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Abstract The conventional channel-optimized vector

quantization (COVQ) is very powerful in the protec-

tion of vector quantization (VQ) data over noisy

channels. However, it suffers from the time consuming

training process. A soft decoding self-organizing map

(SOM) approach for VQ over noisy channels is pre-

sented. Compared with the COVQ approach, it does

not require a long training time. For AWGN and

fading channels, the distortion of the proposed ap-

proach is comparable to that of COVQ. Simulation

confirmed that our proposed approach is a fast and

practical method for VQ over noisy channels.

Keywords Vector quantization � Self-organizing map

1 Introduction

Vector quantization (VQ) is a widely used data com-

pression method [1–6]. Traditionally, the codebook of

the VQ process alone is optimized for the data source

only. Obviously, data encoded by this VQ approach is

not effectively transmitted over noisy channels [7].

Hence, the channel noise results in significant degra-

dations in the system performance. Although channel

coding techniques [8] can be used to protect the data,

in a heavy noise environment channel coding cannot

correct all transmission errors and then the VQ process

still faces an equivalent noisy channel. To reduce the

degradation due to channel noises, joint source-chan-

nel coding (JSCC) is usually considered [7– 12]. There

are two common JSCC approaches.

In the first approach, namely robust VQ (RVQ) [7,

9–11], a codebook is first trained for a noiseless chan-

nel. Afterwards, an index assignment procedure is

carried out. It assigns each codevector to a signal of the

signal constellation. The issue of sensitivity to channel

noise for VQ is formulated as an assignment problem.

As the problem is NP-hard, finding the optimum

solution is impractical for a large codebook. Hence,

several heuristics were proposed [7, 9–11]. One feature

common to the heuristics is the need to calculate all the

pairwise distances between two distinct codevectors.

Hence, they involve very large overhead when the size

of the codebook is large. Also, the time-consuming

assignment procedure must be carried again when a

new codebook is used.

In the second approach, namely channel-optimized

VQ (COVQ) [12, 13], a codebook is trained for a

specified channel. Simulation results showed that the

performance of this approach is better than that of

some RVQ techniques. However, this approach re-

quires a reliable feedback channel for COVQ training.

Also, to obtain a good codebook, the number of re-

quired training epoches is very large. If we further add

a time-consuming decoding channel code, such as tur-

bo code [13], on the top the COVQ, the training time

will become impractically long.
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An alternative form of RVQ is the self-organizing

map (SOM) approach originally proposed in [14] for

hard-decoding. The SOM approach provides channel

robustness by preserving a neighborhood structure. It

avoids the undesirable time-consuming index assign-

ment process. However, the key problem in the SOM

approach [14] is that the VQ decoder uses the hard

decision method. Hence, the VQ decoder is not a

minimum mean-square error (MMSE) estimator [15].

This paper investigates the soft decoding SOM ap-

proach over noisy channels. Our approach does not

need a time-consuming index assignment process when

a new codebook is used or the noise power of the

channel changes. Also, it does not require a long

training time and a reliable feedback channel for

training. Simulation results show that under the similar

number of training epoches our approach is better than

the conventional COVQ approach. To further improve

the performance, a SOM-based COVQ approach is

also discussed.

The rest of this paper is organized as follows. In

Sect. 2, the background information is presented.

Section 3 describes the proposed SOM based ap-

proaches. Simulation results are presented in Sect. 4.

Section 5 concludes the paper.

2 Background

In VQ, the codebook Y partitions the data space<k into

M regions W = { W1, . . . , WM }. Given an input vector~x;

the output is an index i* whose corresponding code-

vector~ci� is the closest codevector to~x: To transmit the

index, the modulator puts the corresponding channel

signal~si� 2 S ¼ f~s1; . . . ;~sMg; where S is the signal con-

stellation, to the channel. Two common modulation

methods, shown in Fig. 1, namely quadrature phase

shift keying (QPSK) and quadrature amplitude modu-

lation (QAM), are usually employed. [tb]

The channel is assumed to be an additive Gaussian

noise channel (AWGN) or an independent Rayleigh

fading channel [16]. The received channel signal is

given by

~r ¼ a~si� þ~n; ð1Þ

where a is the distortion with the Rayleigh distribution

and the noise ~n is a Gaussian random vector, with

variance r2 in each dimension. In the receiver side, the

symbol detector provides the conditional probability

density values (likelihood values) pð~rj~siÞ0s; for

i = 1, . . . , M. In the conventional hard decoding

rule, the output ~̂x is given by

~̂x ¼~ci0 ; ð2Þ

where pð~rj~si0 Þ[pð~rj~siÞ for all i „ i¢.
When the estimated codevector~ci0 is not equal to the

transmitted codevector~ci�; a symbol error occurs. The

distortion from ~ci0 to ~ci� depends on the association

between the codebook Y ¼ f~c1; � � � ;~cMg and

S ¼ f~s1; � � � ;~sMg: If the association is not created in a

proper manner, the distortion in the received data is

very large.

To reduce the effect from symbol errors, in the

RVQ approach [7, 9–11], a codebook is first trained for

a noiseless channel. An index assignment procedure is

then carried out. The objective function of the assign-

ment procedure is to minimize the cost function, given

by

D ¼
XM

i¼1

XM

j¼1

k~cj �~cik2Pð~sjj~siÞPð~ciÞ; ð3Þ

where Pð~ciÞ is the probability that the codevector~ci is

transmitted and Pð~sjj~siÞ is the conditional symbol error

probability. However, the above assignment problem is

NP-hard, finding a good solution is very time-con-

suming [17].

In the COVQ approach [12, 13], a codebook is

trained for minimizing the objective function, given by

DðY;XÞ ¼
XM

i¼1

Z

Xi

E pð~rjs~iÞk~x� ~̂xð~rÞk2
n o

pð~xÞ d~x; ð4Þ

where the expectation E {�} is operated on the channel

noise. The main drawback of this approach is that the

training time is very long. Also, training cannot be

performed unless we have an additional reliable

channel for training. Note that it is not possible for the

transmitter to know the receiver’s situation because

the channel is noisy.Fig. 1 Two modulation methods. a QPSK and b QAM
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3 SOM approaches

3.1 SOM training

In the SOM learning scheme [3, 6, 14, 18–20], a

neighborhood structure, represented by a graph

G = {V, E}, is imposed on a codebook, where V =

{ v1, . . . , vM } is a set of vertices and E is the set of

edges in this graph. In this representation, a vertex vi is

associated with a codevector ~ci: If the codevector ~ci is

defined to be a neighbor of ~cj; two corresponding

vertices vi and vj are joined by an edge with weighted

value equal to 1. The neighborhood distance between
~ci and ~cj is the length of the shortest path between vi

and vj in the graph G. A codevector ~ci is a level-u

neighbor of ~cj if the neighborhood distance between

the two codevectors is less than or equal to u. The

collection of level-u neighbors of a codevector ~ci is

denoted as Ni(u). The order uG of a topological order is

the longest neighborhood distance in G.

Figure 2 shows some commonly used structures.

Given an neighborhood structure, the learning algo-

rithm is summarized as follows:

1. Given the tth training vector ~xðtÞ, calculate the

distances di ¼ k~xðtÞ �~ciðtÞk0s from ~xðtÞ to all

training codevectors.

2. Find the closest codevector ~ci�ðtÞ; where di*<

di"i „ i*.

3. Update the codebook as follows:

~ciðt þ 1Þ ¼~ciðtÞ þ atð~xðtÞ �~ciðtÞÞ 8~ciðtÞ 2 Ni�ðutÞ;
ð5Þ

otherwise

~ciðt þ 1Þ ¼~ciðtÞ: ð6Þ

The parameter ut controls which codevectors should

be updated at the training iteration t. In our experi-

ence, the initial value u0 is equal to uG=4: The learning

rate at is a gain that controls the percentage of the

update on codevectors.

A trained SOM usually has the ordering-preserva-

tion property [6, 21]. That is, when two codevectors are

neighbors to each other in the graph, after training,

their Euclidean distance in the data space is usually

small. Figure 3 shows a typical run of a SOM. Initially,

the codevectors do not form a good ordering in the

data space. After training, the codevectors form some

ordering, i.e., two codevectors are very close in the

data space if they are neighbors to each other.

3.2 SOM mapping

According the ordering-preservation property, we can

simply use the neighborhood structure to create the

index assignment between the codebook and signal

constellation. Given a signal constellation, we use its

neighborhood structure as the neighborhood structure

of the SOM.

For example, if the signal constellation is 16 QPSK,

we can use the one-dimensional (1-D) circular struc-

ture as the neighborhood structure of the codebook. If

the signal constellation is 16 QAM, we can use the two-

dimensional (2-D) grid structure shown in Fig. 2 as the

neighborhood structure of the codebook. After train-

ing, the association, shown in Fig. 4, between the signal

constellation and codebook is automatically created.

With this approach, an error event in the receiver only

causes a small distortion in the VQ. This SOM ap-

proach avoids the undesirable time-consuming index

assignment process and the training process over noisy

channels.

3.3 Soft decoding SOM

In the hard decoding SOM approach, the output ~̂x is

given by

~̂x ¼~ci0 ; ð7Þ

where pð~rj~si0 Þ[pð~rj~siÞ for all i „ i¢ and pð~rj~si0 Þs are

conditional likelihood values. However, the key prob-

lem in this hard decoding SOM approach [14] is that

the VQ decoder uses the hard decision method. It does

Fig. 2 Three neighborhood
structures. a Circular, b
regular grid and c hypercube.
Since the graphs are used to
describe the neighborhood
structure of SOM. Note that
they do not reflect any actual
geometric information of
codebooks
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not utilize all the conditional likelihood values pro-

vided by the channel. Hence, it is not a MMSE esti-

mator [15].

To further improve the SOM approach, we should

utilize all the likelihood values pð~rj~sjÞ0s: In this case, the

output is given by

~̂x ¼
XM

i¼1

Pð~sij~rÞ~ci; ð8Þ

~̂x ¼
PM

i¼1 pð~rj~siÞPð~siÞ~ciPM
i¼1 pð~rj~siÞPð~siÞ

; ð9Þ

where Pð~sij~rÞ is the conditional probability that the

transmitted signal (codevector) is ~si ð~ciÞ given the re-

ceived signal, and Pð~siÞ is the a priori probability that~si

is transmitted. In soft decoding, the decision rule uti-

lizes all likelihood values provided by the channel.

Hence, the decision is the optimal in the statistical

sense.

3.4 SOM–COVQ approach

Since the SOM training method can produces a code-

book with a good a neighborhood structure, it is also

interested to investigate the hybrid model of the SOM

and COVQ approaches. In this model, we use the

SOM training method to train a good codebook Ysom

which has strong resistance to channel noise. After-

wards, we use the trained codebook Ysom as the initial

codebook of the COVQ algorithm to get a better

codebook. We call the hybrid approach as SOM–

COVQ.

3.5 Training time

In SOM, data samples are sequentially and repeatedly

presented. Equation (5) is used for updating the

codevectors. Hence, the training complexity for each

training example in a training epoch is equal to O(kM).

In COVQ and SOM–COVQ, the cobebook is trained

over the noisy channel. Data samples are first quan-
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SOM. The figure shows the
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To indicate the neighbor
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an edge to join two
codevectors if they are
defined as neighbors to each
other

Fig. 4 Association between
codevectors and signal
constellation
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tized and then the soft decoding outputs are collected

at the receiver. Afterwards, we update the codebook.

According to the soft decoding rule (9), the complexity

for each training example in a training epoch is equal

to O(kM). As the training complexity of SOM is the

same as that of COVQ, the number of required

training epoches for convergence determine the train-

ing efficient.

4 Simulation

The performance of various data protection schemes,

COVQ, SOM, and SOM–COVQ, are investigated.

Also, the performance without any data protection

(LBG trained codebook) is presented. Two analog

sources: Gaussian source and image data are used. Two

channel models are considered. They are AWGN and

independent Rayleigh fading channel. In the fading

channel, the estimated fading factor is assumed to be

available at the receiver.

4.1 Comparing with sufficient trained COVQ

In this section, two Gaussian data sources are consid-

ered. Each source contains 1,024 k-dimensional sam-

ples, where k = 2 or 3. The number of codevectors are

16. The signal constellation is 16 QAM. The number of

training epoches for SOM is 10 only. In COVQ and

SOM–COVQ, when we set the number of training

epoches to 40 such that the codebooks of COVQ and

SOM–COVQ are well trained.

The performance, in terms of signal-to-reconstruc-

tion error ratio (SRER) versus SNR in the channel, is

summarized in Figs. 5 and 6. The performance of those

data protection schemes is better than that of the

simple LBG algorithm. Compared with the LBG, the

hard coding SOM can improve the distortion. When

the soft decoding SOM is used, the performance is

further improved. The performance of the two soft

decoding SOM approaches (SOM and SOM–COVQ)

is better than that of the COVQ approach. Also, the

performance of SOM–COVQ is a bit better than that

of SOM for high SNR values. That means, a good

initial codebook for COVQ is important.

For a fixed SRER in the reconstruction data, the two

soft decoding SOM approaches can achieve about 1–

4 dB channel gains. For example, in the 2-D Gaussian

data and fading channel case (Fig. 7a), to achieve 7 dB

in the SRER, the SNR’s of the two soft decoding SOM

approaches should be around 9 dB. In the COVQ case,

to achieve the same SRER, the SNR in the channel

should be around 14 dB.

For a fixed SNR in the channel, the two soft

decoding SOM approaches can achieve about 1–2 dB

in SRER gains. For example, in Fig. 7a, when SNR in

the channel is equal to 10 dB, the SRERs of the two

soft decoding SOM approaches are around 7 dB while

the SRER of the COVQ approach is around 5.5 dB

only.

4.2 Image data: convergence

We use the image, Lena, as the data source to compare

the performance of the four soft decoding data pro-

tection schemes: LBG, SOM, COVQ and SOM–

COVQ. The modulation scheme is 16 QPSK. The

image is divided into a number of 4 · 2 blocks. Each

block is regarded as an 8-D input vector. The codebook

size is equal to 256. For the SOM codebook, the

Cartesian product of two 1-D circular graphs is used as

the neighborhood structure. In SOM, the number of

training epoches is equal to 10 only and their trained

codebooks are used for all channel SNR values.

For COVQ and SOM–COVQ, we vary the number

of training epoches. In COVQ and SOM–COVQ for a

large codebook, we find that if we only present each

sample one time in a training epoch, the convergence,
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in terms of training epoches and reconstruction error,

is very poor. This is because the COVQ training may

not be able to capture enough noise statistics of the

channel. So, we consider the re-transmissions of the

training samples in each epoch. Therefore, in COVQ

and SOM–COVQ, there are two training parameters:

one is the number N of training epoches, and the other

is the number T of re-transmissions of the training

examples in each epoch. Of course, in terms of dis-

tortion, it is desirable to have N and T sufficiently large

so that distortion is small and does not further decrease

significantly. Note that the additional bandwidth/pow-

er/delay requirement associated with the COVQ is

proportional to the value of N · T. In practice, the

minimum sufficient values of N · T should be used

such that the distortion does not further decrease sig-

nificantly. In the LBG and SOM approaches, there is no

re-transmission at each training epoch.

Figure 7 shows the root-mean-square-error (RMSE)

performance for the two channel models. For AWGN,

the channel SNR value is equal to 14 dB. For the

fading channel, the channel SNR value is equal to

29 dB. Other values of SNR have similar results. In

terms of the training convergence, the SOM approach

is much better than the COVQ approach. For COVQ,

with insufficient value of T (Fig. 7, T = 2), the COVQ

training process may not converge well even after

performing a large number of training cycles. With the

sufficient value of T, the convergence becomes better

for large value of T.

For the SOM–COVQ approach, a sufficient value of

T is also very important. With very small value T, even

we increase the number of training epoches, the SOM–

COVQ cannot achieve a performance better than the

SOM approach. However, with a large value of T, the

SOM–COVQ is better than the SOM approach. That

confirms that we can further improve the performance

of the SOM codebook if we use the codebook of SOM

as the initial codebook of COVQ. Compared with

COVQ, with a large value of T, the convergence of

SOM–COVQ is much better.

Those observations suggest that the COVQ ap-

proach is beneficial, only if sufficiently large values of T

and N (hence, possibly long delay, large bandwidth and

high power/channel SNR required for training) are

affordable; otherwise, the performance may actually
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LBG is equal to 15.29

Neural Comput & Applic

123



degrade. This justifies that the SOM as an excellent

RVQ. Note that in COVQ and SOM–COVQ, a dif-

ferent codebook for a different channel SNR is re-

quired.

Finally, reconstructed versions of the image ‘‘Lena’’

at SNR = 14 dB for the AWGN are shown in Fig. 8.

Compared with the conventional LBG without en-

hanced channel robustness, the SOM approach signif-

icantly improves the reconstruction quality of images.

Also, the visual performance of the SOM is compara-

ble to that of the sufficiently trained COVQ and SOM–

COVQ.

4.3 Image data: sufficiently trained COVQ

We use six images, shown in Fig. 9, as data source to

compare the performance of SOM with a sufficiently

trained COVQ. The three out of the six images, Lena,

(a) (b)

(d)(c)

(e) (f)

Fig. 8 The reconstructed
images at SNR = 14 dB for
the AWGN channel
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Pepper and Baboon, are applied as training set and the

whole six images are testing set. The modulation

scheme is 16 QPSK. Other settings are same as those of

Sect. 4.2. In the COVQ and SOM–COVQ, T = 32 and

N = 32. This means that the effective number of

training epoches in COVQ and SOM–COVQ is equal

to 1,024. While for SOM, the number of training ep-

oches is equal to 10 only.

The average RMSE of the received images are

shown in Fig. 10. We can observe that SOM, COVQ

and SOM–COVQ are much better than LBG. Also,

soft decoding SOM is better hard decoding SOM. The

result of soft decoding SOM is comparable with that of

COVQ. However, the soft decoding SOM requires less

training epoches. Also, the proposed approach SOM–

COVQ can provide further improvement.

5 Conclusion

This paper presents a soft decoding SOM approach

that can effectively suppress the effect of channel noisy

on VQ data. In our comparative study, the soft

decoding SOM approach is shown to be an excellent

Fig. 9 The six images used in
the simulations
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RVQ with performance comparable with that of the

COVQ. Besides, as a RVQ, the soft decoding SOM

approach avoids the time-consuming index assignment

process of traditional RVQs and unlike COVQ, it does

not require a reliable feedback channel and the addi-

tional bandwidth/power/delay requirement associated

with the noisy data training. We also propose the

SOM–COVQ approach to further improve the per-

formance.
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(a) AWGN channel (b) Fading channel

Fig. 10 The average RMSE of reconstruction images over all six
images when sufficient training is applied on COVQ and SOM–
COVQ. In the SOM approach, the number of training cycles is
equal to 10. For the LBG case, the number of training cycles is

equal to 20. In the COVQ and SOM–COVQ, T = 32 and N = 32.
This means that the effective number of training epoches in
COVQ and SOM–COVQ is equal to 1,024
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