
Prediction error of a fault tolerant neural
network

John Sum1,2, Chi-sing Leung2, and Kevin Ho3?

1 Department of Information Management, Chung Shan Medical University
Taichung 402, Taiwan pfsum@csmu.edu.tw

2 Department of Electronic Engineering, City University of Hong Kong
Kowloon Tong, KLN, Hong Kong eeleungc@cityu.edu.hk

3 Department of Computer Science and Communication Engineering,
Providence University, Sha-Lu, Taiwan. ho@pu.edu.tw

Abstract. For more than a decade, prediction error has been one pow-
erful tool to measure the performance of a neural network. In this paper,
we extend the technique to a kind of fault tolerant neural network. Con-
sider a neural network to be suffering from multiple-node fault, a for-
mulae similar to that of Generalized Prediction Error has been derived.
Hence, the effective number of parameter of such a fault tolerant neural
network is obtained. A difficulty in obtaining the mean prediction error
is discussed and then a simple procedure for estimation of the prediction
error empirically is suggested.

1 Introduction

Obtaining a neural network to tolerate random node fault is of paramount impor-
tant as node fault is an unavoidable factor while a neural network is implemented
[13]. In view of the importance of making a neural network being fault tolerant,
various researches have been conducted throughout the last decade in order to
attain a fault tolerant neural network that can alleviate problems due to random
node fault.

Injecting random node fault [2, 17] together with random node deletion and
addition [4] during training is one common approach . Adding network redun-
dancy by replicating hidden nodes/layers after trained [6, 15], adding weight
decay regularizer [4] and hard bounding the weight magnitude during training
[3] are other techniques that have also been proposed in the literature. In accor-
dance with simulation results, all these heuristic techniques have demonstrated
that the network is able to tolerate against random node fault, either single node
or multiple nodes have stuck-on faults. As these techniques are heuristics, it is
not clear in theory about their underlying objective function or their prediction
errors being achieved. In sequel, analysis and comparison on the similarities and
differences between one technique to another can hardly be accomplished except
by extensive simulations.

An alternative approach in training a fault tolerant neural network is to
formulate the learning problem as a constraint optimization problem. Neti et al
[14] defined the problem as a minimax problem in which the objective function
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to be minimized is maximum of the mean square errors over all fault models.
Deodhare et al [5] formulated the problem by defining the objective function to
be minimized as the maximum square error over all faulty neural models and
all training samples. A drawback of the above approaches is that the complexity
of solving such problem could be very complex as the number of hidden units
are large and the number of faulty nodes cannot be larger than one. Simon &
El-Sherief [18] and Phatak & Tcherner in [16] formulated the learning problem
as an unconstraint optimization problem in which the objective function consists
of two terms. The first term is the mean square errors of the fault-free model
while the second term is the ensemble average of the mean square errors over all
fault models.

One limitation of these formulations is that the problem being formulated
can be very complicated when the number of fault nodes is large. Extend their
formulations to handling multiple nodes fault will become impractical. In view
of the lacking of a simple objective function to formalize multiple nodes fault
and the lacking of an understanding of the relation between fault tolerant and
generalization, Leung & Sum in [10] have recently derived a simple objective
function and yet another regularizer from KL divergence for robust training a
neural network that can optimally tolerate multiple nodes fault.

In this paper, we extend the idea elucidated in [10] by deducing the mean
prediction error equation for such a fault tolerant neural network model being
attained. As it is believed that prediction error is an alternative measure for the
performance of a neural network [9]. The rest of the paper will be organized
as follows. The next section will define what is a node fault tolerant neural
network and present an objective function derived in [10] for attaining such a
fault tolerant neural network. The prediction error equation (main contribution
of the paper) will be derived in Section 3. Section 4 will describe how this error
can be obtained in practice. Experimental results are described in Section 5.
Then, we conclude this paper in Section 6.

2 Node fault tolerant neural network

Throughout the paper, we assume that training data set DT = {(xk, yk)}N
k=1

is extracted from an unknown stochastic system defined as follows : For k =
1, 2, · · · , N

yk = f(xk) + ek (1)

where x and y are the input and the output of an unknown deterministic system
f(x); and e is a random measurement noise. Consider the output of the system
is a dependent random variable governed by the input x, the behavior of the
system can be denoted by the conditional probability P0(y|x).

An RBF network consisting of M hidden nodes is defined as follows :

f̂(x, θ) =
M∑

i=1

θiφi(x), (2)

where φi(x) for all i = 1, 2, · · · ,M are the radial basis functions given by

φi(x) = exp
(
− (x− ci)2

σ

)
; (3)



cis are the radial basis function centers and the positive parameter σ > 0 controls
the width of the radial basis functions. Without loss of generality, we assume
that ci ∈ R for all i. Model (2) is called fault-free RBF network.

Next, we assume that a node fault is a stuck-on-zero node fault. That is
to say, the output of the node will permanently be stuck on zero value once it
has became faulty. Therefore, a faulty RBF denoted by f̂ could be written as a
summation of φi(x) times θi and a random binary variable βi :

f̂(x, θ, β) =
M∑

i=1

βiθiφi(x). (4)

If βi = 1, the ith node is normal. Otherwise, the ith node is faulty. Furthermore,
it is assumed that all hidden nodes are of equal fault rate p, i.e. P (βi) = p if
βi = 0 and P (βi) = (1− p) if βi = 1, for all i = 1, 2, · · · ,M and β1, · · · , βM are
independent random variables. Model (4) is called faulty RBF network.

In sequel, we approximate the unknown system (1) by the following stochastic
system :

y = f̂(x, θ, β) + e, (5)
where e is a mean zero Gaussian noise defined in (1), x and y are respectively the
input and the output of the faulty RBF. Represent the behavior of this faulty
RBF by a conditional probability P (y|x, θ, β) and let θ̃ = (β1θ1, · · · , βMθM ), the
conditional probability of a faulty RBF given x as input could be denoted by
P (y|x, θ̃).

Let P0(x) be probability distribution of input x, the joint probability distri-
butions for the unknown system and the faulty RBF can be given by

P0(x, y) = P0(y|x)P0(x), P (x, y|θ̃) = P (y|x, θ̃)P0(x).

To measure the discrepancy between a faulty RBF θ̃ and the unknown system,
one can apply the Kullback-Leibler divergence [8] :

D(P0||Pθ̃) =
∫ ∫

P0(x, y) log
P0(x, y)
P (x, y|θ̃)dxdy. (6)

Since θ̃ is an unknown and it is depended on the fault-free model θ, the average
distance of all fault models (all possible β ∈ {0, 1}M ) with reference to the true
distribution P0(x, y) can be defined as

D̄(P0||Pθ) =
∫ {∫ ∫

P0(x, y) log
P0(x, y)
P (x, y|θ̃)dxdy

}
P (θ̃|θ)dθ̃ (7)

=
〈∫ ∫

P0(x, y) log
P0(x, y)
P (x, y|θ̃)dxdy

〉

Ωβ

. (8)

Here Ωβ corresponds to the set consisting all the possible β.
It can be shown [10] that maximizing D̄(P0||Pθ) is equivalent to minimizing

the following objective function :

E(θ, p) =
1
N

N∑

k=1

y2
k − 2(1− p)

1
N

N∑

k=1

ykφT (xk)θ + (1− p)θT
{

(1− p)Ĥφ + pĜ
}

θ,



where p is the node fault rate, Ĥφ = 1
N

∑N
k=1 φ(xk)φT (xk),

Ĝ = diag

{
1
N

N∑

k=1

φ2
1(xk), · · · , 1

N

N∑

k=1

φ2
M (xk)

}
.

Take the first derivative of E(θ, p) and set it to zero, the corresponding optimal
fault tolerant RBF θ̂ will be given by

θ̂ =
(
Ĥφ + p

(
Ĝ− Ĥφ

))−1 1
N

N∑

k=1

ykφ(xk). (9)

Since Ĥφ and Ĝ are functions of φ(x1), · · · , φ(xN ), θ̂ can be obtained as long as
{xk, yk}N

k=1 are given. Model f̂(x, θ̂, β) is a node fault tolerant RBF network.

3 Mean prediction error

To attain a fault tolerant model, the estimation of mean prediction error is
accomplished by using a testing data set. But it is known that testing data set
is sometimes unavailable in particular the available data set is not large. It is
not able to split the data set into training set and data set. In such case, the
performance of a fault tolerant neural network could be estimated by a mean
prediction error equation, a formula similar to that of AIC [1], GPE [11] or NIC
[12].

For presentation clarity, a summary of the notations being used is depicted
in Table 1. 〈E(DT |θ̂(p, I −K))〉 and 〈E(DF |θ̂(p, I −K))〉 are defined as follows :

〈E(DF |θ̂(p, ·))〉 =
〈
f2(x′)

〉
DF

− 2(1− p)
〈
f(x′)φT (x′)

〉
DF

θ̂

+(1− p)θ̂T
{
(1− p)H ′

φ + pG′
}

θ̂.

〈E(DT |θ̂(p, ·))〉 =
〈
f2(x)

〉
DT

− 2(1− p)
〈
f(x)φT (x)

〉
DT

θ̂

+(1− p)θ̂T {(1− p)Hφ + pG} θ̂.

Again, we assume that N is large. We replace Ωx by DF and DT , which are equal
to {(x′k, y′k)}N

k=1 and {(xk, yk)}N
k=1, to reflect that the data are from testing set

and training set respectively. Obviously, the difference between 〈E(DF |θ̂(p, ·))〉
and 〈E(DT |θ̂(p, ·))〉 lies in the difference between their second terms. It is because
H ′

φ = Hφ and G′ = G for larger N. Their first terms and third terms are identical.
One should further note that θ̂ is obtained entirely by DT , which is independent
of DF . Therefore, for large N , we can have

〈
yφT (x)θ̂

〉
DF

=

〈
1
N

N∑

k=1

y′kφT (x′k)

〉

DF

θ̂

where x′k are not from DT . Following the same technique as using in [12] and
[9], we assume that there is an optimal θ0 such that

yk = φT (xk)θ0 + ek; y′k = φT (x′k)θ0 + e′k.



Notation Description
DT Training data set
DF Testing data set
p Fault rate — probability that a node will be failure
M Number of radial basis functions (nodes)
I Index set, {1, 2, · · · , M} for the nodes
K Set of nodes being removed
I − K Remaining node set

θ̂(p, I) Model obtained by Equation (9)

θ̂(p, I − K) θ̂(p, I − K)i = θ̂(p, I)i if i is not in K; zero otherwise

E(DT |θ̂(p, I − K)) Mean square training errors due to θ̂(p, I − K)

E(DF |θ̂(p, I − K)) Mean square testing errors due to θ̂(p, I − K)
〈E(·|·)〉 Average mean square errors

(a)

θ̂(p, I) θ̂(p, I − K)

DT E(DT |θ̂(p, I)) E(DT |θ̂(p, I − K))

DF E(DF |θ̂(p, I)) E(DF |θ̂(p, I − K))
(b)

Table 1. Notation (a) and the relations between different error terms (b). Note that

E(DT |θ̂(p, I)) and E(DF |θ̂(p, I)) are not we are interested because they assume no
node removed.

where ek, e′k ∼ N (0, Se) for all k = 1, 2, · · · , N . The second term in 〈E(DF |θ̂(p, ·))〉
can thus be given by

−2(1− p)θT
0 Hφ((1− p)Hφ + pG)−1Hφθ0

while the second term in 〈E(DT |θ̂(p, ·))〉 is given by

−2(1−p)
Se

N
Tr

{
Hφ((1− p)Hφ + pG)−1

}−2(1−p)θT
0 Hφ((1−p)Hφ+pG)−1Hφθ0.

As a result, the difference between the mean prediction error and mean training
error can be written as follows :

〈E(DF |θ̂(p, ·))〉 = 〈E(DT |θ̂(p, ·))〉
+ 2

Se

N
Tr

{
(1− p)Hφ((1− p)Hφ + pG)−1

}
. (10)

Let
Meff = Tr

{
(1− p)Hφ((1− p)Hφ + pG)−1

}
.

It can be interpreted as the effective number of parameter of an RBF of (1−p)M
number of nodes as the way in [11]. Therefore, the true Se can be approximated
by the following equation

Se ≈ N

N −Meff
〈E(DT |θ̂(p, ·))〉.



The prediction error can then be approximated by the following equation,

〈E(DF |θ̂(p, ·))〉 =
N + Meff

N −Meff
〈E(DT |θ̂(p, ·))〉. (11)

To use this approximation, the simulation to be conducted is a bit not as
usual. Suppose we have a set of measure data, DT . After robust model is thus
obtained by Equation (9), as many as possible fault RBF models are gener-
ated. Their E(DT |θ̂(p, ·))s are thus obtained by simulation. The average of the
E(DT |θ̂(p, ·))s can then be used as the value for 〈E(DT |θ̂(p, ·))〉 and the predic-
tion error 〈E(DF |θ̂(p, ·))〉 can then estimated by Equation (11) immediately.

4 Estimation of MPE

It should be noted that obtaining the value 〈E(DT |θ̂(p, ·))〉 could be very ex-
pensive. Take M = 50 and p = 0.1 as an example. The total number of faulty
models are approximately 50!/(5! × 45!), i.e. 2118760. Extensive simulation is
infeasible. Under such circumstance, one could only approximate the average
mean training error by the sample average.

If Se and p are given, a number of faulty models are generated uniformly
random. The same set of training data is thus fed into the models. The avearge of
their mean square errors will thus be used as an approximation of 〈E(DT |θ̂(p, ·))〉.
It is equivalent to approximate the prediction error by the following equation :

E(DF |θ̂(p, I − K)) ≈ E(DT |θ̂(p, I − K))

+ 2
Se

N
Tr

{
(1− p)Hφ((1− p)Hφ + pG)−1

}
, (12)

where Hφ and G could be obtained by using the training data only. If Se is not
given, the prediction error could be estimated by

E(DF |θ̂(p, I − K)) ≈ N + Meff

N −Meff
E(DT |θ̂(p, I − K)). (13)

As a result, the mean prediction error can thus be estimated by the following
steps : (1) Calculate Hφ and G based on the training data. (2) Obtain θ̂ based
on the value of p. (3) Random generate a sample set of faulty models in accor-
dance with the fault rate p. (4) Obtain the mean training errors for these faulty
models. (5) Approximate the average mean training error by the sample average
of these faulty models. (6) Estimate E(DF |θ̂(p, I − K)) either by Equation (12)
or Equation (13).

5 Experimental results

Figure 1 shows an experimental results comparing the estimated and actual
mean prediction error. In this experiment, 20 RBF networks are generated to
approximate a simple noisy function, f(x) = tanh(x) + e, where e ∼ N (0, 0.01)
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Fig. 1. Actual MPE versus estimated MPE.

a mean zero Guassian noise. Each RBF network consists of 17 centers generated
uniformly in the range of [−4, 4] with 0.5 distance apart. The width of a basis
function, i.e. σ, is set to 0.49. 20 independent training data sets are generated
for each of the RBF networks. Each training set consists of 50 training data,
with xs are uniformly randomly generated in the range [−4.4] and es are ran-
domly generated in accordance with Guassian distribution. An extra data sets
consisting of 100 data is also generated as the testing set.

Follow the steps described above, each network is trained with its own train-
ing data set for different fault rates. Here, the fault rate is set to be 0.01, 0.02, 0.03 · · · , 0.2.
For each p, θ̂ is obtained after Hφ and G have been calculated. Then 100 faulty
network models are generated and their training errors are measured. The esti-
mated mean prediction error E(DF |θ̂(p, I − K)) is estimated by Equation (12).
Finally, the actual prediction error is obtained simply by feeding the testing
data set to these 100 faulty network models again and taking their average. The
actual prediction error against the estimated prediction error for different values
of p is thus shown in Figure. The solid line, y = x, is used for reference. It is
clearly that the points lie symmetically along the solid straight line.

6 Conclusion

Following the objective function we have derived in [10], we have analyzed in
this paper the mean prediction error for such a fault tolerant neural network
being attained and then derived a simple procedure to estimate such value after
training. As mean prediction error is in fact a measure on the performance
of a neural network towards the future data, the equation and the estimation
procedure derived can be used as a mean to estimate the generalization ability of
such a (multiple-nodes) fault tolerant neural network after trained by the robust
learning algorithm we derived in [10].
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