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ON PROFIT DENSITY BASED

GREEDY ALGORITHM FOR A

RESOURCE ALLOCATION PROBLEM

IN WEB SERVICES
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Abstract

Allocating limited computational resources to different clients is

always a challenging problem to a web service provider (WSP). Profit

density based greedy knapsack algorithm is one simple approach that

can ensure near-optimal profit. However, profit gain is sometimes

not the only factor concerned in making important management

decisions. Other factors, such as the number of clients that a WSP

can serve and the number of un-used resources that remain, are also

important. By assuming that (a) the pricing curves of the buyer

are all identical and their marginal utility (i.e., ∆Price/∆Size) is

decreasing, (b) the resource is divisible, (c) the resource quantity

each client requests follows uniform distribution U [0, 1] and (d) the

available resource is constrained by k; equations for the expected

number of clients who can get the resource, denoted by 〈b〉, and the

expected quantity of resource being allocated, denoted by 〈s〉, are

derived analytically. By observing the numerical plots of 〈b〉 and 〈s〉
against the number of clients n, it is found that 〈b〉≈n for n≤ 2k

and 〈b〉≈ (−1+
√

1+8nk)/2 for n≥ 2k. Comparing with another

simple selling mechanism, we call it first-come-first-serve, it is found

that resource allocation via greedy algorithm might not always be

the best choice as far as the number of units being sold and the

number of clients being served are concerned.
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1. Introduction

Extended from the ideas of software reuse and component
based development, web service is a new paradigm and
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possibly a new direction for system development. A web
services provider (WSP) makes application components
available on the web. System developers can thus integrate
those components (URLs) together to develop an applica-
tion system. Certainly, the usage of these remote resources
is usually not free. Allocating limited computational re-
sources to clients to maximize the profit is one, but not the
only, issue that every WSP needs to consider.

To solve this problem, one can apply an off-line allo-
cation method. Let us consider a simple but normally not
quite realistic situation. For clarification, Table 1 sum-
marizes the notations appearing in the paper. Consider a
WSP that has 20 servers available to support the service
and 8 clients are willing to pay for their services:

Client i B1 B2 B3 B4 B5 B6 B7 B8

Server ki 2 4 5 1 3 4 2 5

Price pi 10 30 35 6 15 18 12 35

As resource is limited, the WSP has to select the most
profitable clients and sign the service contracts. Obviously,
this problem is essentially the 0/1 knapsack problem [1,
2] (or recently it is called multi-units combinatorial auc-
tion problem [3]) that can be formulated by the following
constraint optimization problem:

Maximize 10s1 + 30s2 + 35s3 + 6s4 + 15s5 + 18s6

+12s7 + 35s8

Subject to 2s1 + 4s2 + 5s3 + s4 + 3s5 + 4s6 + 2s7

+5s8 ≤ 20

si ∈ {0, 1} ∀ i = 1, . . . , 8

For this simple problem, the WSP can profit 133 by allo-
cating all 20 servers to B2, B3, B4, B5, B7 and B8. How-
ever, it is known that solving this constraint optimization
problem will be intractable if the number of clients is large.
Profit density based greedy algorithm is a near-optimal
alternative [2], which profits 128, by allocating 19 servers
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Table 1
Notations. [Here ki ∼U [0, 1] means ki is a random

variable following uniform distribution.

Notation Description

n Number of customers

k Resource available

(pi, ki) Offer that the i-th customer gives pi – price;

ki ∼U [0, 1] – quantity

i Index of the customers according to their

arrival sequence i.e., offer given from the

1st customer is earlier than the 2nd

customer, and so on (Used in FCFS

analysis)

i:n Index of the customers according to

their profit densities∗

i.e., pi:n/ki:n >pj:n/kj:n if i< j

(Used in greedy algorithm analysis)

Sr(w, n)
∑w

i=1 ki – sum of the quantities of the first

w customers (Used in FCFS analysis)

S(w, n)
∑w

i=1 ki:n – sum of the quantities of the first

w customers whose orders are sorted

according to profit density (Used in

greedy algorithm analysis)

b Number of customers being served

〈b〉 Expected number of customers being served

s Quantity of resource being allocated

〈s〉 Expected quantity of resource being allocated
∗ Suppose there are three customers, their offers are (3, 0.2), (7, 0.8)
and (5, 0.4). (pi, ki) for i=1, 2, 3 will be (3, 0.2), (7, 0.8) and (5, 0.4),
respectively. (pi:3, ki:3) for i=1, 2, 3 will be (3, 0.2), (5, 0.4) and
(7, 0.8). Then Sr(2, 3)=1.0 and S(2, 3)=0.6.

to B1, B2, B3, B4, B7 and B8. One server remains in the
stock.

To trade off the computational complexity, an-
other even simpler mechanism called first-come-first-serve
(FCFS) – allocating resource to the client whenever the
number of servers is available – can be used instead. In
terms of profit gain, it is clear that profit density greedy
algorithm is a better allocation method as it will ensure
near-optimal profit for the number of customers is large.
However, profit gain is sometimes not the only measure
a company would like to know. Other factors, such as
the number of clients it serves and the number of un-
used resources remaining, are also important for making
management decision.

In this paper, we assume that k� 1 units of resource
are available. Let the expected number of clients who

can get the resource be 〈b〉, and the expected quantity of
resource being allocated be 〈s〉, the purpose of the paper
is to find out their relationships in terms of n and k.
The essential technique being used is a formula derived
by Weisberg [4] for a linear combination of order statistics
and a formula derived by Feller (p. 27 of [5]) for the
sum of uniformly random variables. The next section will
describe the basic assumptions on pi and ki. The profit
density greedy algorithm and the FCFS mechanism will
be presented. The expected number of customers 〈b〉 and
the expected number of product being sold 〈s〉 for the
mechanisms will be derived in Section 3. A discussion
comparing greedy algorithm against FCFS method will
be presented in Section 4. Then the conclusion will be
presented in Section 5.

2. Greedy Algorithm and FCFS

Without loss of generality, we assume that ki is a ran-
dom variable from U(0, 1). Next, we assume that the
pricing function is marginal utility decreasing [6]. That
is to say, a client would like to have a larger discount
for a larger purchase. Mathematically, (i) p′(ki)≥ p′(kj),
∀ 0≤ ki ≤ kj ≤ 1 and (ii) p(0)≥ 0 and p′(0)> 1, where p′(ki)
is the first derivative of the function p(k) at ki. Two exem-
plar functions satisfying the assumption are p(k)=αk+β
and p(k)=α log(1+ k)+β, where k∈ [0, 1], α and β are
non-negative constant values. It should be noted that
the pricing function is a deterministic function depending
solely on the quantity of resource requested. The following
lemma will be used for latter analysis.

Lemma 1. For any non-negative real-valued func-
tion f(x) that satisfies f ′(x)≥ f ′(y)≥ 0 for all 0≤x≤ y
and f(0)≥ 0, then the following conditions hold: (i )
f(x)
x ≥ f ′(x); (ii ) f(x)

x ≥ f(y)
y , for all 0≤x≤ y.

Proof: The proof of the first inequality is straight-
forward. As f(x)= f(0)+

∫ x

0 f ′(u)du≥ f(0)+xf ′(x),
f(x)/x≥ f ′(x). Using the fact that f(y)= f(x)+∫ y

x
f ′(u)du, then dividing both sides by y and the condition,

f ′(x)≥ f ′(y), the following inequality can be obtained:

f(y)

y
≤ f(x)

x
+

(y − x)

y

[
f ′(x)− f(x)

x

]

As f(x)
x ≥ f ′(x), for all y≥x≥ 0, f(x)

x ≥ f(y)
y and the proof

is completed. Q.E.D. �

2.1 Greedy Algorithm

Suppose there are n clients whose prices and quantities
are p1, . . . , pn and k1, . . . , kn, respectively. We call (pi, ki)
for all i=1, 2, . . . , n the offers the clients give. Once all
the offers have been collected, the WSP can apply the
algorithm below to determine the allocation:

1: WAITFOR (pi, ki), i=1, . . . , n;
2: SORT { pi

ki
} s.t. pi:n

ki:n
≥ pj:n

kj:n
∀ i≤ j;
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3: SET C = k;
4: SET P =0;
5: SET j=1;
6: WHILE(C − kj:n > 0 and j≤n)

C =C − kj:n;
P =P + pj:n;
j= j+1;

END

First, their offers are ranked in descending order with
respect to their profit density, i.e.,

p1:n
k1:n

≥ p2:n
k2:n

≥ · · · ≥ pn:n
kn:n

(1)

Then, we allocate the resource to the first 1:n, 2:n, . . . ,
b:n clients, such that:

b∑
i=1

ki:n ≤ k

b+1∑
i=1

ki:n > k (2)

In accordance with the condition (1), the condi-
tion pi:n

ki:n
≥ pj:n

kj:n
implies that k1:n ≤ k2:n ≤ · · ·≤ kn:n when-

ever price p is a function of k and its marginal util-
ity is decreasing. So, p1:n

k1:n
≥ p2:n

k2:n
≥ · · ·≥ pn:n

kn:n
implies that

k1:n ≤ k2:n ≤ · · ·≤ kn:n and their offers can be ranked in
accordance with ki. Again, the k units are allocated to the
first b bidders according to conditions in (2).

2.2 First-Come-First-Serve

FCFS method is similar to selling products in a flea market.
Once a customer has walked in and given an offer, the
seller will check with the stock. The customer gets the
product as long as there is available stock. One advantage
of this FCFS method apart from its simplicity is that the
customers do not have to wait. Besides, the seller has no
need to anticipate the number n.

In web service provision, the WSP simply denies the
service request whenever the available resource is not large
enough to support the service. The FCFS method can be
described by the following algorithm:

1: SET C = k;
2: SET P =0;
3: SET j=1;
4: WHILE(C − kj > 0 and j≤n)

C =C − kj ;
P =P + pj ;
j= j+1;

END

Here, the index i=1, 2, . . ., represent the sequence of
the offers made by the clients. In other words, the index
i=1, 2, 3, . . ., indicates their timing of visit. The i-th client
makes an offer earlier than the j-th client if i< j. In
this method, the WSP has no need to wait until all the
offers have been collected. The decision is simply made
by investigating the number of resources remaining. The
resource is allocated to the first 1, 2, . . . , b clients:

b∑
i=1

ki ≤ k
b+1∑
i=1

ki > k (3)

If the resource remaining is larger than the quantity re-
quested by the walk-in client, the resource will be allocated
accordingly.

3. Analysis

For the sake of analysis, let S(w, n)=
∑w

i=1 ki:n be the sum
of units being sold to the {1:n}, {2:n}, . . . , {b:n} customers
based on the profit density greedy algorithm. Similarly, we
let Sr(w, n)=

∑w
i=1 ki be the sum of units being sold to

the 1, 2, . . . , b customers based on the FCFS method.

3.1 Greedy Algorithm

As ki is a random variable drawn from uniform distribution
for all i=1, 2, . . . , n, ki:n (after being sorted by profit
density) is also a random variable drawn from uniform
distribution for all i=1, 2, . . . , n:

S(w, n) =
n∑

i=1

di ki:n (4)

di =


1 ∀ i = 1, . . . , w

0 ∀ i = w + 1, . . . , n
(5)

The cumulative probability distribution Pr{S(w, n)≤
k} can be evaluated by a formula derived by Weisberg in
[4] (see Appendix A),

Pr{S(w, n) ≤ k} = 1−
r∑

j=1

(cj − k)n

cj
∏

j �=i(cj − ci)
(6)

ci =


w − i+ 1 ∀ i = 1, . . . , w

0 ∀ i = w + 1, . . . , n
(7)

Unfortunately, this formula (as well as another formula
from Feller [5]) cannot be reduced to a simple close form.
To obtain the solution, one needs to do it numerically.

For the case that exactly w customers are allocated
with resources, it is equivalent to the case:

{S(w, n) ≤ k and S(w + 1, n) > k}

Consider the following events,

E1 = {S(w, n) ≤ k and S(w + 1, n) ≤ k}
E2 = {S(w, n) ≤ k and S(w + 1, n) > k}
E3 = {S(w, n) > k and S(w + 1, n) ≤ k}
E4 = {S(w, n) > k and S(w + 1, n) > k}

and the facts that (i) Pr{E1}+Pr{E2}+Pr{E3}+
Pr{E4}=1 and (ii) E3 =φ the empty set, the probabilities
for the events can readily be determined as follows:
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Pr{E1} = Pr{S(w + 1, n) ≤ k}
Pr{E2} = Pr{S(w, n) ≤ k} − Pr{S(w + 1, n) ≤ k}
Pr{E3} = 0

Pr{E4} = 1− Pr{S(w, n) ≤ k}

3.1.1 Number of Clients 〈b〉 Being Allocated with Re-
sources

The probability of exactly w clients being allocated with
resources can be determined as follows:

Pr{w clients} =




Pr{S(w, n) ≤ k}
−Pr{S(w + 1, n) ≤ k if w < n}
Pr{S(n, n) ≤ k} if w = n

(8)
This equation applies for all w≥ k and the evaluation

of the Pr{S(w, n)≤ k} can be based on (6). Thus, the
expected number of clients being allocated with resources,
〈b〉, can be determined by the following formula:

〈b〉 =
n−1∑
w=1

w(Pr{S(w, n) ≤ k} − Pr{S(w + 1, n) ≤ k})

+ nPr{S(n, n) ≤ k} (9)

As Pr{b=w}=1 for all w≤ k, the summation can be
started with w= k:

〈b〉 =
n−1∑
w=k

w(Pr{S(w, n) ≤ k} − Pr{S(w + 1, n) ≤ k})

+ nPr{S(n, n) ≤ k} (10)

It is a function dependent on n and k. Once n and k are
known, 〈b〉 can be evaluated numerically. Fig. 1 illustrates
the case when k=20. We have also plotted the curve for
the cases when k equals to 30 and 40, respectively. All of
them show the same shape. It can be observed that for
n≤ 2k and n≥ 2k, 〈b〉 can be approximated as follows:

〈b〉 ≈



n if n ≤ 2k

−1 +
√

1 + 8nk

2
if n ≥ 2k

(11)

The approximations are shown by dotted line and the
dot-solid line, respectively, in Fig. 1. A derivation for the
case when n� k can be found in Appendix C.

3.1.2 Quantity of Resource 〈S〉 Being Allocated

The expected quantity of resource 〈S〉 being allocated can
thus be evaluated by using a similar argument. First, let
us consider the event (exactly w clients will be allocated
with resources and x quantities of resource will be allo-
cated), i.e., {S(w, n)≤x and S(w+1, n)≥ k}. Obviously,
k− 1≤x≤ k. As {S(w, n)≤x} equals

Figure 1. The expected number of clients being allocated
with resource against the number of customers for k=20
is shown by solid line with circles. The dotted line cor-
responds to 〈b〉=n and the dot-solid line corresponds to

〈b〉= −1+
√

1+8nk
2 .

{S(w, n) ≤ x and S(w + 1, n) ≤ k}
⋃

{S(w, n)
≤x and S(w + 1, n) ≥ k}

and the first event is equivalent to {S(w+1, n)≤ k}, it is
readily shown that:

Pr{S(w, n) ≤ x and exactly w clients being allocated}
= Pr{S(w, n) ≤ x and S(w + 1, n) ≥ k}
= Pr{S(w, n) ≤ x} − Pr{S(w + 1, n) ≤ k} (12)

for all x∈{y|Pr{S(w, n)≤ y}−Pr{S(w+1, n)≤ k}≥ 0}.
Let

h(x|w, n, k) = Pr{S(w, n)
= x| exactly w clients being allocated}

It can thus be evaluated as follows:

h(x|w, n, k) =
d

dx




Pr{S(w, n) ≤ x}
−Pr{S(w + 1, n) ≤ k}
Pr{S(w, n) ≤ k}
−Pr{S(w + 1, n) ≤ k}




if w < n

(13)

h(x|w, n, k) =
d

dx

{
Pr{S(n, n) ≤ x}
Pr{S(n, n) ≤ k}

}
if w = n (14)

for all x∈{y|Pr{S(w, n)≤ y}−Pr{S(w+1, n)≤ k}≥ 0}.
The expected quantity of resource being allocated 〈S〉 can
thus be written as follows:
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〈S〉 =
n−1∑
w=k

∫ k

xw

x d(Pr{S(w, n) ≤ x} − Pr{S(w + 1, n)

≤ k}) +
∫ k

0
x dPr{S(n, n) ≤ x} (15)

for all n≥ k and xw satisfies the condition:

Pr{S(w, n) ≤ xw} = Pr{S(w + 1, n) ≤ k}

Fig. 2 shows the case when k equals to 20.

Figure 2. The expected quantity of resource being allo-
cated 〈S〉 against the number of customers n for k=20.

For large n, an approximated equation for the ex-
pected quantity of resource being allocated can be derived.

Considering the residue, R(n, 〈b〉, k)= k− ∑〈b〉
i=1

i
n satisfies

the following inequality: 0≤R(n, 〈b〉, k)≤ (〈b〉+1)/n and
supposing that this residue is uniformly distributed on
[0, (〈b〉+1)/n]. The expected residue 〈R〉 can be written
as follows: 〈R〉=(〈b〉+1)/2n. Substituting the approxi-
mation for 〈b〉 in (11), the approximation of the expected
quantity of resource being allocated can be written as
follows:

〈S〉 ≈ k

(√
1 + 8nk − 3√
1 + 8nk − 1

)
(16)

for n� k. Reader can also refer to Appendix C for a
derivation of the above equation.

3.2 First-Come-First-Serve

For the case that the resource is allocated in an FCFS basis,
we consider the following equation: Sr(w, n)=

∑w
i=1 ki,

for all k≤w≤n. By replacing S(w, n) by Sr(w, n), we can
use the same argument used for greedy method to derive

the equations for the expected number of clients being
allocated with resource 〈br〉 and the expected quantity of
resource 〈Sr〉 being allocated.

3.2.1 Number of Clients 〈br〉 Being Allocated with Re-
source

The expected number of clients being allocated with re-
sources 〈br〉 can be determined by the following formula:

〈br〉 =
n−1∑
w=k

w{Pr{Sr(w, n) ≤ k} − Pr{Sr(w + 1, n)

≤ k}}+ nPr{Sr(n, n) ≤ k} (17)

The expression for Pr{Sr(w, n)≤x}will be from Feller
formula [5]:

Pr{Sr(w, n) ≤ x} =
1

w!

w∑
i=0

(−1)iCw
i (x− i)w+ (18)

where

x+ =
x+ |x|

2
and Cw

i =
w!

i!(w − i)!

It should be noted that Pr{Sr(w, n)≤x} is indepen-
dent of n. Fig. 3 shows the expected number of clients be-
ing allocated with resources against number of customers
n for the case that k=20.

3.2.2 Quantity of Resource 〈Sr〉 Being Allocated

Using the same technique as for 〈S〉, the expected number
of units being sold 〈Sr〉 can be determined by the following
equation:

Figure 3. The expected number of clients being allocated
〈br〉 with resource against the number of customers n for
k=20.

5



〈Sr〉 =
n−1∑
w=k

∫ k

xw

x d{Pr{Sr(w, n) ≤ k} − Pr{Sr(w + 1, n)

≤ k}}+
∫ k

0
x dPr{Sr(n, n) ≤ x} (19)

for all n≥ k. xw satisfies the condition:

Pr{Sr(w, n) ≤ xw} = Pr{Sr(w + 1, n) ≤ k}

Fig. 4 shows the case when k=20. It should be
noted that the expected quantity being allocated by FCFS
method is slightly larger than the expected quantity being
allocated by profit density based greedy algorithm (Fig. 5).

Figure 4. The expected quantity of resource being allo-
cated 〈Sr〉 against the number of customers n for k=20.

Figure 5. Comparison between FCFS and the greedy
method in terms of the expected quantity of resource being
allocated 〈S〉 (solid line with circles) and 〈Sr〉 (solid line
with dots) for k=20.

Table 2
Greedy Algorithm versus FCFS

(a) Greedy Algorithm FCFS

n≤ 2k 〈b〉≈n 〈br〉≈n

〈S〉≈n/2 〈Sr〉≈n/2

n� 2k 〈b〉=(−1+
√

1+8nk)/2 〈br〉≈ k

〈S〉≈ k 〈Sr〉≈ k

(b) Greedy Algorithm FCFS

n≤ 2N/M 〈b〉≈n 〈br〉≈n

〈S〉≈n/2 〈Sr〉≈n/2

n� 2N/M 〈b〉=(−1+
√

1+8nN/M)/2 〈br〉≈N/M

〈S〉≈N 〈Sr〉≈N

(a) Summary on the expected number of customers and the expected
number of units being sold for both auction and the FCFS. (b) N
and M (>1) correspond to the total number of units for sale and
the max{ki}.

4. Greedy Algorithm versus FCFS

The results obtained in this section are summarized in
Table 2. Without loss of generality, the results obtained
in this paper can be extended for the case when ki is
uniformly distributed on the range [0,M ]:

Maximize
∑n

i=1 pisi

Subject to
∑n

i=1 kisi ≤ N

si ∈ {0, 1} ∀ i = 1, . . . , n

Here N is the total number of resource available.
By comparing the number of clients being allocated

with resources, it is found that there is no difference
between the greedy algorithm or the FCFS when the
number of customers is less than 2k. When n> 2k, the
greedy algorithm can allocate resource to more clients
than the FCFS method. Obviously, the resources are
allocated to those clients whose requested quantities are
comparatively small. On the other hand, by comparing the
expected quantity of resources being allocated, the FCFS
can allocate more resources than the greedy algorithm,
Fig. 5, irrespective to the number of customers n.

Suppose only the client who can get resources
will have to pay and the service charge is defined as
P0 +P1ki, P0, P1 > 0. The constant price P0 can be inter-
preted as a premier that every client has to pay and P1 can
be interpreted as the unit resource price. The expected
profit the WSP can gain by using the greedy algorithm
and the FCFS, respectively, can be written as follows:

G = P0〈b〉+ P1〈S〉 (20)

Gr = P0〈br〉+ P1〈Sr〉 (21)

With reference to the numerical results (Fig. 5) ob-
tained for n=50 (i.e., n=2.5k), it is clear that the dif-
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ference between 〈S〉 and 〈Sr〉 is about 0.013× k and the
difference between 〈b〉 and 〈br〉 is about 0.2× k. There-
fore, the difference between G and Gr can be expressed as
follows:

G−Gr = 0.2P0k − 0.013P1k

Accordingly, G>Gr if P0/P1 > 0.013/0.2. The profit
gain by using the greedy algorithm will be more than using
the FCFS. If P0/P1 < 0.013/0.2, profit gain by using the
FCFS will be more.

Of course, this comparison is only valid if the service
charge model is linear. For other service charge models, a
conclusion cannot easily be achieved. Numerical analysis
will be needed.

5. Conclusion

In this paper, we have analyzed two properties of the profit
density based greedy algorithm for a resource allocation
problem in web service. The allocation problem is essen-
tially a well-known knapsack problem. In terms of profit
making, greedy algorithm can ensure a near-optimal solu-
tion. However, profit making is sometimes not the only
consideration in management decision. Other properties
such as the number of clients being allocated with resources
and the quantity of resource being allocated are also im-
portant. In this regard, we have given a numerical analysis
on these properties with respect to the profit density based
greedy algorithm and the FCFS method.

The major tools that we used in the analysis are (i) the
application of a formula derived by Weisberg in [4] for a
linear combination of order statistics to analyze the greedy
algorithm and (ii) the application of a formula derived by
Feller in [5] for sum of uniform random variables to analyze
the FCFS method. In accordance with the numerical
results obtained, it is found that both the profit density
based greedy algorithm and the FCFS method have very
similar properties when the number of customers is not
large, i.e., n≤ 2k. If n=2.5k, greedy algorithm has an
advantage in letting more clients have resources allocated.

We have not concluded which algorithm is the best
algorithm in resource allocation as resource allocation is it-
self a complicated problem, in particular when other man-
agement decisions are concerned. What we have presented
here is simply additional remarks on profit density based
greedy algorithm.

Appendix A Weisberg Formula: Linear Combina-
tion of Order Statistics

To analyze the expected
∑b

i=1 ki:n, we apply the formula
derived by Weisberg [4] for linear combination of order
statistics. Let

S(n) = d1U1:n + · · ·+ dnUn:n (22)

where Ui:n is the i-th order statistic drawn from U [0, 1] and
dis are real numbers. The probability for event {S(n)≤x}
is given by the following formula:

Pr{S(n) ≤ x} = 1−
r∑

j=1

(cj − x)n

cj
∏

j �=i(cj − ci)
(23)

where cis are given as follows:

cn+1 = 0 ck = ck+1 + dk (24)

Pr{S(n)<x} is defined for all 0≤x≤ d1 + d2 + · · · +
dn and r is the largest integer such that x≤ cr.

Illustrative example. Suppose S(n)=U1:n +U2:n +
U3:n. d1 = d2 = d3 =1 and di =0 for all i=4, . . . , n. Then
all the cis will be given as follows:

c1 = 3 c2 = 2 c3 = 1 c4 = 0 . . . cn+1 = 0

The cdf can be written as the following equations:

∀x ≥ 3 Pr{S(n) ≤ x} = 1

∀ 2 ≤ x < 3 Pr{S(n) ≤ x} = 1− (3−x)n

3
∏

j �=i(3−ci)

∀ 1 ≤ x < 2 Pr{S(n) ≤ x}=1− (3−x)n

3
∏

j �=i(3−ci)

− (2−x)n

2
∏

j �=i(2−ci)

∀ 0 ≤ x < 1 Pr{S(n) ≤ x}=1− (3−x)n

3
∏

j �=i(3−ci)

− (2−x)n

2
∏

j �=i(2−ci)

− (1−x)n

1
∏

j �=i(1−ci)

∀x < 0 Pr{S(n) ≤ x} = 0

Appendix B Feller Formula: Sum of n Uniform
Random Variables

To analyze the expected L of the case that the products
are sold in FCFS basis, we need the following formulae
derived by Feller (p. 27 of [5]). Let Sr(n) be the sum of
uniform random variables defined as follows:

Sr(n) = U1 + U2 + · · ·+ Un (25)

Noted that Uis are not ordered. For n=1, 2, . . ., and
0≤x≤n,

Pr{Sr(n) ≤ x} =
1

n!

n∑
v=0

(−1)vCn
v (x− v)n+ (26)

where

x+ =
x+ |x|

2
and Cn

v =
n!

v!(n− v)!

Note that for a point x between (k− 1) and k only k
terms of the sum are different from zero.

Illustrative example. Let Sr(3)=U1 +U2 +U3 and Uis
are not in order, the cdf can be written as the following
equations:
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∀x ≥ 3 Pr{Sr(3) ≤ x} = 1

∀ 2 ≤ x < 3 Pr{Sr(3) ≤ x} =
C3

0x
3−C3

1 (x−1)3+C3
2 (x−2)3

3!

∀ 1 ≤ x < 2 Pr{Sr(3) ≤ x} =
C3

0x
3−C3

1 (x−1)3

3!

∀ 0 ≤ x < 1 Pr{Sr(3) ≤ x} =
C3

0x
3

3!

∀x < 0 Pr{Sr(3) ≤ x} = 0

Appendix C Derivation of (11) and (16)

For n is large and n� k, we assume that the kis are
distributed evenly in [0, 1]. Without loss of generality, we
further assume ki <kj if i< j. So, the values of kis can be
written as:

ki =
i

n

for all i=1, 2, . . . , n. As greedy allocation implies, the
resource will be allocated to k1, k2 and so on until further
allocation is not possible. Let 〈r〉 be the last one who can
be allocated with resource. It turns out that

〈b〉∑
i=1

ki ≈ k

It is equivalent to that

〈b〉∑
i=1

i

n
≈ k

〈b〉2 + 〈b〉
2n

≈ k

The solution of 〈b〉 is thus approximately equal to
−1+

√
1+ 8nk
2 . As 〈R〉=(〈b〉+1)/2n,

〈S〉 ≈ k − 〈b〉+ 1

2n

= k − 1 +
√
1 + 8nk

4n

= k

(
1− 1 +

√
1 + 8nk

4nk

)

= k

(
1− 8nk

4nk(
√

1 + 8nk − 1)

)

= k

(√
1 + 8nk − 3√
1 + 8nk − 1

)

Whenever n is large, 〈S〉→ k.
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