) = B4l
< (T + Ty + Ty max {154t = (7 = 1) = B.a(t = (M), I}

Here || p|| is the infinity norm of the vector p. Hence lim,_, ||§A(t +1)-— ;3A(t)|| =

0, indicating the existence of lim,_, ., p ,(¢ + 1). Let this limiting vector be p,, using
Equation (14) it can readily be shown that

thj?o 154t + D) = [lkm[I = T,, — T,, — Tis] 7'
= |[km[I — A]"e]|
< km(max{|Q,[} + 1)e.

Using this approach, we can see that for any finite propagation delay 7, an equa-
tion similar to that of Equation (14) can be written as follows:

Pat+1) =3 Tp,(t — (i — 1)) + kme, (15)
i=1

Z Ty, = A, (16)

i=1

where the matrix 4 = (a;;)y,y is defined in a similar way as in the synchronous
mode, i.e. a; = 1/(|Q;| +1) if j € Q;, j # i and otherwise zero. Thus the following
theorem can be stated for the general case when 7 is any finite integer.

Theorem 6 In Algorithm I in the asynchronous mode, the expected number of agents
running in each host is smaller than or equal to (1 + max,;{|Q;|})km.

Next, we are going to show that for all # > 0, p,(¢) < (1 + |Q,))km and f,(1) <
km. The technique is the same as the one used to prove Theorem 3. Considering
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Equation (15) and by definition that f,(¢) = 1/(1 + |€;|) p;(¢), we can readily obtain
that

fit+1) = _2 %Mﬁi(t —d(i, j)) + kme, (17)
=Y fi(t = d(i, j)) + kmé, (18)

ieq;

where d(i, j) is the propagation delay of an agent moving from the i’ host to
the j” host. Therefore, if f,(t —d) < km holds all time before ¢ + 1 for all i =
1,2,...,N, fi(t+1) < km holds for all j = 1,2, ..., N. By the definition of £,(1),
it is also proved that p;(¢) < (1 + |Q;|)km for all i =1, ..., N. The results can be
stated by the following theorem.

Theorem 7 For Algorithm I in an asynchronous network, the expected number of
agents running in the i™ host is no more than (|| + 1)km, and the number of agents
propagating out the host cannot be larger than km.

Using a similar technique to that for Algorithm II, we can obtain results similar
to that of Theorems 4 and 5 in the asynchronous network. They are given in the
following theorem, whose derivation is almost the same as the proof for Theorem 7.

Theorem 8 For Algorithm Il in an asynchronous network, the expected number of
agents running in the i'* host is no more than a ‘km, and the number of agents
propagating out the host cannot be larger than km/(a|Q;]).

5. Conclusion
This paper has analyzed the agent population growth behavior for agent based
network routing and management algorithms. The theorems proved in this paper

are summarized in Table 1, where the subscripts i and j are dropped for simplicity.

Table 1. Summary of the theorems being proved in this paper

Theorem Algo. Result Mode
1 I p < max{|1+ Q,|tkm Syn.
2 1 f <km Syn.
3 I =<1+ |Q])km Syn.
4 I p<a'lkm Syn.
5 II f <@ -akm/(a)Q,) Syn.
6 I P < max {1+ |Q;|}km Asyn.
7 I f<km Asyn.
I p<(1+19;)km Asyn.
8 1T p<a'km Asyn.
11 f <@ -akm/(a),) Asyn.
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It is found that as long as the network topology is fixed, and the number of agents
being created for each request is finite, the expected number of agents in each host
server, and the number of agents propagating out from any host machine, must
also be finite for networks operated in both synchronous and asynchronous modes.
Furthermore, one might recognize that (by comparing Theorem 7 and Theorem 8)
once a < (1+]Q,)~", the values of p, and f, using Algorithm I will be smaller than
that of using Algorithm II. On the contrary, if @ > (1 + |Q;|)~!, the situation will
be reversed, as illustrated in Figure 4.

In case if more information about the quality of the paths being searched, and the
value of a could be obtained, it should be possible to compare the performance of
Algorithm I and Algorithm II quantitatively. In the meantime, the theorems proved

Omega = 16

' alpha '
(@

Omega = 16

100

80

60f

40f

20f.

' alpha '
(b)

Figure 4. Comparison of the values of (a) p, and (b) f for Algorithm I and Algorithm II, respectively.
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in this paper simply provide some guidelines for the design of an agent based net-
work routing and management system, particularly when the computational power
of the host servers or the network channel capacity is limited, and unable to handle
the large amount of processing requests due to the large volume of mobile agents
propagating in the network.

Notes

1. For multi-cast, the idea is essentially the same.
2. In White-Pagurek-Oppacher algorithm, if an explorer agent cannot reach the destination node within
a predefined number of moves, the agent will die automatically.
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