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Abstract 
 

Although weight decay learning has been proposed 
to improve generalization ability of a neural network, 
many simulated studies have demonstrated that it is 
able to improve fault tolerance. To explain the 
underlying reason, this paper presents an analytical 
result showing the equivalence between adding weight 
decay and adding explicit regularization on training a 
RBF to tolerate multiplicative weight noise. Under a 
mild condition, it is proved that explicit regularization 
will be reduced to weight decay.  
 

Index Terms－Weight decay, Explicit regularization, 
Radial basis function (RBF), Multiplicative weight 
noise (MWN). 
 
1. Introduction 
 

In the process of knowledge acquisition, one can 
use the deviation between network output and target 
output to adjust the weights of a neural network (NN) 
[1]. For more than a decade, analysis on fault 
tolerance of a NN has been a major topic in the 
research community [2], [3], [4], [5], [10], [11]. A 
fault tolerant neural network is able to persistently 
working whenever the hardware or software has 
error/fault. Two kinds of faults can usually be found 
while a NN is implemented by FPGA technologies. 
They are node dead [10], [12], [14] and weight noise 
(additive or multiplicative). This paper is focusing on 
MWN [8], [9], [11], [13], [15]. 

Weight decay learning algorithm [6] is the same as 
other learning algorithms. In which, weights are 
adjusted to get good generalization. But, determining 
the decay constant so as to get best performance is a 
difficult problem. Without much information about 
the properties of the dataset, it will need large 
computational and memory resource to try every 
possible value for the decay constant in order to dig 
out the best model. 

 
The rest of this paper is organized as follows. In 

Section 2, the model of an RBF is defined. Then, the 
model for multiplicative weight noise is stated in 
Section 3. In the same section, two variants of RBF 
models will be defined as well. In Section 4, the WDL 
[6] and ERL [8] will be reviewed and their 
regularization terms are highlighted. Their 
equivalence is proved in Section 5. Besides, the 
setting of the decay constant in terms of weight noise 
variance and the width of basis functions are derived 
for one-dimensional and two-dimensional problems. 
Finally, the conclusion of the paper is given in Section 
6. 
 
2. Search problems 
 

Fig. 1 shows that a system by measured datum. 
 

 
Fig. 1. The measured datum. 

 
Fig. 2 shows that input x is transformed into )(xg  

and output y is obtained by adding )(xg  with 
external noise. If )(xg  and the external noise are 
known, it is able to acquire the behavior of this 
system. But, )(xg  is hard to know. The researchers 
often assumed that )(xg   is a nonlinear model, such 
as a fuzzy system and a neural network, and using 
measured datum to estimate the parameter of the 
model. In this paper, the definition )(xg  is a RBF 
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network [1]. 
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Fig. 2. Schematic diagram of the simulation 

environment. 
 

In this paper, we have to solve a problem that the 
predicted error needs to reduce as the weight suffered 
different margin oscillation. In Fig. 3 shows that 
simulation environment. At first, we have two 
situations about finding a suitable model. The former, 
input x , weight ŵ  and output ŷ  are without 
adding any elements. The latter, output y~  is 
including special factors x  and w~ . 
 

y

ŷ

y~)w~,x(f

x

)ŵ,x(f

system  
Unknown

 
Fig. 3. Analysis the problem of simulation 

environment. 
 
3. Multiplicative weight noise 
 

A RBF NN is belonging to feedforward neural 
network (FNN) and it formed input layer, hidden layer 
and output layer. Purposing of the concept are 
constructing many neural nodes and using curve 
fitting method to find input-output mapping. A RBF 

)(xφ of neural node that can be represented as 
follows: 

))(exp()(
2

σ
φ cxx −−=  (1) 

where c  is radial function center and σ  is the 
width of a RBF. Figure 4 shows a schematic diagram 
of the RBF network. Including N  of input vectors, 
M  of neural nodes and single output. 
 

In this case, the output of a RBF network is: 

∑
=

+⋅=
M

j
jj wxwxf

1
0)()( φ  (2) 

where ( )xjφ  are the number of basis functions, 

{ }M ...,2 jw j ,,1| =  are the synaptic weights. 
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Fig. 4. Schematic diagram of the RBF network. 

 
When a neural weight ( )iŵ malfunctioned ( )iw~ , 

  ,ˆ~
iii sww +=  (3) 

 ,ˆ iii wbs =  (4) 

where iŵ  is initial weight, is is the multiplicative 
weight noise and ib  is random variable of normal 

distribution. With 0][ =ibE  and bi SbE =][ 2 . 

∑x

1

1 2φ

000 ˆˆ wbw +

),( wwxf Δ+

1φ

0φ
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111 ˆˆ wbw +

222 ˆˆ wbw +

MMM wbw ˆˆ +

 
Fig. 5. Schematic diagram of MWN of RBF. 

 
Therefore, for 12 ˆˆ ww >  the noise factor 2s  will 

be larger than 1s , see Fig.6. 
 

111 ˆˆ wbw +

222 ˆˆ wbw +

1ŵ 2ŵ  
Fig. 6. Noise distribution of MWN. 

4. Learning algorithms 
 
4.1. Weight Decay Learning[6] 
 

WDL can improve the generalization capability of a 
FNN. Weight decay has two nice properties. The form 
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is that it can restrain the unsuitable elements of weight 
vectors. The later is that the weight can control static 
noise index and increase generalization ability [7]. 
WDL is a method that can decay a quantity of weights. 
WDL can decrease tiny weight to zero. Therefore, it 
can reduce some parameters in the network 
architecture. In this paper, we assumed N  of inputs 
and outputs, 

  { } yx   yxyx Data NN ),(),(),,( 2211=  (5) 

objective function )(wc , 

( )( ) wwxwy
N

wc T
N

k
k

T
k λφ +−= ∑

=1

21)(  (6) 

where ky  is output, ( )kxφ  is a RBF and λ  is 
learning rate. Assume that hidden layer has three 
neural nodes as 0φ , 1φ and 2φ . 
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Weight vectors that can be represented as follows: 
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4.2. Explicit Regularization Learning[8] 
 

Learning algorithm are not only applying 
multilayer perceptron (MLP) structure but also 
adjusting weights for different solution schemes. 
Further, the maximum fault tolerant scheme on 
backpropagation (BP) learning algorithm was 
proposed. The goal of mean square error (MSE) is 
achieving the minimum decay. Objection function of 
ERL [8, 9] as follows:  
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where bS  is variance and G  is a new additional 
term. 
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Aggregating (10) and (11), the weight that as  
follows: 
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5. WDL=ERL ( 0=ow ) 
 

We can use WDL and ERL on training RBF 
network to against MWN. However, WDL and ERL 
are completely different learning methods. WDL is a 
regularization algorithm. But ERL is aiming at MWN. 
Details of the proposed that fault tolerant performance 
of WDL=ERL on 1-D and 2-D are stated in the 
subsections that follow. 
 
5.1. One-dimensional problems 
 
  We assume some research questions on 1-D. When 
weights were suffered margin oscillation, we need to 
reduce predicted error. For MWN part, we compared 
with WDL and ERL. 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

λ

λ
λ

00
0

0
00

 (13) 

and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∑

∑

∑

=

=

=

N

k
kMb

N

k
kb

N

k
kb

x
N

S

x
N

S

x
N

S

1

2

1

2
1

1

2
0

)(100

0

)(10

00)(1

φ

φ

φ  

(14) 

 
 
  In this paper, RBF is assumed ∞→N   as 

[ ]LLx ,−∈  and 
L

xp
2
1)( =  condition can be 

represented as follows:  
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Aggregating (15) and (16), a RBF is rewritten as: 
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∫∫∫ === dxxdxxdxx M )()()( 22
2

2
1 φφφ  (17) 

We could have similar fault tolerance as (18) on WDL 
and ERL. 

22
πσλ

L
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5.2. Two-dimensional problems 
 

Besides, we use Signum function on 2-D. Moreover, 
input vector 1x and 2x  through Sign function 
transform into 0 or 1 as following equation: 
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⎨
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In terms of (19) shows that 3-D space. It divisions 
into four areas by 1x  and 2x . 

 

1
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Fig. 7. Schematic diagram of 3-D space by input 

vector. 
 

We assumed ∞→N  on 2-D as given in (20). 
Input vectors ( )21, kk xx  represent that the k th of 
input pattern can be defined as: 
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By using (20) to operation integration as follows: 
 

( )

( ) ( )

( ) 21
1

1

1

1
21

2

21
1

1

1

1
2121

2

1
21

2

,
4
1

,,

,1

dxdxxx

dxdxxxpxx

xx
N

   

kki

kkkki

N

k
kki

∫ ∫
∫ ∫

∑

− −

− −

=

≈

≈

φ

φ

φ

 
(21) 

 

( ) ( ) ( )

( ) ( )

( ) 2
1

2

1

2

2

2
1exp

2exp

Σ=

⎟
⎠
⎞

⎜
⎝
⎛ −−−

⎟
⎠
⎞

⎜
⎝
⎛ −−−=

∫ ∑

∫∫
−

xN

T

T
i

 

dxxx   

dxcxcxdxx   

π

μμ

σ
φ

 (22) 

 
5.2.1 Case I Assume that the dimension of input 
vector is 2( 2=xN ) and σ  is the width of neural 
node as follows: 
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Aggregating (20) to (23), it can get a new learning 
rate λ  by (24). By using λ  can has the same fault 
tolerance on 1-D and 2-D. 

bS 2
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5.2.2 Case II Furthermore, we consider the 
multivariate normal distribution. From Khintchine 
weak law of large numbers as follows: 
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where all 0>ε  and E  is expectation value. When 
input vector is 2-D that can be represented as follows: 
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The expectation value of random variables can be 
defined as: 
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where ( )xp  is probability density function (PDF) 
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In Fig. 8 shows that two vectors average 
distribution between L−  and L . Thus, we can be 
represented ( )xp  as follows: 
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Fig. 8. Average distribution area of 1x  and 2x  

 
Besides, we defined density function of normal 
variables as follows: 
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where ic  is the i th of RBF center and ∑  is 
variance-covariance matrix. In order to convenient, 
we use vector symbols to represent formula further. 
First, we can be represented ∑ , ∑  and 1−∑ as 
follows: 
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where ρ  is coefficient of 1x and 2x . Aggregating 
(30) to (32), it can rewritten bivariate as follows:  
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  In fact, we can easily to find the exponent 

party(ignore coefficient,
2
1− ) by (29) is equal to 

under equation: 
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In Fig. 9 and 10 show that volumes of bivariate 
normal density are distributed between 1ic and 2ic . 
And then the direction of an ellipse is decided by 

1−∑ . 

1ic

2ic

1x

2x 0=ρ

 
Fig. 9. The silhouette of equal-density. 
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Fig. 10. The silhouette of equal-density. 

In addition to all of the above, we defined ( )x2φ  : 
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In the statistics theorem, multivariate normal 
density function be defined as: 
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And joint density function of 2-D has below 
characteristic: 
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At last, we integration above equations to get a new 
term: 
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Moreover, the diagonal elements of matrix ( )GSb  

will be equal to 2
1
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∑

L
Sbπ  and  the coefficients of 
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multivariate are independent as follows:  
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Suppose Ζ=∑=∑=∑ M21 , it is able to derive 
that 

22
πλ ×Ζ==

L
SGS b

b  (41) 

In the same way, we use new learning rate λ  by 
(41) to train RBF with weight decay and explicit 
regularization also have the same fault tolerant.  
 
6. Conclusion 
 

This paper presented a theoretical result showing 
the equivalence of applying weight decay learning and 
explicit regularization learning for training RBF to 
against MWN. At particular conditions on 1-D and 
2-D can achieve similar fault tolerant ability. Training 
a neural network by weight decay to improve fault 
tolerance ability has been one simple approach that 
has been used for more than one decade. Though, 
simulation results have demonstrated its success in 
tolerating multimode fault and multiplicative weight 
noise, not much theoretical work has been bone along 
these finding. The equivalence result presented in this 
paper provides direct proof to explain the use of 
weight decay to tolerate multiplicative weight noise. 
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