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Abstract. In neural networks, network faults can be exhibited in dif-
ferent forms, such as node fault and weight fault. One kind of weight
faults is due to the hardware or software precision. This kind of weight
faults can be modelled as multiplicative weight noise. This paper ana-
lyzes the capacity of a bidirectional associative memory (BAM) affected
by multiplicative weight noise. Assuming that weights are corrupted by
multiplicative noise, we study how many number of pattern pairs can be
stored as fixed points. Since capacity is not meaningful without consider-
ing the error correction capability, we also present the capacity of a BAM
with multiplicative noise when there are some errors in the input pattern.
Simulation results have been carried out to confirm our derivations.

1 Introduction

Associative memories have a wide range of applications including content ad-
dressable memory and pattern recognition [1,2]. An important feature of asso-
ciative memories is the ability to recall the stored patterns based on partial or
noisy inputs. One form of associative memories is the bivalent additive bidirec-
tional associative memory (BAM) [3] model. There are two layers, FX and FY , of
neurons in a BAM. Layer FX has n neurons and layer FY has p neurons. A BAM
is used to store pairs of bipolar patterns, (Xh, Y h)’s, where h = 1, 2, · · · , m;
Xh ∈ {+1, −1}n; Y h ∈ {+1, −1}p; and m is the number of patterns stored.
We shall refer to these patterns pairs as library pairs. The recall process is an
iterative one starting with a stimulus pair (X(0), Y (0)) in FX . After a number
of iterations, the patterns in FX and FY should converge to a fixed point which
is desired to be one of the library pairs.

BAM has three important features [3]. Firstly, BAM can perform both het-
eroassociative and autoassociative data recalls: the final state in layer FX rep-
resents the autoassociative recall, while the final state in layer FY represents
the heteroassociative recall. Secondly, the initial input can be presented in one
of the two layers. Lastly, BAM is stable during recall. In other words, for any
connection matrix, a BAM always converges to a stable state. Several methods
have been proposed to improve its capacity [4,5,6,7,8].
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Although the capacity of BAM has been intensively studied with a perfect lab-
oratory environment consideration[9,10,11,12,13], practical realization of BAM
may encounter the problem of inaccuracy in the stored weights. All the previous
studies assume that the stored weights matrix is noiseless. However, this is not
always the case when training a BAM for some real applications. One kind of
weight faults is due to the hardware or software precision [14,15]. For example,
in the digital implementation, when we use a low precision floating point format,
such as 16-bit half-float[16], to represent trained weights, truncation errors will
be introduced. The magnitude of truncation errors is proportional to that of
the trained weights. Hence, truncation errors can be modelled as multiplicative
weight noise[17,18].

This paper focuses on the quantitative impact of multiplicative weight noise
to the BAM capacity. We will study how many number of pattern pairs can be
stored as fixed points when multiplicative weight noise presents. Since capacity
is not meaningful without considering the error correction capability, we also
present the capacity of BAM with multiplicative noise when there are some errors
in the input pattern. The rest of this paper is organized as follows. Section 2
introduces the BAM model and multiplicative weight noise. In section 3, the
capacity analysis on BAM with multiplicative weight noise is used. Simulation
examples are given in Section 4. Then, we conclude our work in Section 5.

2 BAM with Multiplicative Weight Noise

2.1 BAM

The BAM, as proposed by Kosko [3], is a two-layer nonlinear feedback heteroas-
sociative memory in which m library pairs (X1, Y 1), · · · , (Xm, Y m) are stored,
where Xh ∈ {−1, 1}n and Y h ∈ {−1, 1}p. There are two layers of neurons in
BAM; layer FX has n neurons and layer FY has p neurons. The connection
matrix between the two layers is denoted as W .

The encoding equation, as proposed by Kosko, is given by

W =
m∑

h=1

Y h Xh
T (1)

which can be rewritten as

wji =
m∑

h=1

xihyjh , (2)

where Xh = (x1h, x2h, · · · , xnh)T and Yh = (y1h, y2h, · · · , yph)T .
The recall process employs interlayer feedback. An initial pattern X(0) pre-

sented to FX is passed through W and is thresholded, and a new state Y (1) in
FY is obtained which is then passed back through WT and is thresholded again,
leading to a new state X(1) in FX . The process repeats until the state of BAM
converges. Mathematically, the recall process is:

Y (t+1) = sgn
(
W X(t)

)
, and X(t+1) = sgn

(
WT Y (t+1)

)
, (3)
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where sgn(·) is the sign operator:

sgn(x) =

⎧
⎨

⎩

+1 x > 0
−1 x < 0
state unchanged x = 0

.

Using an element-by-element notation, the recall process can be written as:

y
(t+1)
i = sgn

(
n∑

i=1

wjix
(t)
i

)
, and x

(t+1)
j = sgn

⎛

⎝
p∑

j=1

wjiy
(t+1)
i

⎞

⎠ , (4)

where x
(t)
i is the state of the ith FX neuron and y

(t)
j is the state of the jth FY

neuron. The above bidirectional process produces a sequence of pattern pairs
(X(t), Y (t)): (X(1), Y (1)), (X(2), Y (2)), · · ·. This sequence converges to one of the
fixed points (Xf , Y f ) and this fixed point ideally should be one of the library
pairs or nearly so. A fixed point (Xf , Y f ) has the following properties:

Y f = sgn(W Xf ) and Xf = sgn(WT Y f ). (5)

Hence, a library pair can be retrieved only if it is a fixed point. One of the
advantages of Kosko’s encoding method is the ability of incremental learning,
i.e., the ability of encoding new library pairs to the model based on the current
connection matrix only. With the Kosko’s encoding method, BAM can only
correctly store up to min(n,p)

2 log min(n,p) library pairs. When the number of library
pairs exceeds that value, a library pair may not be stored as a fixed point.

2.2 Multiplicative Weight Noise

In some electrical circuits, inaccuracy occurs in the implementation of trained
weights. Errors in the weights may be caused by quantization error due to lim-
ited bits used to store the trained weights, or percentage error due to voltage
perturbation. In the digital implementation, such as DSP and FPGA, the trained
weights are usually stored as floating-point format. Floating-point representation
of real numbers is more desirable than integer representation because floating-
point provides large dynamic range. When we use a low precision floating point
format, such as 16-bit half-float[16], to represent trained weights, truncation er-
rors will be introduced. The magnitude of the truncation errors is proportional
to that of the trained weights[19]. Hence, the truncation errors can be modelled
as multiplicative weight noise.

An implementation of a weight wji is denoted by w̃ji. In multiplicative weight
noise, each implemented weight deviates from its nominal value by a random
percent, i.e.,

w̃ji = wji + bji wji (6)

where bji’s are identical independent mean zero random variables with variance
σ2

b . The density function of bji’s is symmetrical.
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3 Analysis on BAM with Multiplicative Weight Noise

3.1 Capacity

We will investigate the BAM’s memory capacity when the multiplicative weight
noise presented. The following assumptions and notations are used.

– The dimensions, n and p, are large. Also, p = rn, where r is a positive
constant.

– Each component of library pairs (Xh, Y h)’s is a ±1 equiprobable indepen-
dent random variable.

– EUj,h is the event that
∑n

i w̃jixih is equal to yjh (the j-th component of the
library pattern Y h). Also, EU j,h is the complement event of EUj,h.

– EVi,h is the event that
∑p

j w̃jiyjh is equal to xih (the i-th component of the
library pattern Xh). Also, EV i,h is the complement event of EVi,h.

With the above assumptions and the multiplicative weight noise, we will intro-
duce Lemma 1 and Lemma 2. They will assist us to derive the capacity of BAM
with multiplicative weight noise.

Lemma 1: The probability Prob(EU j,h) is approximately equal to

Q

(√
n

(1 + σ2
b )m

)

for j = 1, · · · , n and h = 1, · · · , m, where Q(z) = 1√
2π

∫ ∞
z exp(−z2

2 )dz.

Proof: Event EU j,h means that sgn (
∑n

i=1 w̃jixih) �= yjh. From (2) and (6), we
have

n∑

i=1

w̃jixih =
n∑

i=1

wji(1 + bji)xih =
n∑

i=1

(
m∑

h′

yjh′xih′ )(1 + bji)xih

= nyjh +
n∑

i=1

(
m∑

h′ �=h

yjh′xih′ )xih +
n∑

i=1

(
m∑

h′=1

yjh′xih′)bjixih (7)

Without loss of generality, we consider the library pair (Xh, Y h) having all
components positive: Xh = (1, . . . , 1)T and Y h = (1, . . . , 1)T . This considera-
tion is usually used [13] and does not affect our results. We can easily verify this
by use of conditional probability. Now,(7) becomes

n∑

i=1

w̃jixih = n +
n∑

i=1

(
m∑

h′ �=h

yjh′xih′ ) +
n∑

i=1

(
m∑

h′=1

yjh′xih′)bji (8)

= n +
n∑

i=1

αji +
n∑

i=1

βji , (9)
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where αji’s are independent identical zero mean random variables (i.e., E[αji] =
0, and E[αjiαji′ ] = 0 for i �= i′) and the variance of αji’s, denoted as Var[αji], is
equal to (m−1). Since bji’s are independent identical zero mean random variables
and they are independent of (

∑m
h′=1 yjh′xih′ )’s. Hence, βji’s are independent

identical zero mean random variables, where E[βji] = 0, E[βjiβji′ ] = 0 for
i �= i′), Var[βji] = σ2

bm.
For large n, the summations,

∑n
i=1 αji and

∑n
i=1 βji, tend to normal with

variances equal to (m − 1)n and σ2
bmn,respectively. Besides, the sum of the two

normal random variables is still a normal random variable. Hence, (9) becomes

n∑

i=1

w̃jixih = n +
n∑

i=1

αji +
n∑

i=1

βji = n + α + β . (10)

Note that βji’s are independent of (
∑m

h′=h yjh′xih′)’s. We have E[αβ] = 0, E[α+
β] = 0 and Var[α+β] = (m−1)n+σ2

bmn. Event EUj,h means that α+β < −n.

Hence, Prob(EUj,h) ≈ Q

(√
n

(m−1)+σ2
b m

)
. For large m, Q

(√
n

(m−1)+σ2
b m

)
≈

Q

(√
n

(1+σ2
b )m

)
. (Proof completed).

Using the similar way, we can have Lemma 2.

Lemma 2: The probability Prob(EVi,h) is approximately equal to

Q

(√
p

(1 + σ2
b )m

)

for i = 1, · · · , p and h = 1, · · · , m.

Now, we start to estimate the capacity. Let the probability that a library pair
(Xh, Y h) is fixed point be P∗:

P∗ = Prob (EU1h ∩ · · · ∩ EUnh ∩ EV1h ∩ · · · ∩ EUph)
= 1 − Prob

(
EU1h ∪ · · · ∪ EUnh ∪ EV 1h ∪ · · · ∪ EV ph

)

≥ 1 − pProb(EU jh) − nProb(EV ih) . (11)

From Lemmas 1 and 2, (11) becomes

P∗ ≥ 1 − pQ

(√
n

(1 + σ2
b )m

)
− nQ

(√
p

(1 + σ2
b )m

)
. (12)

Letting PB = pQ

(√
n

(1+σ2
b )m

)
and PA = nQ

(√
p

(1+σ2
b )m

)
, we get

P∗ ≥ 1 − PB − PA . (13)
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If z is large,

Q(z) ≈ exp
{

−z2

2
− log z − 1

2
log 2π

}
, (14)

which is quite accurate for z > 3. Using the approximation (14),

PA = exp
{

log p − n

2(1 + σ2
b )m

− 1
2

log
n

(1 + σ2
b )m

− 1
2

log 2π

}

= exp
{

log r + log n − n

2(1 + σ2
b )m

− 1
2

log
n

(1 + σ2
b )m

− 1
2

log 2π

}

= exp
{

log n − n

2(1 + σ2
b )m

− 1
2

log
n

(1 + σ2
b )m

+ constant
}

(15)

Clearly, if m < n
2(1+σ2

b ) log n
, PA tends zero as n tends infinity. Similarly, we can

get that as p → ∞ and m < p
2(1+σ2

b ) log p
, PB → 0. To sum up, for large n and

p, If

m <
min(n, p)

2(1 + σ2
b ) log min(n, p)

(16)

then P∗ → 1. That means if the number m of library pairs is less than
min(n,p)

2(1+σ2
b ) log min(n,p) , a library pair is with a very high chance to be a fixed point.

So the capacity of BAM with multiplicative weight noise is equal to
min(n,p)

2(1+σ2
b ) log min(n,p) .

3.2 Error Correction

In this section, we will investigate the capacity of BAM with weight noise when
the initial input is a noise version Xnoise

h of a library pattern Xh. Let Xnoise
h

contains ρn bit errors, where ρ is the input noise level. If

Y h = sgn(W̃ Xnoise
h ) (17)

Xh = sgn(W̃T Y h) (18)
Y h = sgn(W̃ Xh) , (19)

then a noise version Xnoise
h can successfully recall the correct the desire library

pair (Xh, Y h). Similarly, we hope that a noise version Y noise
h of Y h can suc-

cessfully recall the correct the desire library pair (Xh, Y h). We will study under
what condition of m, the probability of successful recall tends to one.

Define EUnoise
j,h be the event that

∑n
i w̃jix

noise
ih is equal to yjh (the j-th com-

ponent of the library pattern Y h). Also, EU
noise

j,h is the complement event of
EUnoise

j,h . Also, define EV noise
i,h be the event that

∑p
j w̃jiy

noise
jh is equal to xih

(the i-th component of the library pattern Xh). Also, EV
noise

i,h is the comple-
ment event of EV noise

i,h . With the above definition, we can following the proof of
Lemma 1 to get the following two lemmas.
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Lemma 3: The probability Prob(EU
noise

i,h ) is approximately equal to

Q

(√
(1 − 2ρ)n
(1 + σ2

b )m

)

for i = 1, · · · , p and h = 1, · · · , m.

Lemma 4: The probability Prob(EV
noise

i,h ) is approximately equal to

Q

(√
(1 − 2ρ)p
(1 + σ2

b )m

)

for i = 1, · · · , p and h = 1, · · · , m.

Define P∗∗ be the probability that a noise version with ρ fraction of errors can
recall the desired library pair. It is not difficult to show that

P∗∗≥1−p
(
Prob(EU jh) + Prob(EU

noise

jh )
)
−n

(
Prob(EV ih + Prob(EV

noise

ih ))
)

.

(20)
From Lemmas 1-4, To sum up, for large n and p, if

m <
(1 − 2ρ)min(n, p)

2(1 + σ2
b ) log min(n, p)

(21)

then P∗∗ → 1. That means, when there are ρn (or ρp) bit errors in the ini-
tial input, the capacity of BAM with multiplicative weight noise is equal to

(1−2ρ) min(n,p)
2(1+σ2

b ) log min(n,p) .

4 Simulation

4.1 Capacity

We consider two dimensions, 512 and 1024. For each m, we randomly generate
1000 sets of library pairs. The Kosko’s rule is then used to encode the matrices.
Afterwards, we add the multiplicative weight noise to the matrices. The variances
σ2

b of weight noise are set to 0, 0.2, 0.4.
Figure 1 shows the percentage of a library pair being successfully stored. From

the figure, as the variance of weight noise increases, the successful rate decreases.
This phenomena agrees with our expectation.

From our analysis, i.e., (16), for n = p = 512, a BAM can store up to 41,
34, and 29 pairs for σ2

b equal to 0, 0.2 and 0.4, respectively. From Figure 1(a),
all the corresponding successful rates are very large. Also, there are a sharply
decreasing changes in successful for {m > 41, σ2

b = 0}, {m > 34, σ2
b = 0.2}, and

{m > 29, σ2
b = 0.4}.
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(a) n = p = 512 (b) n = p = 1024

Fig. 1. Successful rate of a library pair being a fixed point. (a) The dimension is 512.
(b) The dimension is 1024. For each value of m, we generate 1000 sets of library pairs.
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Fig. 2. Successful recall rate from a noise input. The dimension is 512. For each value
of m, we generate 1000 sets of library pairs. For each library pattern, we generate 10
noise versions.

Similarly, from (16), for n = p = 1024, a BAM can store up to 73, 61, and
52 pairs for σ2

b equal to 0, 0.2 and 0.4, respectively. From Figure 1(b), all the
corresponding successful rates are also large. Also, there are a sharply decreasing
changes in successful for {m > 73, σ2

b = 0}, {m > 61, σ2
b = 0.2}, and {m > 52,

σ2
b = 0.4}. To sum up, the simulation result is consistent with our analysis (16).

4.2 Error Correction

The dimension is 512. We consider two weight noise levels, σ2
b = 0.2, 0.4 ,and

three input error levels, ρ = 0.003125, 0.0625, 0.125. For each m, we randomly
generate 1000 sets of library pairs. The Kosko’s rule is then used to encode the
matrices. Afterwards, we add the multiplicative weight noise to the matrices.
For each library pair, we generate ten noise versions. We then feed the noise
versions as initial input and check whether the desire library can be recalled
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Fig. 3. Successful recall rate from a noise input. The dimension is 1024. For each value
of m, we generate 1000 sets of library pairs. For each library pattern, we generate 10
noise versions.

or not. Figures 2 and 3 shows the successful recall rate. From the figures, as
the input error level ρ increases, the successful rate decreases. This phenomena
agrees with our expectation.

From our analysis, i.e., (21), for the dimension n = p = 512 and weight noise
level σ2

b = 0.2, a BAM can store up to 32, 30, and 26 pairs for the input error
level ρ equal to 0.03125, 0.0625 and 0.125, respectively. From Figure 2(a), all
the corresponding successful rates are large. Also, there are a sharply decreasing
changes in successful recall rates for {m > 32, ρ = 0.03125}, {m > 30, ρ =
0.0625}, and {m > 26, ρ = 0.125}. For other weight noise levels and dimension,
we obtained similar phenomena.

5 Conclusion

We have examined the statistical storage behavior of BAM with multiplicative
weight noise. The capacity of a BAM is m < min(n,p)

2(1+σ2
b ) log min(n,p) . When the num-

ber of library pairs is less that value, the chance of it being a fixed point is
very high. Since we expect BAM has certain error correction ability, we have
investigated the capacity of BAM with weight noise when the initial input is
a noise version of a library pattern. We show that if m < (1−2ρ) min(n,p)

2(1+σ2
b ) log min(n,p) , a

noise version with ρn (or ρp) errors has a high chance to recall the desire library
pairs. Computer simulations have been carried out The results presented here
can be extended to Hopfield network. By adopting the approach set above, we
can easily obtain the result in Hopfield network by replacing min(n, p) with n in
the above equations.
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