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Abstract— In this paper, an objective function for training a
fault tolerant neural network is derived based on the idea of
Kullback-Leibler (KL) divergence. The new objective function is
then applied to a radial basis function (RBF) network that is with
multiplicative weight noise. Simulation results have demonstrated
that the RBF network trained in accordance with the new
objective function is of better fault tolerance ability, in compared
with the one trained by explicit regularization. As KL divergence
has relation to Bayesian learning, a discussion on the proposed
objective function and the other Bayesian type objective functions
is discussed.

I. INTRODUCTION

Once a neural network model has been obtained numeri-
cally by a conventional computer, the model has finally be
implemented by physical hardware. However, this mapping
can never be perfect [8]. One imperfection is the finite bit
number representation, that can be found in digital hardware
[15], [18], which eventually makes the digital implementation
of a neural network suffer from multiplicative weight noise.
To alleviate such problem, many works have been done in the
last two decades. Some of them aimed at understand the effect
of such noise on a neural network. While some others aimed
at training a neural network that is able to tolerate such effect.

Stevenson et al [25] amongst the first group gave a com-
prehensive analysis on the probability of output error of
Threshold Logic Madaline model due to input and weight
noise. Choi and Choi [12] from statistical sensitivity approach
to derive different output sensitivity measures of a multilayer
perceptron. Piche in [22] followed an approach from signal
to noise ratio (SNR) to derive a set of measures for the
output sensitivity of the Sigmoidal Madaline and applied it to
develop a weight accuracy selection algorithm to determine the
precision requirement for hardware implementation. Townsend
and Tarassenko [26] considered a radial basis function (RBF)
network with multiple outputs. They derived an output sen-
sitivity matrix for an RBF network that is suffered from
perturbations in input data, basis function centers and output
weights.

Output sensitivity is just one view point to understand the
effect of neural network due to noise. An alternative view point
is from the actual network performance, i.e. the generalization
ability. In this regard, Catala and Parra proposed a fault
tolerance parameter model and studied the degradation of a
RBF network if the RBF centers, widths and the correspond-
ing weights due to multiplicative noise [9]. Following Choi
& Choi’s statistical sensitivity approach [12], Bernier et al

derived the error sensitivity measures for MLP [2], [4] and
RBF network [6]. Fontenla-Romero et al derived the error
sensitivity measure for functional nets [13].

While noise can be harmful to a neural network, Murray
& Edwards [20] on the other hand investigated advantages
of adding noise to a neural network during training. In their
paper, they have found that adding noise during training can
actually improve the generalization ability of a neural network,
Bishop [7] showed that adding small additive white noise
to a neural network during training is equivalent to adding
Tikhnov regularization. Jim et al [16] further noticed that
adding multiplicative weight noise not just can improve the
generalization ability, but also can improve the convergence
ability in training a recurrent neural network.

While the above works have provided a clearer pictures on
the effect of noise to the network performance, some other
researchers developed training methods aiming to improve the
fault tolerant ability of a neural network. Owing to reduce
the magnitude of the weights, Cavalieri & Mirabella in [10]
proposed a modified backpropagation learning, in which a
weight magnitude control step has been added in each training
epoch, for multilayer perceptron. Simon in [24] developed a
distributed fault tolerance learning for optimal interpolation
net, in which the learning is formulated as a nonlinear pro-
gramming problem – minimizing the training error subjected
to an equality constraint on weight magnitude. Extended from
the their previous works, Parra and Catala in [21] demonstrated
how a fault tolerant RBF network can be obtained by using a
simple weight decay regularizer [19]. Bernier et al developed
a method called explicit regularization to attain a MLP [3],
[5] and RBF network [6].

In this paper, we are also interested in developing a
learning algorithm to train a neural network that is able to
tolerate weight noise. Specifically, a fault tolerant learning
using Kullback-Leibler (KL) divergence [17] will be derived
and applied to train an RBF network that is suffered from
multiplicative weight noise. In the next section, an objective
function based on KL divergence will be derived. Then,
a learning algorithm for RBF network will be derived in
Section 3. Section 4 presents a simulation results. A discussion
of the new objective function and others will be presented
in Section 5. Finally, the conlcusion will be presented in
Section 6.



II. KLD-BASED OBJECTIVE FUNCTION

Assume that a measured data set D is collected from an un-
known system with input-output joint probability distribution
P0(x, y). Without loss of generality, we assume that x, y ∈ R.
We further assume that the unknown system belongs to a
set of models that can be parameterized by a M -dimensional
parametric vector θ, given by θ = (θ1, θ2, · · · , θM )T . The cor-
responding input-output behavior is represented by P (x, y|θ).
An implementation of a model θ, denoted by θ̃, is a random
model that is generated by a probability function P (θ̃|θ).
We also call this implementation a faulty network model.
Normally, the probability P (θ̃|θ) is determined by the fault
model or the noise model given in advance. Clearly, a faulty
neural network model θ̃ is also an unknown system to us. Not
until the nominal model θ has been implemented, it is not able
to check the true performance of θ̃.

The marginal probability distribution will thus be given by

P (x, y|θ) =
∫

P (x, y|θ̃, θ)P (θ̃|θ)dθ̃

and treating the training data is sampled from an unknown
but stochastic system P0(x, y), the performance measure of
a fault tolerant neural network can naturally be quantified by
Kullback-Leibler (KL) divergence [17],∫ ∫

P0(x, y) log
P0(x, y)
P (x, y|θ)dxdy.

Therefore, θ̂ can be given by

θ̂ = arg min
θ

{D(P0(x, y)||P (x, y|θ))} . (1)

where

D(P0(x, y)||P (x, y|θ)) = constant − L(θ), (2)

and

L(θ) =
∫ ∫

P0(x, y) log
{∫

P (x, y|θ̃, θ)P (θ̃|θ)dθ̃

}
dxdy.

(3)
Then, θ̂ can be obtained by

θ̂ = arg max
θ

{L(θ)} . (4)

For D = {(xk, yk)}N
k=1, N is large and by Law of Large

Number,

L(θ) =
1
N

N∑
k=1

log
∫

P (yk|xk, θ̃, θ)P (θ̃|θ)dθ̃. (5)

Hence,

θ̂ = arg max
θ

{
1
N

N∑
k=1

log
∫

P (yk|xk, θ̃, θ)P (θ̃|θ)dθ̃

}
. (6)

Which is depended on the noise model P (θ̃|θ).

III. FT LEARNING FOR RBF

In the fault-free radial basis function (RBF) network ap-
proach, we assume that the dataset D is generated by a RBF
network, given by

f(x) =
M∑
i=1

θiφi(x) + e (7)

θ = (θ1, · · · , θM )T is the RBF weight vector; e is a zero-mean
Gaussian random variables with variance Se; and φ(x) =
(φ1(x), φ2(x), · · · , φM (x))T and φi(x) for all i = 1, 2, · · · ,M
are the radial basis functions given by

φi(x) = exp
(
− (x − ci)2

σ

)
. (8)

cis, for all i = 1, 2, · · · ,M are the radial basis function centers
and σ is a positive parameter controlling the width of the basis
functions.

A faulty implementation of θ is denoted by θ̃ in which the
elements of θ̃ is a random variable defined as follows :

θ̃i = θi + βi θi, ∀ i = 1, 2, · · · ,M.

βi is a mean zero Gaussian noise of variance Sβ .

P (βi) =
1√

2πSβ

exp
(
− β2

i

2Sβ

)
(9)

for all i = 1, 2, · · · ,M . Given an input x, the noise vector β
and the parametric vector θ, the output of an implementation
can thus be given by

P (y|x, β, θ) =
1√

2πSe

exp

(
− (y −∑M

i=1 φi(x)(1 + βi)θi)2

2Se

)
.

(10)
The marginal probability over all possible βs is then be defined
as follows :

P (y|x, θ) =
∫

P (y|x, θ̃, θ)P (θ̃|θ)dθ̃ =
∫

P (y|x, β, θ)P (β)dβ.

Put the definitions of P (βi) in Equation (9) and P (y|x, β, θ)
in Equation (10), and integrate over all possible β,

P (y|x, θ) =
1√

2πS(x, θ)
exp

(
− (y − f̂(x, θ))2

2S(x, θ)

)
(11)

f̂(x, θ) =
∫

yP (y|x, θ)dy = φT (x)θ (12)

S(x, θ) = Se + Sβ

M∑
i=1

φ2
i (x)θ2

i . (13)

In sequel, L(θ) in Equation (5) can then be written as follows :

L(θ) = −1
2

log 2π − 1
2N

N∑
k=1

log S(xk, θ)

− 1
2N

N∑
k=1

(yk − φT (xk)θ)2

S(xk, θ)
(14)



and θ̂ equals to the

arg min
θ

{
1

2N

N∑
k=1

log S(xk, θ) +
1

2N

N∑
k=1

(yk − φT (xk)θ)2

S(xk, θ)

}
.

By using the idea of gradient descent, a training algorithm
can thus be obtained by the following recursive equation :

θ(t + 1) = θ(t) − µ
∂

∂θ
L(θ(t)), (15)

where µ is a small positive value corresponding to the step
size and

∂L(θ)
∂θ

=
Sβ

N

N∑
k=1

(
1

S(xk, θ)
− (yk − φT (xk)θ)2

S2(xk, θ)

)
G(xk)θ

− 1
N

N∑
k=1

(yk − φT (xk)θ)
S(xk, θ)

φ(xk), (16)

where

G(xk) = diag
{
φ2

1(xk), φ2
2(xk), · · · , φ2

M (xk)
}

.

The initial condition θ(0) is set to be a small random vector
close to null.

IV. SIMULATIONS

To study the performance of our proposed objective func-
tion, a simulated experiment based on sinc function approx-
imation have been conducted. Sinc function is a common
benchmark example [11], [27] in many neural network
researches. The data is generated by a function of following
form :

y = sinc(x) + e, (17)

where the noise term e is a mean zero Gaussian noise with
variance Se. The RBF network to be studied has 37 RBF nodes
and their centers are located in {−4.5,−4.25, · · · , 4.25, 4.5}.
σ is set to 0.1.

In the experiment, eight different values of Se have been
examined :

{0.0025, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040} .

Then eight training data sets each consists of 100 samples
for different Se are generated. Figure 1 shows a data set
for which Se equals to 0.010. A testing data set consisting
of another 1001 noise-free samples, for which x equals to
−5,−4.99, · · · , 4.99, 5, are generated for validation.

For each Se, two sets of RBF networks are trained. The first
set is trained by Bernier et al explicit regularization method :

J(θ) =
1
N

N∑
k=1

(yk − φT (xk)θ)2 +
Sβ

N
θT

N∑
k=1

G(xk)θ (18)

While the second set is trained by our method, Equation (14).
In each set of networks, 11 different RBFs corresponding to
11 different values of Sβ as listed below are trained.

{0, 0.012, 0.022, · · · , 0.092, 0.12}.
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Fig. 1. The training and testing datasets for the sinc function experiment.
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Fig. 2. The average training and testing MSE against Se.

For the Bernier et al regularization method, For our method, as
the objective function is not quadratic, the model is obtained
by the gradient descent algorithm defined in Equation (15) and
µ is set to 0.01.

Suppose a network model trained for a specified Se and Sβ

has been obtained and the weight vector is given by θ̂, 10000
random networks are generated in accordance with θ̂ and the
following equation.

θ̃ =
(
(1 + β1)θ̂1, (1 + β2)θ̂2, · · · , (1 + βM )θ̂M

)T

,

where βi ∼ N (0, Sβ) for all i = 1, · · · ,M . Their training
mean square errors (MSE) and testing mean square errors are
measured by fitting the network model θ̃ to the training and
testing datasets corresponding to the specific Se.

To highlight the performance differences, the average MSE
the values Se are plotted in Figure 2. The dot-dash lines
with circles are corresponding to the results obtained by using
Bernier et al method. While the solid lines with triangles are
corresponding to the results obtained by our method. Owing to
the page limit, we only show the case when Sb equals 0.0025
and 0.01. It is clear from Figure 2, both methods can generate
neural networks fitting well to the training data. Both methods
give almost identical performance. But their performances in
the testing datasets are different. Our method works better than
the one obtained by the Bernier et al method.



V. DISCUSSION

Before making a conclusion of the paper, a few remarks
should be added. First, the objective function derived here
is similar but not identical to the one Amari derived for a
stochastic perceptron learning in p.1398 of [1]. In [1], the
noise is an additive white noise which corrupts on the output
of hidden nodes and output nodes. While the noise we consider
here is a multiplicative weight noise corrupted only on the
output weights.

Second, the objective function derived in this paper can
equally be applied to simple additive weight noise. For the
weights that are corrupted by additive white noise of mean
zero variance Sβ , S(xk, θ) will reduce to Se + SβθT θ. Then,
applying gradient descent method, a training algorithm similar
to the one presented in this paper can be accomplished. If
furthermore we assume Sβ � Se, it can readily be shown
that the objective function in Equation (14) can be reduced to
the well known weight decay objective function [19].

Third, our objective function is in fact related to some
other Bayesian type objective functions. In our paper, we have
assumed that there is no prior information on the distribution
of θ. If P (θ) is known in advance and assumed that the
dataset D is generated by a set of fault models with conditional
probability P (θ̃|θ), the estimation of θ can thus be obtained
by Bayesian Modeling Averaging (BMA) technique [14], [23].
BMA is essentially an extension of Bayesian inference to
estimate a model with parameters uncertainty.

P (θ|D) =
P (D|θ)P (θ)

P (D)
(19)

P (D|θ) =
∫

P (D|θ̃, θ)P (θ̃|θ)dθ̃. (20)

In such case, an RBF can be obtained by maximizing the
P (θ|D), i.e.

log P (θ)− log P (D)+
N∑

k=1

log
(∫

P (xk, yk|θ̃, θ)P (θ̃|θ)dθ̃

)
,

where N is the total number of data in the set D. Compare the
above objective function with ours, the difference just in the
a priori term log P (θ). Therefore, our method can be treated
as a special case of BMA method in which P (θ) is assumed
to be a constant.

VI. CONCLUSION

In this paper, we have derived from a new approach – KL
Divergence – an objective function for training a RBF network
that is able to tolerate multiplicative weight noise. Suppose
a RBF network is suffered from multiplicative output-weight
noise, simulation results have indicated that the RBF trained
by the new objective function outperforms the one trained by
using Bernier et l’s explicit regularizer. As KL divergence
has very close relation to Bayesian learning, a discussion
has been included in the end of the paper to elucidate the
relations amongst our proposed objective function and the
other Bayesian type objective functions.
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