
On a multiple nodes fault tolerant training for RBF: Objective
function, sensitivity analysis and relation to generalization

John SUM
Department of Information Management, Chung Shan Medical University

Taichung, 402, Taiwan, ROC.

Abstract

Over a decades, although various techniques have
been proposed to improve the training of a neural
network to against node fault, there is still a lacking
of (i) a simple objective function to formalize multi-
ple nodes fault and not much work has been done on
understanding of the relation between fault tolerant
and generalization. In this paper, an objective func-
tion based on the idea of Kullback-Leibler divergence
is presented for multiple nodes fault tolerant training.
It is essentially the same as a summation of mean
square errors plus a regularizer. A simple training al-
gorithm for attaining fault tolerant neural network is
presented accordingly and its gracefully performance
degradation is shown by simulation results. Besides,
the sensitivity of the training algorithm against node
fault rate is analyzed and its insensitivity is demon-
strated by simulation results. Finally, a discussion on
fault tolerant and generalization is presented and the
incapability of using regularizers for improving gen-
eralization to achieve optimal fault tolerant is com-
mented.

1 Introduction

Obtaining a neural network to tolerate random node
fault is of paramount important. It is because node
fault is an unavoidable factor while a neural net-
work is implemented [12], either by analog or digi-
tal components. Thus could lead to a drastic per-
formance degradation even when a neural network
has been well trained. In view of the importance of
making a neural network being fault tolerant, many
researchers have developed various robust learning al-
gorithm throughout the last decade in order to attain
a fault tolerant neural network against random node
fault [3, 8].

One approach to robust learning is based on adding
heuristic in the training algorithm in order to force
the internal representation ability of a neural net-
work distributed widely within the hidden nodes or
weights. So that, no single node or single weight

is particularly important. A random removal of a
node or a weight will only gracefully degrade the per-
formance of the network. For this approach, inject-
ing random node fault [17, 1] together with random
node deletion and addition [5] during training is one
technique. Adding network redundancy by replicat-
ing multiple hidden layers after a neural network has
been well trained [7, 14] is another one. One more
technique is to limit the weight magnitude to small
value so that no single weight is extra sensitive within
the network. Adding weight decay regularizer [5] and
hard bound the weight magnitude during training [2]
are two examples. In accordance with simulation
results, all these heuristic techniques have demon-
strated that the network is able to tolerate against
random node fault, either single node fault or multi-
ple nodes fault. As these techniques are heuristics, it
is not clear theoretically about the underlying objec-
tive function that they are going to achieve. In sequel,
analysis and comparison on the similarities and dif-
ferences between one technique to another can hardly
be accomplished except by extensive simulations.

Another approach is to formulate the learning di-
rectly as a constraint optimization problem. Neti et
al [13] defined the problem as a minimax problem in
which the objective function to be minimized is max-
imum of the mean square errors over all fault models.
Similarly, Deodhare et al [6] formulated the problem
by defining the objective function to be minimized as
the maximum square error over all fault models and
all training samples. As solving these minmax prob-
lem is complex, Simon & El-Sherief [18] and Phatak &
Tcherner in [16] formulated the learning problem as
an unconstraint optimization problem in which the
objective function consists of two terms. The first
term is the mean square errors of the fault-free model
while the second term is the ensemble average of the
mean square errors over all fault models. One limita-
tion of these formulations is that the problem being
formulated can be very complicated when the number
of fault models is large. Extend their formulations to
handling multiple nodes fault will become impracti-
cal.

Although improving the fault tolerance of a neural
network has been researching for more than a decade,
research on the relation between fault tolerance and
generalization is scares. Only Phatak [15] did explain
why adding redundancy can improve node fault tol-
erant from the VC dimension point of view. Except
that, no other work has been done along the line.
As one can realize that regularization technique like
weight decay can be applied to improve both fault
tolerance [5] and generalization [11]. On the other
hand, many results have been showing that a neural
network being trained to be fault tolerant exhibits
improvement in generalization. What actually is the
relation between a fault tolerant problem and a gen-
eralization problem ? Besides, what is the reason
leading to some techniques can be applied to solve
both problems ?

In view of the lacking of a simple objective function
to formalize multiple nodes fault and the lacking of an
understanding of the relation between fault tolerant
and generalization, the focus of the paper will be on
the following problems :

P1 Derive from the probabilistic approach an objec-
tive function for robust training a neural network
that can optimally tolerate multiple nodes fault,

P2 Make use of the objective function being derived
to study capability of regularization techniques
in the multiple nodes fault problem.

Throughout the paper, we will use radial basis func-
tion (RBF) network as an example. Extend of the
results to other neural network models will not be
covered in this paper.

In the next section, the objective function for mul-
tiple nodes fault will be derived. The performance of
an RBF being trained by the derived objective func-
tion will be elucidated and compared with the same
network being trained by pseudo inverse in Section 3.
The sensitivity of the training method against inac-
curate fault rate information will be analyzed in Sec-
tion 4. Section 5 gives a discussion on the techniques
applying in attaining good fault tolerance and good
generalization. The conclusion will be presented in
Section 6.

2 Multiple nodes fault training

Throughout the paper, we assume that training data
set DT = {(xk, yk)}N

k=1 is extracted from an un-
known stochastic system defined as follows : For
k = 1, 2, · · · , N

yk = f(xk) + ek (1)

where x and y are the input and the output of an un-
known deterministic system f(x); and e is a random

measurement noise. Consider the output of the sys-
tem is a dependent random variable governed by the
input x, the behavior of the system can be denoted
by the conditional probability P0(y|x).

RBF model An RBF network consisting of M hid-
den nodes is defined as follows :

f̂(x, θ) =
M∑

i=1

θiφi(x), (2)

where φi(x) for all i = 1, 2, · · · ,M are the radial basis
functions given by

φi(x) = exp
(
− (x− ci)2

σ

)
; (3)

cis are the radial basis function centers and the posi-
tive parameter σ > 0 controls the width of the radial
basis functions. We call the model (2) the fault-free
RBF network.

Next, we assume that a node fault is equivalent to
permanently set the output of the node zero. There-
fore, a faulty RBF f̂(x, θ, β) could be defined by mul-
tiplying each φi(x) by a random binary variable βi :

f̂(x, θ, β) =
M∑

i=1

βiθiφi(x). (4)

When βi = 1, the ith node is normal. When βi = 0,
the ith node is fault. We assume that all nodes are
of equal fault rate p, i.e. P (βi = 0) = p and P (βi =
1) = 1 − p for i = 1, 2, · · · , M and β1, · · · , βM are
independent random variables.

In sequel, we approximate the unknown system (1)
by

yk = f̂(xk, θ, β) + ek, (5)

where e is a mean zero Gaussian noise defined in (1).
Similarly, we can represent the behavior of this faulty
RBF by a conditional probability P (y|x, θ, β). For
notational simplicity, we let θ̃i = βiθi and thus the
conditional probability of the faulty RBF given x as
input is denoted by P (y|x, θ̃).

Objective function Let P0(x) be probability dis-
tribution of input x, the joint probability distribu-
tions for the unknown system and the faulty RBF
can be given by

P0(x, y) = P0(y|x)P0(x),

P (x, y|θ̃) = P (y|x, θ̃)P0(x).

To measure the discrepancy between a faulty RBF
θ̃ and the unknown system, one can apply the
Kullback-Leibler divergence [9] :

D(P0||Pθ̃) =
∫ ∫

P0(x, y) log
P0(x, y)
P (x, y|θ̃)dxdy. (6)

Since θ̃ is an unknown and it is depended on the fault-
free model θ, the average distance of all fault models
(all possible β ∈ {0, 1}M) with reference to the true
distribution P0(x, y) can be defined as

D̄(P0||Pθ) =
〈∫ ∫

P0(x, y) log
P0(x, y)
P (x, y|θ̃)dxdy

〉

Ωβ

.

(7)
Here Ωβ corresponds to the set consisting all the pos-
sible β. Due to page limit, the objective function
and the corresponding regularizer are stated without
proof by the following lemma.

Lemma 1 The objective function for attaining an
optimal fault tolerant RBF against multiple nodes
fault with fault rate p is given by

E(θ, p) =
1
N

N∑

k=1

y2
k − 2(1− p)

1
N

N∑

k=1

ykφT (xk)θ

+(1− p)θT
{

(1− p)Ĥφ + pĜ
}

θ,

where where Ĥφ = 1
N

∑N
k=1 φ(xk)φT (xk) and Ĝ =

diag
{

1
N

∑N
k=1 φ2

1(xk), · · · , 1
N

∑N
k=1 φ2

M (xk)
}
. The

implicit regularizer is given by pθT (Ĝ− Ĥφ)θ.

Taking derivative the E(θ, p) with respect to θ and
setting it to zero, the optimal fault tolerant RBF θ̂
can be obtained as follows :

θ̂ =
(
Ĥφ + p

(
Ĝ− Ĥφ

))−1 1
N

N∑

k=1

ykφ(xk). (8)

Observe that θ̂ above is also the solution of

J(θ, p) =
1
N

N∑

k=1

(
yk − φT (xk)θ

)2
+ θT Σθ, (9)

where Σ = p(G − Hφ), minimizing E(θ, p) is equiv-
alent to minimizing the mean square training errors
N−1

∑N
k=1

(
yk − φT (xk)θ

)2 plus an additional regu-
larizer term θT Σθ.

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

x

f(
x)

Figure 1: Nonlinear function.

3 Simulation

To demonstrate the performance of the derived al-
gorithm, we use the following Hermite function for
illustration.

f(x) = 1.1(1− x + 2x2) exp(−x2/2), (10)

where x ∈ [−10, 10]. The measured output yk of a
given xk is generated by adding noise to this noise
free function, i.e.

yk = 1.1(1− xk + 2x2
k) exp(−x2

k/2)︸ ︷︷ ︸
f(xk)

+ek,

where ek the noise term is a mean zero Gaussian noise
of variance Se. The shape of the noise free function
(10) is shown in Figure 1. This function fluctuates
mainly in the middle portion around the origin, i.e.
x ∈ [−5, 5]. For |x| > 5, the value of f(x) is almost
zero. Figure 2 shows an exemplar training data set
of noise variance 0.01. We assume an RBF network
is of 37 radial basis functions :

f̂(x) =
37∑

i=1

θiφi(x) =
37∑

i=1

θi exp
(
− (x− c)2

σ

)
, (11)

where σ = 0.49 and the centers cis are
{−9,−8.5,−8, · · · , 8, 8.5, 9}.

Procedure In the simulation, a set of training data
DT and a set of testing data DF have been given. The
first set is used for obtaining θ̂ while the second set
is used for validation. For presentation clarity, the
notations being used is summarized below.

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

Figure 2: A noisy function with noise variance 0.01
and mean zero.

Notation Description
DT Training data set
DF Testing data set
p Fault rate
M Number of RBFs
I Index set for the nodes
K Set of nodes being removed
I − K Remaining node set

θ̂(p, I) Model obtained by (8)

θ̂PI(I) = θ̂(0, I) Model obtained by PI

θ̂(p, I − K) θ̂(p, I − K)i = θ̂(p, I)i

if i is not in K; zero otherwise

θ̂PI(I − K) θ̂PI(I − K)i = θ̂PI(I)i

if i is not in K; zero otherwise

E(DT |θ̂(p, I − K)) Mean square training errors

due to θ̂(p, I − K)

E(DT |θ̂PI(I − K)) Mean square training errors

due to θ̂PI(I − K)

E(DF |θ̂(p, I − K)) Mean square testing errors

due to θ̂(p, I − K)

E(DF |θ̂PI(I − K)) Mean square testing errors

due to θ̂PI(I − K)
〈E(·|·)〉 Average mean square errors

θ̂(p, I) θ̂(p, I − K)

DT E(DT |θ̂(p, I)) E(DT |θ̂(p, I − K))

DF E(DF |θ̂(p, I)) E(DF |θ̂(p, I − K))

To show its tolerance effectiveness, the perfor-
mance of the RBF generated by robust learning (8)
is compared with the network generated by pseudo
inverse, i.e.

θ̂PI(I) =

(
N∑

k=1

φ(xk)φT (xk)

)−1 (
N∑

k=1

f(xk)φ(xk)

)
.

To observe the fault tolerance behavior of the RBF
being trained by pseudo inverse and the RBF being
trained by our method, the procedure shown in Fig-
ure 3 is taken.

Results The resultant training er-
rors 〈E(DT |θ̂PI(I − K))〉 and 〈E(DT |θ̂(p, I − K))〉
are plotted against p and shown in Figure 4. Here,
Se = 0.04 are shown. While the resultant testing er-
rors 〈E(DF |θ̂PI(I−K))〉 and 〈E(DF |θ̂(p, I−K))〉 are
plotted against p and shown in Figure 5. It is ob-
served that whenever p increase, the performance of
the RBF obtained by the robust learning only grace-
fully degrades. This can be explained by compar-
ing the weight magnitude of the models obtained by
pseudo inverse and robust learning.

On the other hand, the RBF network obtained by
our robust learning does not suffer from large weight
magnitude problem. The regularizer has the proper
controlled the weight magnitude to small value but
not very small so as to maintain a good shape of the
reconstructed function. We have also found that the
magnitude is still controlled to a small value even
though the measurement noise variance is large.

4 Sensitivity on fault rate p

In the above simulation, we have demonstrated that
the RBF obtained by the robust learning can tolerate
fault due to random node removal. The assumption
is that the fault rate p is given. As we know that the
fault rate p sometimes cannot be given precisely, it
will be necessary to analyze its performance change
against the uncertainty of p. Let p̄ be the actual fault
rate and θ̂ be the estimator obtained by assuming the
fault rate is p. Let E(DF , θ̂(p, I − K), p̄) be the pre-
diction error for the RBF trained under the assump-
tion that the fault rate is p but the actual fault rate
is p̄. We can have the following lemma.

Lemma 2
E(DF , θ̂(p, I − K), p̄) ≤ E(DF , θ̂(p, I − K), p) if

p̄ < p <
3 + (M − 1)p̄

M + 1
.

(Proof) For simplicity, we denote E(θ̂, p̄) be
E(DF , θ̂(p, I − K), p̄).

E(θ̂, p̄)− E(θ̂, p)

= 2 ((1− p)− (1− p̄))
〈
f(x)φT (x)

〉
Ωx

θ̂

+(1− p̄)θ̂T {(1− p̄)Hφ + p̄G} θ̂

−(1− p)θ̂T {(1− p)Hφ + pG} θ̂. (12)

1 Generate θ̂PI(I) (θ̂(0, I)) using DT

2 Calculate training error E(DT |θ̂PI(I)) (
E(DT |θ̂(0, I)))

3 Calculate testing error E(DF |θ̂PI(I))
(E(DF |θ̂(p, I)))

4 FOR p = {0, 0.01, 0.02, · · · , 0.19, 0.2}
– Generate θ̂(p, I) using DT [Robust learn-

ing]
– REPEAT 100000 times

∗ Set K to an empty list
∗ Generate ran-

dom numbers r1, r2, · · · , rM from uni-
form distribution U [0, 1]

∗ Including i ∈ K if ri ≤ p, for all i =
1, 2, · · · , M

∗ FOR i = 1, · · · ,M ,

θ̂PI(I − K)i =
{

θ̂PI(I)i if i /∈ K
0 otherwise

θ̂(p, I − K)i =
{

θ̂(p, I)i if i /∈ K
0 otherwise

∗ Evaluate E(DT |θ̂PI(I − K)),
E(DF |θ̂PI(I − K))

∗ Evaluate E(DT |θ̂(p, I − K)),
E(DF |θ̂(p, I − K))

– Evaluate the average errors 〈E(DT |θ̂PI(I−
K))〉, 〈E(DF |θ̂PI(I − K))〉

– Evaluate the average errors 〈E(DT |θ̂(p, I −
K))〉, 〈E(DF |θ̂(p, I − K))〉

Figure 3: Simulation procedure. Note that the total
number of faulty models can be as large as 66045
and 10.3 × 106 for the number of fault nodes are 4
(p ≈ 0.1) and 7 (p ≈ 0.2) respectively. Repeating
100000 times is only sufficient for p ≤ 0.14.

0 0.05 0.1 0.15 0.2
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M
ea

n
S

qu
ar

e
T

ra
in

in
g

E
rr

or
s

Fault Rate

Se = 0.04

Robust Learning
Pseudo Inverse

Figure 4: Comparison between the average mean
square training error of the RBF network obtained
by the proposed algorithm and by pseudo inverse.
The solid line with diamonds corresponds to the re-
sult from pseudo inverse 〈E(DT |θ̂PI(I − K))〉 while
the solid line with crosses corresponds to the result
from robust learning 〈E(DT |θ̂(p, I − K))〉. In this
simulation, Se = 0.04.

0 0.05 0.1 0.15 0.2
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M
ea

n
S

qu
ar

e
T

es
tin

g
E

rr
or

s

Fault Rate

Se = 0.04

Robust Learning
Pseudo Inverse

Figure 5: Comparison between the average mean
square testing errors of the RBF network obtained
by the proposed algorithm and by pseudo inverse.
The solid line with diamonds corresponds to the re-
sult from pseudo inverse 〈E(DF |θ̂PI(I − K))〉 while
the solid line with crosses corresponds to the result
from robust learning 〈E(DF |θ̂(p, I − K))〉. In this
simulation, Se = 0.04.

Write
〈
f(x)φT (x)

〉
Ωx

θ̂ in the first term of (12)

as θ̂T {(1− p)Hφ + pG} θ̂, the difference between
E(θ̂, p̄)− E(θ̂, p) can be given by

E(θ̂, p̄)− E(θ̂, p)

= (p̄− p)θ̂T ((p̄− p)Hφ + (3− (p̄ + p))G) θ̂. (13)

As we assume that p̄ or p is not a large value. For p̄
or p is too large, the network is basically very faulty.
It is useless. Therefore, E(θ̂, p̄) ≥ E(θ̂, p) whenever
p̄ ≥ p as p̄ + p cannot be larger than one. And the
equality holds if and only if p̄ = p. For p̄ < p, it can
readily be shown that

θ̄T [(p̄− p)Hφ + (3− (p̄ + p))G] θ̄

= θ̄T [(p̄− p)(Hφ −G) + (3− 2p)G] θ̄

≤ θ̄T [(p̄− p)(M − 1)G + (3− 2p)G] θ̄

since

θ̂T (Hφ −G)θ̂ =
M∑

i=1

∑

j 6=i

θ̂iθ̂jφiφj

≤ (M − 1)
M∑

i=1

(
θ̂iφi

)2

≤ (M − 1)θ̂T Gθ̂.

The condition for which E(θ̂, p̄) ≤ E(θ̂, p) will be
given by

p̄ < p <
3 + (M − 1)p̄

M + 1
. (14)

And the proof is completed. Q.E.D.

For M À 1, the upper bound can be approximated
by 3/M + p̄. The condition can thus be written as
p̄ < p < 3/M + p̄. That is to say, our robust learning
is not quite sensitive to the value of p if the esti-
mated p is in a range of about 3/M above the true
p̄. Figure 6 shows the results for the cases when mea-
surement noise are 0.01 respectively and p̄ = 0.8p.
Whenever the true p̄ is smaller than p, it is found
that E(θ̂(p), p) > E(θ̂(p), 0.8p) > E(θ̂(0.8p), 0.8p)
and E(θ̂(p), 0.8p) ≈ E(θ̂(0.8p), 0.8p). The difference
between E(θ̂(p), p̄) and E(θ̂(p̄), p̄) increase as the dif-
ference between p and p̄ increases or Se increases.

Furthermore, we have observed that the bound
(3 + (M − 1)p̄)/(M + 1) in fact is a rather tight
bound. In practice, θ̂T (Hφ − G)θ̂ is much smaller
than (M − 1)θ̂T Gθ̂. Hence, one can almost set p to
a much larger value during training. After training,
the performance of the network under node fault can
be evaluated by simulation. The mean square testing
errors can thus be used as an upper bound on the
performance of the network in actual situation.

0 0.05 0.1 0.15 0.2
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
Se = 0.01

Fault Rate

M
ea

n
S

eq
ua

re
 T

es
tin

g
E

rr
or

s

θ(p) −− Test(p)
θ(p) −− Test(0.8p)
θ(0.8p) −− Test(0.8p)

Figure 6: The performance of the robust learning
whenever the true fault rate probability p̄ is unknown
but below p. The line with diamonds corresponds
to E(DF , θ̂(p, I − K), p). The line with squares cor-
responds to E(DF , θ̂(p, I − K), p̄). The line with
crosses corresponds to E(DF , θ̂(p̄, I − K), p̄).

5 FT and generalization

Improving generalization ability of a neural network
has been researching for more than a decade. A com-
mon technique is to add a regularizer term, such as
weight decay [11] and local regularizer [4, 19], to mean
square errors term. We have found that the objective
function for node fault tolerant is of the same form
– the additional term pθT (G −Hφ)θ is a regularizer
term. So, it is interesting to ask whether there is any
regularizer for optimizing generalization can also be
used to optimize node fault tolerant.

Regularizer for node fault tolerant By inspect-
ing the regularizer in the robust learning (9) θT (Ĝ−
Ĥφ)θ, one will see that it is neither non-positive nor
nonnegative. (Ĝ− Ĥφ) is of the form :

1

N

N∑
k=1




0 · · · −φ1(xk)φM (xk)
−φ2(xk)φ1(xk) · · · −φ2(xk)φM (xk)

· · · · · · · · ·
−φM (xk)φ1(xk) · · · 0


 .

Since φi(xk)φj(xk) ≥ 0 for all i, j = 1, 2, · · · ,M and
k = 1, 2, · · · , N , the off-diagonal elements are all non-
positive. This matrix consists of both positive and
negative eigenvalues as stated in the following lemma.

Lemma 3 The matrix Ĝ− Ĥφ consists of both pos-
itive and negative eigenvalues.

(Proof) Since the diagonal elements of symmetric
Ĝ− Ĥφ are all zeros, the summation of all its eigen-
values must be zero and the eigenvalues must be real.
Then it is readily shown by contradiction that Ĝ−Ĥφ

must consist of both positive and negative eigenvalues
or else all the eigenvalues are zeros. Q.E.D

The positive eigenvalues control the weight magni-
tudes to smaller values while the negative eigenvalues
seem to control the weight magnitudes to larger val-
ues. If we consider weight magnitude as a measure to
network complexity (like effective number of parame-
ters), the negative eigenvalues of (Ĝ−Ĥφ) correspond
to increase the network complexity while the positive
eigenvalues correspond to decrease the network com-
plexity.

Tipping regularizer Tipping local regularizer is
basically a generalized form weight decay defined as
follows :

θT




λi 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λM


 θ (15)

Each weight is controlled by an independent hyperpa-
rameter that can be obtained by the idea of evidence
maximization [10]. It can readily shown that these
hyperparameters are all nonnegative.

Lemma 4 Matrix diag{λ1, λ2, · · · , λM} consists of
only nonnegative eigenvalues.

(Proof) In accordance with the re-estimation tech-
nique shown in p.654 of [19], the parameter λi satis-
fies the condition λi =

〈
θ2

i

〉−1, where the expectation
is taken over the posterior probability of θ given train-
ing data set and the regularizer. Obviously, λi ≥ 0
and the proof is completed. Q.E.D.

Therefore similar to that weight decay, Tipping’s
local regularizer is a nonnegative regularizer. It is
able to penalize the weight magnitude but it is un-
likely to train an RBF network to be optimally node
fault tolerant.

Chen regularizer Inspired by Tipping’s local reg-
ularization, Chen in [4] extended the idea of orthogo-
nal least square (OLS) method by introducing a reg-
ularizer term with M hyperparameters. Consider the
training data set consisting of N data, {xk, yk}N

k=1,
the objective function to be minimized in Chen’s pa-
per is defined as follows :

N∑

k=

(yk − φ(xk)T θ)2 + θT AT ZAθ, (16)

where A is an upper triangular matrix satisfies the
following condition :




φ(x1)T

φ(x2)T

· · ·
φ(xN)T


 =




w11 w12 · · · w1M

w21 w22 · · · w2M

...
...

. . .
...

wN1 wN2 · · · wNM




︸ ︷︷ ︸
W

×




1 a12 · · · a1M

0 1 · · · a2M

...
...

. . .
...

0 0 · · · 1




︸ ︷︷ ︸
A

(17)

with vectors wi = (w1i, · · · , wNi)T ∈ RN for all i =
1, 2, · · · ,M are orthogonal basis, i.e. wT

i wj = 0 if i 6=
j. W ∈ RNM and A ∈ RMM are obtained by a modi-
fied Gram-Schmitt procedure called OLS method. Z
is a diagonal matrix, diag {z1, z2, · · · , zM}. of ele-
ments z1, z2, · · · , zM the hyperparameters satisfying
the following equalities. For all i = 1, · · · ,M ,

zi =
γi

∑N
k=(yk − φ(xk)T θ)2(

N −∑M
j=1 γj

)
(Aθ)2i

(18)

γi =
wT

i wi

zi + wT
i wi

, (19)

where (Aθ)i is the ith element of the vector Aθ. It can
readily be shown that the eigenvalues of the matrix
AT ZA are all nonnegative, as stated in the following
lemma.

Lemma 5 Matrix AT ZA defined in Chen’s LROLS
consists of only nonnegative eigenvalues.

(Proof) From (18), we can see that zi ≥ 0 for all
i = 1, · · · ,M . Hence, θT AT ZAθ ≥ 0. Therefore, the
matrix AT ZA is positive semidefinite. Q.E.D.

Similar to Tipping’s local regularizer, it is able to
penalize the weight magnitude but it is unlikely to
train an RBF network to be optimally node fault tol-
erant.

By comparing the eigenvalues of the respective reg-
ularizers, the purpose of Tipping’s regularizer and
Chen’s local regularizer is only to reduce the com-
plexity of a network. While the implicit regularizer is
somehow not only to reduce the complexity, but also
to increase the network complexity (similar to adding
network redundancy). Therefore, we anticipate that
the regularizer solely for improving generalization is
unlikely be applicable for attaining an RBF with op-
timal node fault tolerance.

6 Conclusion

Assuming all the nodes have equal fault rate and
their faults are independently random, we have de-
rived from Kullback-Leibler divergence an objective
function for robust training an RBF network that can
optimally tolerate multiple nodes fault. Simulation
results have demonstrated that the performance of
the fault tolerant RBF is only degraded gracefully
compared with the one trained by pseudo inverse.
Besides, we have also shown that the performance of
such a fault tolerant RBF is insensitive to the uncer-
tainty of the fault rate p. Observing that the objec-
tive function is in a form of a MSE plus a regularizer
term, we have also compared the property of this im-
plicit regularizer with other regularizer for achieving
good generalization. It is found that such regulariz-
ers are not suitable for optimal fault tolerant train-
ing. The last finding suggests Finally, we would like
to point out that the results presented in this paper
provide only a partial picture to the relation between
fault tolerance and generalization. A lot more work
will be needed for a complete picture for this prob-
lem. The objective function derived and the property
of the implicit regularizer might serve as a vehicle for
further investigation.

References

[1] Bolt G., Fault tolerant in multi-layer Percep-
trons. PhD Thesis, University of York, UK, 1992.

[2] Cavalieri S. and O. Mirabella, A novel learning
algorithm which improves the partial fault toler-
ance of multilayer neural networks, Neural Net-
works, Vol.12, 91-106, 1999.

[3] Chandra P. and Y. Singh, Fault tolerance of
feedforward artificial neural networks – A frame-
work of study, Proceedings of IJCNN’03 Vol.1
489-494, 2003.

[4] Chen S., Local regularization assisted orthogonal
least squares regression, International Journal of
Control, in press.

[5] Chiu C.T. et al., Modifying training algorithms
for improved fault tolerance, ICNN’94 Vol.I, 333-
338, 1994.

[6] Deodhare D., M. Vidyasagar and S. Sathiya
Keerthi, Sythesis of fault-tolerant feedfor-
ward neural networks using minimax optimiza-
tion, IEEE Transactions on Neural Networks,
Vol.9(5), 891-900, 1998.

[7] Emmerson M.D. and R.I. Damper, Determining
and improving the fault tolerance of multilayer

perceptrons in a pattern-recognition application,
IEEE Transactions on Neural Networks, Vol.4,
788-793, 1993.

[8] Fontenla-Romero O. et al, A measure of fault tol-
erance for functional networks, Neurocomputing,
Vol.62, 327-347, 2004.

[9] Kullback S., Information Theory and Statistics,
Wiley, 1959.

[10] Mackay D.J.C. (1992), A Practical Bayesian
Framework for Backprop Networks, Neural
Computation, Vol.4(3) 448-472.

[11] Moody J.E., Note on generalization, regular-
ization, and architecture selection in nonlinear
learning systems, First IEEE-SP Workshop on
Neural Networks for Signal Processing, 1991.

[12] Murray A.F. and P.J. Edwards, Enhanced MLP
performance and fault tolerance resulting from
synaptic weight noise during training, IEEE
Transactions on Neural Networks, Vol.5(5), 792-
802, 1994.

[13] Neti C. M.H. Schneider and E.D. Young, Max-
imally fault tolerance neural networks, IEEE
Transactions on Neural Networks, Vol.3(1), 14-
23, 1992.

[14] Phatak D.S. and I. Koren, Complete and par-
tial fault tolerance of feedforward neural nets.,
IEEE Transactions on Neural Networks, Vol.6,
446-456, 1995.

[15] Phatak D.S., Relationship between fault toler-
ance, generalization and the
Vapnik-Cervonenkis (VC) dimension of feedfor-
ward ANNs, IJCNN’99, Vol.1, 705-709, 1999.

[16] Phatak D.S. and E. Tcherner, Synthesis of fault
tolerance neural networks, Proc. IJCNN’02,
1475-1480, 2002.

[17] Sequin C.H. and R.D. Clay, Fault tolerance in
feedforward artificial neural networks, Neural
Networks, Vol.4, 111-141, 1991.

[18] Simon D. and H. El-Sherief, Fault-tolerance
training for optimal interpolative nets, IEEE
Transactions on Neural Networks, Vol.6, 1531-
1535, 1995.

[19] Tipping, M.E., The relevance vector machine,
Advances in Neural Information Processing Sys-
tems 12, p.652-658, MIT Press, 2000.

