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Abstract

This paper focuses on behavior analysis on mobile agents used in network routing. We describe a general agent-based routing

model and classify it into two cases based on the reaction of mobile agents to a system failure, namely mobile agents with weak

reaction capability (MWRC) and mobile agents with strong reaction capability (MSRC). For each case, we analyze the

probability of success (the probability that an agent can find the destination) and the population distribution (the number of

mobile agents) of mobile agents. The probability of success serves as an important measure for monitoring network

performance, and the analysis of population distribution provides a useful tool for reducing the computational resource

consumption. Our analysis reveals theoretical insights into the statistical behaviors of mobile agents and provides useful tools for

effectively managing mobile agents in large networks.

# 2005 Elsevier B.V. All rights reserved.

Keywords: Mobile agents; Routing; Probability of success; Population distribution

www.elsevier.com/locate/asoc

Applied Soft Computing 6 (2005) 108–118
1. Introduction

Mobile agent, a relatively new paradigm for network

software development, has become an accessible

technology in recent years. The potential benefits of

this technology, including the reduction of network

bandwidth consumption and latency, have drawn a great

deal of attention in both academia and industry

[3,11,19,20]. A mobile agent is a program that acts

on behalf of a user to perform intelligent decision-
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making tasks. It is capable of migrating autonomously

from node to node in an information network.

In recent years, many intelligent mobile agent-

based network management techniques have been

proposed and implemented [1,6,10,14]. When a

mobile agent is encapsulated with a task, it can be

dispatched to a remote node. Once the agent has

completed its tasks, the summary report for its trip is

sent back to the source node. Since there are very few

communications between the agent and the source

node during the process of searching, the network

traffic generated by mobile agents is very light. So,

mobile agent is an effective way for improving

network performance.
.
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Network routing is an important issue for network

performance. Advanced research in mobile agent has

brought in some new methods for network routing

[5,15]. Ant routing algorithm is a recently proposed

routing algorithm for use in large dynamic networks

[7,13,17,21]. The idea is similar to the shortest path

searching process of ants. For an agent-based network,

agents can be generated from every node in the

network, and each node in the network provides

mobile agents an execution environment. A node that

generates mobile agents is called the server of these

agents. Once a request for sending a packet is received

from a server, the server will generate a number of

mobile agents. These agents will then move out from

the server to search for the destination. Once a mobile

agent finds the destination, the information will be sent

back to the server along the same path. When all (or

some of) the mobile agents come back, the server will

determine the optimal path and send the packet to the

destination along the optimal path. At the same time,

the server will update its routing table.

Since mobile agents will be generated frequently in

the network, there will be many agents running in the

network. On one hand, if there are too many mobile

agents running in the network, they will consume too

much computational resource, which will affect the

network performance due to the limited network

resource and ultimately block the entire network; on

the other hand, if the number of generated agents per

request is too small, we cannot get a high probability

of success. Therefore, analysis on mobile agents is

necessary and important for network management.

Unfortunately, few works have been done on this

aspect.

In [18], an ant routing model was proposed and the

number of mobile agents was estimated under the

assumption that nodes in the network will not fail.

Thus, it can be viewed as a special case of the model in

this paper. In [16], a smaller upper bound of the

number of mobile agents was provided based on the

same model in [18], and for the first time the

probability of success was considered. In this paper,

we describe a general mobile agent-based routing

model and classify it into two cases based on the

reaction capability of mobile agents to a system

failure. For each case, we analyze both the probability

of success and the population distribution of mobile

agents. Our contributions are summarized as follows:
� A
 general agent-based routing model is described and

is classified into two cases based on the reaction of

mobile agents toasystemfailure:MWRCandMSRC.
� T
he probability of success is analyzed for each case,

which serves as an important measure for monitor-

ing network performance.
� A
nalysis on population distribution of mobile

agents is presented for both cases, providing a

useful tool to reduce the computational resource

consumption by adjusting the number of agents to

be generated at individual nodes and the life span of

these mobile agents.

In any mobile agent-based routing models, mobile

agents must be generated and dispatched to the net-

work frequently. Although a large number of agents

generated per request would bring a high success p-

robability, an excessive number of agents will cons-

ume too much computational resources due to per-

agent overhead. Our results provide a guideline for

choosing a suitable propagating rate to benefit both the

probability of success and the network performance

(illustrated by the population distribution). The results

are extremely useful when the computational power of

the host servers is limited, which is unable to handle

large amount of processing requests and/or the net-

work channel capacity is limited for large volume of

mobile agents propagating in the network.

The rest of this paper is organized as follows: Section

2 discusses related work; Section 3 describes our

model; Section 4 introduces the notations used in this

paper and presents the analytical results for mobile

agents, including the probability of success and the

population of agents; Section 5 concludes the paper.
2. Related work

A mobile agent is an autonomous object that

possesses the ability for migrating autonomously from

node to node in a computer network. Usually, the main

task of a mobile agent is determined by specified

applications of users, which can range from E-

shopping and distributed computation to real-time

device control. In recent years, a number of research

institutions and industrial entities have been engaged

in the development of elaborating supporting systems

for this technology [11,23]. In [11], several merits for
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mobile agents are described, including network load

and latency reduction, protocol encapsulation, adap-

tion, heterogeneity, robustness and fault-tolerance.

Successful examples using mobile agents can be found

in [10,12].

Network routing is a problem in network manage-

ment. Ant routing is a recently proposed mobile agent

based network routing algorithm for use in these

environments [21,22]. The continuing investigation

and research of naturally occurring social systems

offer the prospect of creating artificial systems that are

controlled by emergent behavior and promise to

generate engineering solutions to distributed systems

management problems such as those in communica-

tion networks [5,17].

Real ants are able to find the shortest path from a

food source to the nest without using visual cues.

Also, they can adapt to changes in the environment,

for example, finding a new shortest path once the old

one is no longer feasible due to a new obstacle [2,9]. In

the ant routing algorithm described in [7,18], artificial

ants are agents which concurrently explore the

network from node to node and exchange collected

information when they meet each other. They

irrespectively choose the node to move by using a

probabilistic function which was proposed here to be

a function of the connecting situation of each node.

Artificial ants probabilistically prefer nodes that are

connected immediately. Initially, a number of

artificial ants are placed on randomly selected nodes.

At each time step, they move to new nodes and select

useful information. When an ant has completed its

task, it will send a message back to the server.

In [4], Brewington et al. formulated a method of

mobile agent planning, which is analogous to the

traveling salesman problem [8] to decide the sequence

of nodes to be visited by minimizing the total

execution time until the destination is found. In the

preliminary work of this paper [16], both the

population distribution of mobile agents and the

probability of success are analyzed. The model can be

seen as a special case of the one in this paper.
3. Mobile agent-based routing model

Once a request is received by a server, the server

generates a number of mobile agents. These agents
will then move out from the server searching for the

destination. Once an agent finds the destination, it will

traverse back to the server following the searched path

and leave marks on the nodes along the path. When a

certain number of agents have come back (others may

have dead, or are still in the searching process), the

server will evaluate the costs of those collected paths

and pick up the optimal one. The main idea of our

algorithm is as follows:
1. I
n a network with n nodes, agents can be generated

from every node in the network. Each node in the

network provides to mobile agents an execution

environment.
2. I
nitially, there are piles of requests for sending

packets in the network. Then, a number of mobile

agents are generated for each request.
3. A
t any time t, the expected number of requests

received from one node is m. Once a request

arrives, k agents are created and dispatched into the

network.
4. T
hose agents traverse the network from the server

to search for the destination. Once an agent reaches

a node, it will check whether the node is its

destination or not. If so, the agent will turn back to

the server with information of the searched path.

Otherwise, it will select a neighboring node to

move on.
5. T
he server will compare all the path collected and

pick up the optimal path. Then, the packet is sent

out to the destination along the optimal path. At the

same time, the server updates its routing table.
6. T
o avoid the user from waiting for a too long time,

an agent will die if it cannot find its destination

within a given time bound, which is called the

agent’s life-span limit in this paper.
4. Mathematical analysis

Since any component of the network (machine, link

or agent) may fail at any time, we classify mobile

agents into two kinds based on their reaction to a

failure: weak and strong. A mobile agent with weak

reaction capacity (MWRC) will die if it subjects to a

failure, while one with strong reaction capacity

(MSRC) will go back to the previous node, reselect

another node, and go on its trip. In this section, we
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Fig. 1. An example of a small network.

1 For point-to-multiple-point requests, the idea is intrinsic same.
analyze both the probability of success and the

population distribution for each case, respectively.

Suppose that the network topology we used in this

paper is a connected graph so that there is at least one

path (directly or indirectly) between any two nodes.

Matrix F = (wij)n�n is the connectivity matrix which

describes the connectivity of the graph, i.e., if there is a

direct link between node i and node j, then wij = wji = 1;

otherwise, wij = 0. Let wj be the j-th column vector

of matrix F: F ¼ ð’1;’2; . . . ;’nÞ: c j ¼ jj’ jjj1 ¼Pn
i¼1 j’i j j; s1 ¼ max1� j�n c j; sn ¼ min1� j�n c j:

C = diag(c1, c2, . . ., cn) is a diagonal matrix. It is easy to

see that cj is the number of neighboring nodes of the j-th

node including itself, and jjFjj1 ¼ max1� j�n

jj’ jjj1 ¼ s1. For example, suppose that the graphical

structure of a network is shown in Fig. 1. Accordingly,

n = 5, s1 = 4, s5 = 1, matrix F and matrix C can be

given as follows:

F ¼

0 1 1 0 0

1 0 1 0 0

1 1 0 1 1

0 0 1 0 0

0 0 1 0 0

2
6666664

3
7777775
; C ¼

2 0 0 0 0

0 2 0 0 0

0 0 4 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
:

4.1. The probability of success for MWRC

For a network with n nodes (i.e., n1, n2, . . ., nn),

every node can be the destination of a request, and

each node has an independent error rate. Let Xi be a

binary valued variable defined as follows:

Xi ¼
1; agent dies in the i-th node due to a failure;
0; otherwise;

�

with a probability P{Xi = 1} = p. Then, the parameter
p measures the incidence of failure in the network. We

say a node is down if it is out of work; otherwise, it is

up. Once a point-to-point request1 is made, a number

of agents are generated and dispatched into the net-

work. Once an agent reaches an up node, it will find its

destination locally with a probability 1/n. If the agent

cannot find its destination here, it will select a neigh-

boring node and move on. Assume that the probability

of jumping to any neighboring nodes or die in the

current node is same. Regarding to the probability that

an agent can find the destination in d jumps, we have

the following theorem.

Theorem 1. The probability, P*(n, d, p, k), that at

least one agent among the k agents can find the

destination in d jumps satisfies the following equality:

P�ðn; d; p; kÞ ¼ 1 	 1 	 að1 	 tdÞ
1 	 t

	 
k

; (1)

where a = (1 	 p)/n, b = E[1/ci], and t = (1 	 a)
(1 	 b).

Proof. Denote the sequence number of node that the

agent entered at i-th jump by Ji and the probability that

an agent can find its destination at the i-th jump by

P(i). The probability that an agent can find its destina-

tion at the first jump is P(1) = (1 	 p)/n and the

probability that it cannot find the destination is

1 	 (1 	 p)/n. If the agent cannot find its destination,

the probability that it can jump out and search on is

½1 	 ð1 	 pÞ=n� b ðcJ1
	 1Þ=cJ1

c , and the probability

that it can find its destination at the second jump is

Pð2Þ ¼ ð1 	 pÞ=n½ � 1 	 ð1 	 pÞ=n½ � b ðcJ1
	 1Þ=cJ1

c ,

and the probability it cannot find the destination at the

second jump is ½1 	 ð1 	 pÞ=n�2½ðcJ1
	 1Þ=cJ1

�. If the

agent cannot find its destination at the second jump,

the probability that it takes the third jump is ½1 	 ð1 	
pÞ=n�2 b ðcJ1

	 1Þ=cJ1
c b ðcJ2

	 1Þ=cJ2
c and Pð3Þ ¼

½ð1 	 pÞ =n�½1 	 ð1 	 p Þ= n �2 ½ðcJ1
	 1Þ=cJ1

�½ðcJ2
	

1Þ=cJ2
�. Similarly, the probability that an agent can find

its destination node at the i-th jump is:

PðiÞ ¼ 1 	 p

n
1 	 1 	 p

n

� �d	1Yd	1

i¼1

cJi
	 1

cJi

:
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Assume that the number of neighboring nodes of

each node in the network is independent with each

other with the same distribution, then take expectation

on both side of the above equation, and denote (1 	 p)/

n by a, we have:

P
_ðiÞ ¼ að1 	 aÞi	1

Yi	1

j¼1

1 	 E
1

cJi

� �	 


¼ að1 	 aÞi	1 1 	 E
1

cJi

� �	 
i	1

:

Denote Eð1=cJiÞ by b and (1 	 a)(1 	 b) by t, we

have:

P
_ðiÞ ¼ ati	1:

So, the probability, P*(n, d, p, k), that at least one

agent among k agents can find the destination node in

d jumps satisfies the following:

P�ðn; d; p; kÞ ¼
Xk

s¼1

Cs
k

Xd

i¼1

PðiÞ
" #s

1 	
Xd

i¼1

PðiÞ
" #k	s

¼ 1 	 1 	
Xd

i¼1

PðiÞ
" #k

:

Due toXd

i¼1

PðiÞ ¼
Xd

i¼1

ati	1 ¼ a
1 	 td

1 	 t
;

we have:

P�ðn; d; p; kÞ ¼ 1 	 1 	 að1 	 tdÞ
1 	 t

	 
k

:

Hence, the theorem is proven.

The value of b is depended on the probability

distribution of ci. For example, if ci(1 � i � n) are

independent and satisfy the uniform distribution, we

have:

b ¼ E
1

ci

	 

¼
Z n

1

1

ci

dci

n 	 1

� �
¼ ln n

n 	 1
:

From Theorem 1, it is easy to estimate P*(n, d, p, k)

as follows.
Corollary 1. The probability P*(n, d, p, k) satisfies the

following inequalities:

1 	 1 	 a

1 þ asn 	 a

� �k

� lim
d !1

P�ðn; d; p; kÞ

� 1 	 1 	 a

1 þ as1 	 a

� �k

;

where a = (1 	 p)/n, s1 and sn are the maximum and
minimum number of ci.

Proof. Since

PðdÞ ¼ að1 	 aÞd	1
Yd	1

i¼1

cJi
	 1

cJi

� að1 	 aÞd	1
Yd	1

i¼1

s1 	 1

s1

¼ að1 	 aÞd	1 s1 	 1

s1

� �d	1

;

we have:
Xd

t¼1

PðtÞ �
Xd

t¼1

að1 	 aÞt	1 s1 	 1

s1

� �t	1

� a
1

1 	 ð1 	 aÞ 1 	 1
si

� � ¼ as1

1 þ as1 	 a
:

Therefore,
P�ðn; d; p; kÞ ¼ 1 	 1 	
Xd

t¼1

PðtÞ
" #k

� 1 	 1 	 a

1 þ as1 	 a

� �k

:

Similarly, the second inequality can be proved.
The probability that an agent can find its

destination is decided by the connectivity of network

and parameters k and d, which coincides with

practice. From the theorem above, we can easily

get that the probability that none of those k agents can

find the destination is less than [(1 	 a)/

(1 + as1 	 a)]k and the probability that all the k

agents can find the destination is less than [(as1)/

(1 + as1 	 a)]k (Fig. 2).
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Fig. 2. The change of P*(n, d, p, k) over d where ci satisfies uniform

distribution. It is easy to see that P*(n, d, p, k) is an increasing

function on d with a loose upper bound 1. When p 6¼ 0, P*(n, d, p, k)

will not reach 1 no matter how long time the agent can search. The

reason is that there is a possibility that the agent will die before it

finds its destination. From the figure, it also can be seen that P*(n, d,

p, k) is an increasing function on k and a decreasing function on p.
4.2. The probability of success for MSRC

Since for MSRC an agent will not die if it has not

reached its destination within its life span, the

probability of success for MSRC equals to r/n, where

r is the number of nodes that the agent has entered and

checked. Denote the i-th node that an agent enters by

hi, the number of neighboring nodes of the i-th node ci,

and the number of neighboring nodes that the agent

has selected by vi (i.e., the agent fails to enter the first

vi 	 1 nodes and can only enter the vi-th selected

node). Regarding the average number of nodes

selected, we have the following result.

Lemma 1. The average number of neighboring nodes

selected by an agent at each node equals to:

EðviÞ ¼
1 	 E½ pci �

1 	 p
	 E½ci pci �:
Proof. The probability that an agent can enter the first

selected node, h1
i , in NB(i), equals to 1 	 p, and the

probability that the agent can enter the second selected

node equals to p(1 	 p). By recursion, the probability

that the agent enters the vi-th node equals
pvi	1ð1 	 pÞ. Therefore, the average number of nodes

the agent selected in NB(i) satisfies:

EðvijNBðiÞÞ ¼
Xci

vi¼1

vi pvi	1ð1 	 pÞ

¼ 1 	 p

p

ci pciþ2 	 ðci þ 1Þ pciþ1 þ p

ð1 	 pÞ2

¼ 1 	 pci

1 	 p
	 ci pci :

Thus, the average number of nodes the agent
selected at each node during the agent’s trip satisfies:

EðviÞ ¼ E½EðvijNBðiÞÞ� ¼ 1 	 E½ pci �
1 	 p

	 E½ci pci �:

Hence, the lemma is proven.
Regarding the estimation of r, we have the

following result.

Lemma 2. Let r be the number of nodes that the agent

visits, then the average number of nodes that an agent

enters satisfies:

EðrÞ ¼ b d

2EðviÞ 	 1
c ;

where bxc indicates the greatest integer less than or
equal to x (i.e., x 	 1 < bxc � x).

Proof. Denote the j-th selected node from the neigh-

boring nodes of node hi by h
j
i , the path the agent

traverse from hi to hi+1 can be expressed as

hi; h1
i ; hi; h2

i ; . . . ; hi; hvi
i . The vi-th selected node is

the node hi+1. Inside this process, there are 2ðvi 	 1Þ þ
1 jumps the agent takes. Since an agent will die if it

cannot find its destination in d jumps, we have:

r ¼ max l :
Xl

i¼1

ð2vi 	 1Þ � d

( )
:

Taking expectation on the inequality, we have:
d �E
Xl

i¼1

ð2vi 	 1Þ
" #

¼ EðlÞ 2EðviÞ 	 1½ �;

since l and vi are independent to each other, and the
distributions of vi are same for 1 � i � l. Let

r = {max}{l}, then the lemma is proven.
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Fig. 3. The change of P*(n, d, p, k) over d where ci satisfies uniform

distribution. From the figure, it can be seen that P*(n, d, p, k) is an

increasing function on k and a decreasing function on p.

Table 1

The comparison of the probability of success between MWRC and

MSRC

k

1 2 5 10

n = 6000, p = 0.001

d = 500

MWRC 0.0571 0.1110 0.2548 0.4447

MSRC 0.0832 0.1594 0.3522 0.5803

d = 1000

MWRC 0.0826 0.1583 0.3501 0.5776

MSRC 0.1663 0.3050 0.5973 0.8378

n = 10000, p = 0.001

d = 500

MWRC 0.0391 0.0767 0.1809 0.3292

MSRC 0.0499 0.0973 0.2258 0.4006

d = 1000

MWRC 0.0626 0.1213 0.2763 0.4762

MSRC 0.0998 0.1896 0.4089 0.6505
From Lemmas 1 and 2, it is readily to get the

following theorem (Fig. 3).

Theorem 2. The probability, P*(n, d, p, k), that at

least one agent among k agents can find the destina-

tion in d jumps equals to 1 	 [1 	 E(r)/n]k, where

EðrÞ ¼ d=ð2EðviÞ 	 1ÞÞ and EðviÞ ¼ E EðvijNBðiÞÞ½ �
¼ b 1 	 E b pci cð Þ=ð1 	 pÞ c 	 E b ci pci c :

Table 1 compares the probability of success P*(n, d,

p, k) between MWRC and MSRC with different n, d,

and k. Since a node failure is a rare event, we set

p = 0.001 in this simulation. From the table, it can be

seen that P*(n, d, p, k) for MSRC is greater than that

for MWRC with the same parameters n, d, p, and k.

4.3. The population distribution of mobile agents

for MWRC

Firstly, we consider the situation that the agents run

in the network with infinite life span. Assume that at

time t 	 1, there are pi(t 	 1) agents in the i-th node,

these agents search for the destination locally, and the

expected number of agents that cannot find the

destination is equal to (1 	 1/n)pi(t 	 1), and the

expected number of mobile agents that move from the

i-th node to the j-th node is equal to (1 	 1/n)((1 	 p)/

ci)pi(t 	 1). The total number of agents that move to

the j-th node at time t is
P

i2NBð jÞð1 	 1=nÞ
ðð1 	 pÞ=ciÞ piðt 	 1Þ, where NB( j) denotes the set

of the neighboring nodes of the j-th node. Consider

new generated agents in the j-th node at time t, we

have the following equation:

p jðtÞ¼km 	V jðtÞ þ
X

i2NBð jÞ
1	 1

n

� �
1 	 p

ci
piðt 	 1Þ;

where m is the average number of requests initiated at
time t at a node, k the number of agents generated per

request, and Vj(t) indicates the number of mobile

agents on the j-th node at time t that are generated

at time t 	 d. We eliminate the number of these agents

from pj(t) because these agents will die at time t.

Let A = (1 	 p)(1 	 1/n)(F 	 I)C	1 = (a1, a2, . . .,
an) be a n � n matrix, where aj is the j-th column vector

of A. Obviously, we have jjajjj1 = (1 	 p)(1 	 1/

n)(cj 	 1)/cj. Let p
*ðtÞ ¼ ð p1ðtÞ; p2ðtÞ; . . . ; pnðtÞÞT,

and e
* ¼ ð1; 1; . . . ; 1ÞT. At any time, the distribution

of newly generated mobile agents is kme
*

based on the

assumption that the average number of requests

received by a node is m. After searching d nodes, the

distribution of survival agents among these agents is

Adkme
*

. Therefore, we have V
*ðtÞ ¼ ðV1ðtÞ; . . . ;

VnðtÞÞT ¼ Adkme
*

. Thus, the population distribution

of mobile agents can be expressed in vector–matrix

format as follows:

p
*ðtÞ ¼ A p

*ðt 	 1Þ þ kme
* 	 Adkme

*
: (2)
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Regarding to the population distribution of mobile
agents with limited life span, we have the following

theorem based on the above analysis.

Theorem 3. The distribution of mobile agents can be

expressed as follows:

p
*ðtÞ ¼

0; t ¼ 0;Xt	1

i¼0

Ai	1kme
*
; 0< t � d;

Xd	1

i¼0

Ai	1kme
*
; t> d:

8>>>>>>><
>>>>>>>:
Proof. If the distribution of mobile agents generated

at time 0 is p
*ð0Þ, then after time t, the distribution of

the agents is Ad p
*ð0Þ. Thus, according to the assump-

tion that an agent will die if it cannot find the destina-

tion in d steps, we have:
(1) W
hen t � d,

p
*
ðtÞ ¼ kme

*
þ A p

*
ðt 	 1Þ

¼ kme
* þ Aðkme

* þ A p
*ðt 	 2ÞÞ

¼ ðI þ AÞkme
* þ A2 p

*ðt 	 2Þ ¼ � � �

¼ ðI þ A þ � � � þ At	1Þkme
*

þ At p
*
ð0Þ:

Since the initial population of mobile agents

p
*ð0Þ ¼ 0, the result for t � d is proven.
(2) W
hen t > d, then at time t, all the survival agents

generated at time t 	 d will die, so the distribution

of agents under this case can be illustrated as:

p
*ðtÞ ¼ kme

* þ A p
*ðt 	 1Þ 	 Adkme

*

¼
Xt	d	1

i¼0

Aikme
*

þ At	d p
*
ðdÞ

	 Ad
Xt	d	1

i¼0

Aikme
*

¼
Xt	d	1

i¼0

Aikme
*

þ At	d
Xd	1

i¼0

Aikme
*

þ Ad p
*
ð0Þ

" #

	 Ad
Xt	d	1

i¼0

Aikme
* ¼

Xd	1

i¼0

Aikme
*
:

Hence, the theorem is proven.
From the theorem above, we can easily see that the

distribution of mobile agents will not exceedPd	1
i¼o Aikme

*
, that is, the number of mobile agents

in our model will not increase infinitely.

Since mobile agents are generated frequently and

dispatched to the network, it is important to estimate

the maximum number of mobile agents running in the

network and in each node. When there are too many

agents in the network, they will introduce too much

computational overhead to node machines, which will

eventually become very busy and indirectly block the

network traffic.

Regarding to the number of agents running in the

network, we have the following theorem.

Theorem 4. The number of agents running in the

network can be estimated as follows:

Xn

j¼1

p jðtÞ �
n2s1km

n þ s1 	 1
:

Proof. By the definition of matrix 1-norm, we have:Xn

j¼1

p jðtÞ ¼ jj p
*ðtÞjj1 � jjkme

*jj1 �
Xd	1

i¼0

Ai

�����
�����

1

� nkm
Xd	1

i¼0

ðjjAjj1Þ
i � nkm

1 	 jjAjj1
:

Due to jjAjj1 = (1 	 p)(1 	 1/n)[(s1 	 1)/s1], it is
easy to prove that

jj p*ðtÞjj1 � nkm

1 	 ð1 	 pÞð1 	 1=nÞð1 	 1=s1Þ

¼ n2s1km

pns1 þ ð1 	 pÞðn þ s1 	 1Þ :

Since ns1 � n + s1 	 1, the theorem is proven.
Regarding to the number of agents running in a

node, we have the following theorem.

Theorem 5. The number of agents running in the j-th

node can be estimated as follows:

p jðtÞ � km þ nc jkm

ðn p þ 1 	 pÞsn
ð1 	 atÞ

� km þ nc jkm

ðn p þ 1 	 pÞsn
;

where a = (1 	 1/n)(1 	 p).
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Proof. The theorem can be proved by induction.

First, for t = 0, it is easy to see that the theorem

is hold. Assume that for any t, the theorem is hold,
p
*ðtÞ ¼

0; t ¼ 0;

kme
*
; t ¼ 1;

A p
*
ðt 	 1Þ þ p � p

*
ðt 	 2Þ þ kme

*
; 2 � t � d;

A p
*
ðt 	 1Þ þ p � p

*
ðt 	 2Þ þ kme

*
	 Adkme

*
; t � d:

8>><
>>: (5)
that is,

p jðtÞ � km þ nc jkm

ðn p þ 1 	 pÞsn
ð1 	 atÞ

� km þ c jkm

sn
km
Xt	1

l¼1

al;

then for t + 1, we have:
p jðt þ 1Þ ¼ km þ
X

i2NBð jÞ
1 	 1

n

� �
1 	 p

ci
piðt 	 1Þ

¼ km þ a
X

i2NBð jÞ

piðt 	 1Þ
ci

� km þ a
X

i2NBð jÞ

km

ci
þ km

sn
�
Xt	1

l¼1

al

 !

� km þ c jkm

sn

Xt

l¼1

al

� km þ nc jkm

ðn p þ 1 	 pÞsn
ð1 	 atþ1Þ

� km þ nc jkm

ðn p þ 1 	 pÞsn
:

Hence, the theorem is proven.
From the above analytical results, we can claim that

both the number of mobile agents in the network and the

number of mobile agents on each node will not increase

infinitely over time t. The upper bounds of these two

numbers can be controlled by tuning the number of

mobile agents generated per request.

4.4. The population distribution of mobile agents for

MSRC

For MSRC, a mobile agent will not die when it

moves to a failing node. It will return back to the

previous node and reselect another neighboring node
to move. Thus, similar to the analysis for MWRC, the

population distribution of mobile agents can be

expressed as follows.
From Eq. (5), we can estimate the number of

mobile agents running in the network as follows.

Theorem 6. The total number of mobile agents run-

ning in the network is no more than (n2s1km)/

[(n + s1 	 1)(1 	 p)].

Proof. By the definition of vector norm, the total

number of mobile agents running in the network

can be expressed as
Pn

j¼1 p jðtÞ ¼ jj p
*ðtÞjj1. There-

fore, from Eq. (5), it is easy to see that

jj p
*ðtÞjj1 � jjAjj1jj p

*ðt 	 1Þjj1 þ pjj p
*ðt 	 2Þ

jj1 þ jjkme
*jj1;

since all the parameters aji, k, m are positive. For t = 0
and t = 1, we have:

jj p
*
ð0Þjj1 ¼ 0

jj p
*ð0Þjj1 ¼ nkm

)
� n2s1km

ðn þ s1 	 1Þð1 	 pÞ :

If the theorem holds for t 	 1 and t 	 2, then for t,
we have:

jj p
*ðtÞjj1 � ð1 	 pÞ 1 	 1

n

� �
1 	 1

s1

� �
þ p

	 


� n2s1km

ðn þ s1 	 1Þð1 	 pÞ þ nkm

¼ n2s1km

ðn þ s1 	 1Þð1 	 pÞ ;

where jjAjj1 = (1 	 p)(1 	 1/n)(s1 	 1)/s1. Hence,
the theorem is proven.

Regarding to the maximum number of mobile

agents running on a node, we have the following

theorem.

Theorem 7. The number of mobile agents running on

a node is no more than (ncjkm)/[(1 	 p)sn].
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Proof. From Eq. (5), we know that when t � d,

p jðtÞ ¼ km þ p � p jðt 	 2Þ

þ
X

i2NBð jÞ
1 	 1

n

� �
1 	 p

ci
� piðt 	 1Þ:

Define f i(t) = (1 	 1/n)b(1 	 p)/cjcpj(t) and substi-
tute it in the above function, we have:

f jðtÞ ¼ 1 	 1

n

� �
1 	 p

c j
� km þ p � f jðt 	 2Þ

þ 1 	 1

n

� �
1 	 p

c j

X
i2NBð jÞ

fiðt 	 1Þ:

By induction, we can prove that
f jðtÞ �
n 	 1

sn
km:

Therefore, it can be easily proved that for all
0 � t � d,

p jðtÞ �
n	1
sn

km

1 	 1
n

� � 1	 p
c j

¼ nc jkm

snð1 	 pÞ :

When t � d, since
p
*ðtÞ ¼ A p

*ðt 	 1Þ þ p � p
*ðt 	 2Þ þ kme

* 	 Adkme
*
;

we have,
p jðtÞ � km þ p � p jðt 	 2Þ

þ
X

i2NBð jÞ
1 	 1

n

� �
1 	 p

ci
� piðt 	 1Þ:

Similar to the analysis for 0 � t � d, the upper
bound pj(t) � (ncjkm)/[(1 	 p)sn] also holds. Hence,

the theorem is proven.

It is easy to see that both the total number of mobile

agents running in the network and the number of

mobile agents running on a node are greater than that

for MWRC. The reason is because mobile agents in

MWRC case have a higher death rate than in MSRC

case. It also can be seen that the number of mobile

agents can be justified by tuning the number of mobile

agents generated per request.
5. Concluding remarks

In this paper, we addressed the problem of network

routing and management by deploying mobile agents.
We analyzed the probability of success and the

population growth of mobile agents under our agent-

based routing model. For mobile agents with weak

reaction capability (MWRC), we obtained the

following analytical results: (1) The probability of

success, P*(n, d, p, k), that at least one agent among k

agents can find the destination in d jumps equals to

1 	 [1 	 a(1 	 cd)/1 	 c]k, where a = (1 	 p)/n, b =

E[1/ci], c = (1 	 a)(1 	 b), d is the maximum number

of jumps an agent can make, k is the number of agents

generated per request, p is the probability that a node

may fail, n is the number of nodes in the network, and

ci is the connectivity of the i-th node. (2) The total

number of agents running in the network is less than

(n2s1km)/(n + s1 	 1), where s1 = max1�j�n cj, and m

is the average number of requests keyed in one node

once. (3) The number of mobile agents running in

each node, pj(t), is less then km + [(ncjkm)/((np +

1 	 p)sn)]. For mobile agents with strong reaction

capability (MSRC), we obtained the following

analytical results. (1) P*(n, d, p, k) = 1 	 [1 	 E(r)/

n]k, where EðrÞ ¼ d=ð2EðviÞ 	 1ÞÞ and vi is the

number of selected nodes i-th node an agent selected.

(2)
Pn

j¼1 p jðtÞ � ðn2s1kmÞ=½ðn þ s1 	 1Þð1 	 pÞ�.
(3) pj(t) � pj(t) � (ncjkm)/[(1 	 p)sn], where sn =

max1�j�n cj.

We can see that the probability of success P*(n, d, p,

k) is a monotonically increasing function on k and d, and

a monotonically decreasing function on p and n; while

the number of agents is a monotonically increasing

function on k, n, d and a monotonically decreasing

function on p. For the same p, routing in a smaller

network may get a greater probability of success. For a

network with a lot of nodes, this probability can be

enlarged by increasing k and/or d. {We can also see that

for the same k and p, both the probability of success and

the number of agents for MWRC are less than those for

MSRC.} Based on these results, we can dispatch a small

number of mobile agents and achieve a good probability

of success by selecting an optimal number of mobile

agents generated per request and giving them an

optimal life-span limit.
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