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Abstract

This paper starting from the very first principle presents a derivation of an equation estimating of the final prediction error for a neural

network under the recursive least square framework. The equation is in the form:

hhPEiF iT ¼ hTEiT
N þ d1

N � d2
,

where d1 and d2 are some values determined by the gradient of the nonlinear mapping at the true system parameter. A cheap way of

estimating such prediction error based on the information obtained via the recursive least square training method is suggested.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

To alleviate the slow convergence of back-propagation
algorithm (BPA) in training a feedforward neural network
(FNN), the recursive least square (RLS) and the extended
Kalman filter (EKF) [4,6] have been two popular methods
to train a FNN efficiently in the last decade. The beauty of
using the RLS and the EKF is that the network weights can
be updated immediately after the presentation of a training
pattern. This is important to many applications, such as
real-time control and time series prediction. In a real-time
environment, both training and prediction have to be done
right after (or a few steps after) the arrival of a new data.

Kollias and Anastassiou [8] considered a FNN as a
nonlinear system and directly applied the RLS method to
train a FNN. Observe that the weights associated with a
hidden neuron is loosely coupled with other hidden
e front matter r 2006 Elsevier B.V. All rights reserved.
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neurons, Shah et al. in [20] extended the work by
simplifying the update equation for the weight covariance
matrix. At the same time, Singhal and Wu [19], Watanabe
et al. [23] and Iiguni et al. [5] independently formulated the
training of a FNN as a filtering problem and then directly
applied the EKF to train a neural network. Similarly, EKF
method has also been applied in training other multi-
layered FNN models for system control [18] and time series
forecast [7]. In view of the effectiveness of using the RLS
and the EKF as an on-line training method, Leung et al.
[10–12], Sum et al. [22] and Chang et al. [3] extended such
methods for on-line FNN pruning.
Whatever training method is applied, one will need to

estimate the prediction error of such a trained FNN.
Conventionally, this prediction error is normally measured
after the training has been completed [2,13,15,17]. In this
regard, extending the RLS method to estimate the
prediction error adaptively would be very useful to real-
time applications. In this paper, an on-line algorithm for
obtaining the prediction error of a FNN, using the RLS
method, will be presented. In the next section, the training
objective of the RLS will be reviewed. Follow the approach
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taken by Moody [15] and Murata et al. [17], the expected
prediction error and the final prediction error (FPE) will be
derived in Sections 3 and 4, respectively. The recursive
algorithm will thus be presented in Section 5. We present
the conclusions of this paper in Section 6.
2. Training objective for recursive least square

In this paper, we will consider a nonlinear neural
network defined as follows:

yðxÞ ¼ f ðx; yÞ þ �, (1)

where y 2 R is the output of the network, x 2 R is the
input, y 2 Rn is the parametric vector and � is a zero mean
Gaussian noise with variance l.1 Given N training data
fðxt; ytÞg

N
t¼1, the parametric vector y can be estimated by the

following recursive equations [8,10,11,20]:

PðtÞ ¼ Pðt� 1Þ �
Pðt� 1ÞHðtÞHTðtÞPðt� 1Þ

HTðtÞPðt� 1ÞHðtÞ þ 1
, (2)

ŷðtÞ ¼ ŷðt� 1Þ þ
Pðt� 1ÞHðtÞ½yðxtÞ � f ðxt; ŷðt� 1ÞÞ�

HTðtÞPðt� 1ÞHðtÞ þ 1
, (3)

where

HðtÞ ¼
qf

qy

����
y¼ŷðt�1Þ

, (4)

Pð0Þ ¼ d�1In�n:ðd40Þ. (5)

The last equation for Pð0Þ can ensure that PðtÞ does not
trap in zero matrix. It is because zero matrix is a trivial
solution of Eq. (2). The initial guess of the parametric
vector ŷ is set to yig, i.e.

ŷð0Þ ¼ yig.

The objective function of a recursive least square training is
equivalent to the following penalty mean square error
function [4]:

JðŷðNÞÞ ¼
1

N

XN

t¼1

ðyðxtÞ � f ðxt; ŷðNÞÞÞ
2

þ
d
N
ðŷðNÞ � yigÞ

T
ðŷðNÞ � yigÞ. ð6Þ

The existence of the second term is due to Eq. (5). Now if
we assume that the initial guess of the parameter y is
already close to the true parameter y0, this objective
function could be locally approximated by a quadratic
function,

JðŷðNÞÞ � Jðy0Þ þ 1
2ðŷðNÞ � y0Þ

T
r2Jðy0ÞðŷðNÞ � y0Þ. (7)
1For a particular instance, say t, we also express the model as

yðxtÞ ¼ f ðxt; yÞ þ �t,

where �t (for all t ¼ 1; 2; . . .) is a zero mean Gaussian noise with variance l.
yðxtÞ might even be written as yt for notational simplicity.
Similar to the technique being used in [21], we let yig � y0.
Then, ŷðNÞ � yig and ðŷðNÞ � yigÞ

T
ðŷðNÞ � yigÞ ! 0. For

notational simplicity, we denote hereafter ŷðNÞ by y. So,

y� y0 � ½r2Jðy0Þ��1rJðyÞ (8)

¼
1

N

XN

t¼1

qf ðxt; y0Þ
qy

qf T
ðxt; y0Þ
qy

þ
d
N

I

" #�1

�
1

N

XN

t¼1

�t

qf ðxt; y0Þ
qy

" #
. ð9Þ

Since �t is zero mean Gaussian random noise with variance
l0, the variance of the estimated y can be approximated as
follows:

hðy� y0Þðy� y0Þ
T
iT �

l0
N

G þ
d
N

I

� ��1
G G þ

d
N

I

� ��1
,

(10)

where the matrix G is given by

G ¼
1

N

XN

t¼1

qf ðxt; y0Þ
qy

qf T
ðxt; y0Þ
qy

. (11)

The notation h�iT denotes that the expectation is taken over
the training data set while the superscript T denotes matrix
transpose.

3. The expected prediction error

Using Eq. (10), we are ready to derive an expression for
the expected prediction error of the network. The result
obtained here is identical to that derived in [14,21]. The
reason of including this derivation is for the sake of
completeness. The expected prediction error is defined as
the expected error which the network will generate if an
unseen data, denoted by xF , is fed to the network after
training. We use the superscript F to highlight that the
input data is unseen (future data). The expected prediction
error is given by

hPEiF ¼ hðyðx
F Þ � f ðxF ; yÞÞ2iF (12)

¼ hðf ðxF ; y0Þ þ �F � f ðxF ; yÞÞ2iF . (13)

Since y is dependent on the training set, the random noise
factor �F will be independent of the network parameter y.
The expected prediction error can further be simplified.

hPEiF � ð�F Þ
2
þ

qf T
ðxF ; y0Þ
qy

ðy� y0Þ
� �2

* +
F

¼ l0 þ htrfðy� y0Þðy� y0Þ
TGtgiF , ð14Þ

where

Gt ¼
qf ðxF ; y0Þ

qy
qf T
ðxF ; y0Þ
qy

.

The second term htrfðy� y0Þðy� y0Þ
TGtgiF is obtained by

using the property that aTb ¼ trfbaT
g for all a; b 2 Rn.
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Using the fact the y is independent of the future data,

hPEiF ¼ l0 þ trfðy� y0Þðy� y0Þ
T
hGtiF g. (15)

Here trfAg means the trace of matrix A. Suppose, we take
the expectation of hPEiF over the training set and
assuming that the size of the training set is large enough,
we can have the approximation,

qf ðxF ; y0Þ
qy

qf T
ðxF ; y0Þ
qy

� �
F

� G. (16)

By using the approximation given in Eq. (10),

hhPEiF iT � l0 þ
l0
N

G þ
d
N

I

� ��1
G G þ

d
N

I

� ��1
G

( )
.

(17)

Let d1; d2; . . . ; dn be the eigenvalues of G and using the fact
that the trace of a matrix is equal to the sum of its
eigenvalues, hhPEiF iT can be rewritten as follows:

hhPEiF iT � l0 1þ
1

N

Xn

k¼1

d2k
ðdk þ d=NÞ2

 !
. (18)

This result also indicates that the adding of d40 (i.e.
setting P�1ð0Þ ¼ dI) acts like adding a smoothing regular-
izer or weight decay term [16] to the mean square errors. As
the noise variance l0 is usually not known in advance [9],
the estimation of the prediction error is not feasible unless
we can find an estimator for this noise variance. Next, we
would like to derive an estimation for that factor based on
the training error (TE).
4. The expected training error and the FPE

Consider that the training error, denoted by TE, is
defined as follows:

TE ¼
1

N

XN

t¼1

ðyðxtÞ � f ðxt; yÞÞ
2. (19)

According to the assumption that the estimated parametric
vector y is close to the true value y0, we can expand f ðxt; yÞ
in a Taylor series and ignore the second-order and higher-
order term to get the following approximation:

TE ¼
1

N

XN

t¼1

�2t �
2

N

XN

t¼1

�t
qf T
ðxt; y0Þ
qy

ðy� y0Þ

þ
1

N

XN

t¼1

qf T
ðxt; y0Þ
qy

ðy� y0Þ
� �2

. ð20Þ

Again, we consider that the size of the training set is large,
the first term in the above equation will be equal to l0.
Using Eq. (9), the second term becomes:

2

N

XN

t¼1

�t

qf T
t

qy
G þ

d
N

I

" #�1
1

N

XN

t¼1

�t

qf t

qy

" #
(21)
which is equal to

2

N
tr

1

N

XN

t¼1

�t
qf t

qy

" # XN

t¼1

�t
qf T

t

qy

" #
G þ

d
N

I

" #�18<
:

9=
;. (22)

Here, we use the notation f t representing f ðxt; y0Þ for
simplicity. As �i and �j are independent, taking the
expectation on the above expression would give expecta-
tion of the second term in Eq. (20):

2

N

XN

t¼1

�t
qf T
ðxt; y0Þ
qy

ðy� y0Þ

* +
T

¼
2l0
N

tr G G þ
d
N

I

� ��1( )

¼
2l0
N

Xn

k¼1

dk

dk þ d=N
. ð23Þ

Next consider the third term of the TE, we can have the
following equalities:

1

N

XN

t¼1

qf T
ðxt; y0Þ
qy

ðy� y0Þ
� �2

¼
1

N

XN

t¼1

tr ðy� y0Þðy� y0Þ
T qf ðxt; y0Þ

qy
qf T
ðxt; y0Þ
qy

� 	

¼ trfðy� y0Þðy� y0Þ
TGg. ð24Þ

Taking the expectation over the training set and suppose
the size of the training set is large, we can again obtain an
approximation for this term:

1

N

XN

t¼1

qf T
ðxt; y0Þ
qy

ðy� y0Þ
� �2

* +
T

¼
l0
N

tr G þ
d
N

I

� ��1
G G þ

d
N

I

� ��1
G

( )

¼
l0
N

Xn

k¼1

d2k
ðdk þ d=NÞ2

. ð25Þ

Therefore, taking the expectation of TE over the training
set and using Eqs. (23) and (25), we can have set up a
relation for l0 and the TE:

hTEiT ¼ l0 1�
n

N
þ

1

N

Xn

k¼1

ðd=NÞ2

ðdk þ d=NÞ2

" #
. (26)

Note that n is the dimension of the parametric vector y, i.e.
the total number of parameters, while N is the total number
of training data. Thus, we can have the equality between
the expected prediction error and the expected TE:

hhPEiF iT ¼ hTEiT
N þ d1

N � d2
, (27)

where

d1 ¼
Xn

k¼1

d2k
ðdk þ d=NÞ2

; d2 ¼
Xn

k¼1

1�
ðd=NÞ2

ðdk þ d=NÞ2

 !
.
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This is the nonlinear extension of Akaike FPE [1].
Remember that dk is the kth eigenvalue of the matrix G,
see Eq. (11). It is worth noting that in Akaike FPE [1], which
is for the linear case, d1 ¼ d2 ¼ number of parameters.
Here, in the nonlinear case, they are generally not the same
except when d is zero. This equation is more useful than the
one derived by [21], Eq. (18), in that Eq. (27) does not require
the information of the system noise variance for the
estimation of the prediction error.

In case the noise variance is known, by subtracting
hTEiT from hhPEiF iT , we can obtain Moody’s general
prediction error Eq. [15]:

hhPEiF iT ¼ hTEiT þ 2
l0
N

Xn

k¼1

dk

dk þ d=N
. (28)

In case N is large enough, we can thus use the following
equation to estimate the expected prediction error:

hPEiF ¼ TE
N þ d̂1

N � d̂2

. (29)

The values d̂1 and d̂2 can be obtained once the eigenvalues
d̂k are estimated based on the N training data.

5. Evaluation of the nonlinear FPE

Let ŷð0Þ be the initial parametric vector and P�1ð0Þ ¼ dI ,
the training of a feedforward neural network can be
accomplished by the recursive equations, Eqs. (2) and (3).
As a matter of fact, Eq. (2) is rewritten in the following
form (by using the matrix inversion lemma [6]).

P�1ðtÞ ¼ P�1ðt� 1Þ þHðtÞHTðtÞ. (30)

Therefore, once after N training data has been input,
P�1ðNÞ is given by

P�1ðNÞ ¼ dI þ
XN

t¼1

HðtÞHTðtÞ. (31)

Suppose that the initial condition yð0Þ is already close to
the true parameter y0 and N is large enough,

P�1ðNÞ � dI þ
XN

t¼1

qf ðxt; y0Þ
qy

qf T
ðxt; y0Þ
qy

¼ dI þNG, (32)

where G is defined in Eq. (11). Dividing both sides by N, we
have the following equations: G ¼ N�1P�1ðNÞ � dN�1I :
So that the value of d1 and d2 can readily be obtained by
the following equations.

d1 ¼ trfðI � dPðNÞÞ2g; d2 ¼ n� tr d2P2ðNÞ

 �

. (33)

And thus the FPE can be estimated once training is
finished:

hPEiF ¼ TE
N þ tr ðI � dPðNÞÞ2


 �
N � nþ tr d2P2ðNÞ


 � . (34)

The major advantage of using Eq. (34) to evaluate the
FPE is that no second-order Hessian matrix has to be
calculated. This will save a lot of computational cost.
Besides, the values of matrix PðNÞ and TE are readily
obtained once the training is finished. This again intro-
duces not much cost on the evaluation of d1 and d2.
Together with the effectiveness of recursive least square in
training a neural network, the evaluation of a network
performance become relatively simple and yet on-line.
6. Conclusions

In this paper, (i) we have derived an equation to estimate
the prediction error of a neural network model which is
being trained by a recursive least square method and under
the assumption that the initial guess of y is already very
close to y0. This equation can be treated as a nonlinear
extension of the Akaike final prediction error. (ii)
Furthermore we have devised an elegant method, Eq.
(34), based on the covariance matrix PðNÞ and the training
error evaluated after each step of update to estimate this
final prediction error. As the RLS is an effective on-line
training method, algorithm (34) can be implemented on-
line and yet without much computational cost introduced.
Without loss of generality, the result derived in this paper
can directly be extended to multiple-input–multiple-output
(MIMO) systems as well.
Finally, it should be remarked that there are two major

differences between the final prediction error equation
derived in this paper and the one derived in [9]. First, our
major focus is on the RLS training approach. It is an on-

line training method. In [9], the concern is on batch mode

training. Second, due to the use of the RLS, we are able to
derive an on-line evaluation scheme for this final prediction
error and this has not been investigated in [9].
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