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Prediction error is a powerful tool that measures the performance of a neural network. In this paper, we
extend the technique to a kind of fault tolerant neural networks. Considering a neural network with
multiple-node fault, we derive its generalized prediction error. Hence, the effective number of
parameters of such a fault tolerant neural network is obtained. The difficulty in obtaining the mean
prediction error is discussed. Finally, a simple procedure for estimation of the prediction error is

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Obtaining a neural network to tolerate random node fault is of
paramount important as node fault is an unavoidable factor while
a neural network is implemented in VLSI [19]. In view of the
importance of making a neural network being fault tolerant,
various researches have been conducted throughout the last
decade in order to attain a fault tolerant neural network that can
alleviate problems due to random node fault.

Injecting random node fault [3,23] together with random node
deletion and addition [7] during training is one common
appreach, Adding network redundancy by replicating hidden
nodes/layers after trained [9,21,26], adding weight decay regular-
izer [7] and hard bounding the weight magnitude during training
[4] are other techniques that have also been proposed in the
literature. In accordance with simulation results, all these
heuristic techniques have demonstrated that the trained networks
are able to tolerate against random node fault, either single node
or multiple nodes have stuck-on faults. As these techniques are
heuristics, it is not clear in theory about their underlying objective
function or their prediction errors being achieved. In sequel,
analysis and comparison on the similarities and differences
between one technique to another can hardly be accomplished
except by extensive simulations.

* Corresponding author.
E-mail addresses: pfsum@nchu.edu.tw, pfsum@yahoo.com.hk (J. Sum), ee-
leungc@cityu.edu.hk (A.C.-S. Leung).
1 The work was supported by a research grant from City University of Hong
Kong (7002108).

0925-2312/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2008.05.009

An alternative approach in training a fault tolerant neural
network is to formulate the learning problem as a constraint
optimization problem. Neti et al. [20] defined the problem as a
minimax problem in which the objective function to be mini-
mized is the maximum of the mean square errors over all possible
faulty networks. Deodhare et al. [8] formulated the problem by
defining the objective function to be minimized as the maximum
square error over all possible faulty networks and all training
samples. A drawback of the above approaches is that the
complexity of solving such problem could be very complex as
the number of hidden units are large and the number of possible
faulty nodes cannot be larger than one. Simon and El-Sherief [24]
and Phatak and Tcherner [22] formulated the learning problem as
an unconstraint optimization problem in which the objective
function consists of two terms. The first term is the mean square
errors of a fault-free network while the second term is the
ensemble average of the mean square errors over all possible
faulty networks.

One limitation of these formulations is that the problem being
formulated can be very complicated when the number of fault
nodes is large. Extend their formulations to handling multiple-
neode—faulf will become impractical. In view of the lacking of a
simple objective function to formalize multiple-node fault and the
lacking of an understanding of the re between fault tolerant
and generalization, Leung and Sum have recently derived a
simple objective function and yet another regularizer from
Kullback-Leibler divergence for robust training a neural network
that can optimally tolerate multiple-node fault.

In this paper, we exten idea elucidated in [11] by deducing
the mean prediction error equation for such a fault tolerant neural
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network model being attained. As it is believed that prediction
error is an alternative measure for the performance of a neural
network [15,25] and for neural network pruning [12-14]. The rest
of the paper will be organized as follows. The next section will
define what a node fault tolerant neural network is and present an
objective function derived in [11] for attaining such a fault
tolerant neural network. The prediction error equation (main
contribution of the paper) will be derived in Section 3. Section 4
will describe how this error can be obtained in practice.
Experimental results are described in Section 5. The estimation
of the prediction error fo all sample size is discussed in Section
6. Then, we conclude t@per in Section 7.

2. Node fault tolerant neural network

Throughout the paper, we are given a training data set
Dt = {(X, y,()}ﬁ’:r where x;, and y, are the kth input and output
sample of a stochastic system, respectively. We assume that the
data set 9t is generated by a stochastic system [2,6], given by

=fxi) +ex, (1)

where f(-) is the unknown deterministic part of the stochastic
system and e;’s are the random measurement noise. The noise e;’s
are independent zero-mean Gaussian random variables with
variance equal to S.. Hence, the output y of the stochastic system
is a dependent random variable governed by the input x. The
behavior of the system is denoted by the conditional probability
Po(y|x), which is the probability density function of y given the
input x. Our problem is to construct a neural network to
approximate the unknown mapping f(-) based on the data set Zr.

A radial basis function (RBF) network consisting of M hidden
nodes is defined as_follows:

. M
Fx,0) =3 0o, (2)
i=1

where ¢;(x) foralli=1,2,...

(x—c)?
T)' (3)

c¢;'s are the RBF centers and the positive parameter ¢ >0 controls
the width of the RBFs. Without loss of generality, we assume that
c; € R for all i. A network given by (2) is called a fault-free RBF
network.

Next, we assume that a node fault is a stuck-on-zero node fault.
That is, the output of the node will permanently be stuck on zero
value once it has became faulty. A faulty RBF network that is
denoted by f4(x,0) could be expressed as a summation of ¢;(x)
times 0; and a random binary variable f;:

,M are the RBFs given by

}i(x) = exp (—

M
Fpx.0)=>" Bi0ipi). (4)
i=1
If §; = 1, the ith node is operating normally. If §; = O, the ith node
is faulty. Furthermore, it is assumed that all hidden nodes are of
equal fault rate p, i.e. P(8)=p if f; =0 and P(f;) = (1 —p) if
pi=1, for all i=1,2,...,M and f,,...,By are independent
random variables. Eq. (4) define a faulty RBF network.

In sequel, the unknown deterministic system f(-) is approxi-
mated by the RBF network fﬁ(x, 0). Based on the stochastic model
in neural networks [2], the stochastic system, given by (1), is
approximated by

y~fpx.0)+e, (5)

where e is a mean zero Gaussian noise defined in (1). The behavior
of this stochastic faulty RBF network is described by a conditional

probability P(y|x, 0, f5). Let 0= ($104, ..., PyOm)- Now, the condi-
tional probability of a faulty RBF network given x as input could be
denoted by P(y|x, 0).

Let Py(x) be probability distribution of input x, the joint
probability distribution of the input x and the output y of the
stochastic system (1) is given by

Po(x,y) = Po(y|X)Po(x). (6)

For the stochastic RBF network (5), the joint probability distribu-
tion is given by

P(x,y|0) = P(yIx, 0)Po(x). (7)

To measure the discrepancy between the two distributions (the
faulty RBF network and the data set (the stochastic system)), we
use the Kullback-Leibler divergence [10], given by

DPollPy) = [[Pox.y)log; 0(" yg)) dxdy. (8)
Since 0 is an unknown and it is depended on the fault-free weight
vector 0, the average discrepancy of all possible faulty networks
(all possible f € {0,1}) with reference to the true distribution
Po(x,y) can be defined as

_ P - ~
D(Po||Pp) = /{/Po(x,y) logP(‘;(’;l}g) dxdy}P(HH)dH (9)

Po(x,y)
Po(x,y)log dxdy ) .
</ ’ P(x,y|0) >Q,;

Here Q; corresponds to the set consisting all the possible f.
It can be shown [11] that minimizing D(Py||Py) is equivalent to
minimizing the following objective function:

(10)

1E 1E
EO.p) = > Yk —2(1 =Py > Y xi)0
k=1 k=1

+(1 -p0"{A - pHy + pGyo, (11)

Hy = Z PXP (X,

. 1
G= dlag 72 d’%(xk)a cees *Z ¢2M(xk) ’
N k=1 N k=1

where {(x¢,y,)}}_; is the training data set and p is the node fault
rate. Taking the first derivative of E(0,p) with respect to 6 and
setting the derivative to zero, the corresponding optimal fault
tolerant RBF will be given by

41

= (Hy +PC—H ' 5> _yebxo: (12)
Since Hy and G are functions of ¢(x1),.. ., d(xn), 0 can be obtained
as long as {x,y, )Y, are given. Now, f,;(x 9) defines an optimal

fault tolerant RBF network.

3. Mean prediction error

It should be noticed that minimizing the training square error
does not mean that the network will perform well on an unseen
test set. As mentioned by Moody [16,17], estimating the general-
ization performance from the training error is very important. It
allows us not only to predict the performance of a trained network
but also to select the model from various settings. It should be
noticed that in the real situation data are very valuable and we
may not have a test set for model selection. In such case, the
performance of a fault tolerant neural network could be estimated
by a mean prediction error equation, a formula similar to that of
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AIC [1], GPE [16] or NIC [18]. For presentation clarity, a summary
of the notations being used is depicted in Table 1.

Given the estimated weight vector  and an input x, the mean
square error between the output of the stochastic system and the
faulty network output is given by

(@ — fpx,00%) = y* —2(1 — pyd" ()0
+(1 -0 (1 - pH, + pGHo. (13)

Let {(xg, )1y, and {(xk,yk)}k 1 be the training set and the testing
set, respectively. The mean training error E(JT\H) and the mean
prediction error E(Z¢|0) are given by

E(Z110) = )5, — 2(1 = D" (0)0) 2,

+(1 - p0™{(1 - pHy + pG)o, (14)
E(Z510) = %) 5, — 2(1 = p)y' " (X)) o,

+(1 - p0'{1 - pH,, + pG10, (15)

where Hy = (1/N)); p(xi0¢" (i), Hyy = (1/N)hq p(xj)" (%)

. [T, 1,
G = diag N; ¢1(XI<)’~~~=N;¢M(XU

and

Cdiaed LN g2y L2
G = diag ﬁZqﬁl(xk),..,,WZqSM(xk) .

Assummg that N and N are large, H ~ Hy, G ~G and
Vg, = ) . So, the difference between E(JF|H) and E(Z1|0)
lies in the dlfference between their second terms.

Following the same technique as using in [15,18], we assume
that there is a 0y such that
Yie = Op(xe) + e, (16)
Yic = 0o (X + e (17)

where e;’s and e;’s are independent zero-mean Gaussian random
variables with variance equal to S.. One should further note that 0
is obtained entirely by 2, which is independent of Zg. Therefore,
we can have

Vo' x)0)s (N,Zym <xk) (18)
The second term in E(9F|0) can thus be given by
—2(1-py' ¢ x)0)g,

1¥
=-2(1-p) <ﬁ Zy’kqu(x’k)) (Hy +p(G —Hy))™"
k=1

N
<(Voweo). (19
k=1

From (16) and (17), the second term in E(9F|(§) becomes

Table 1
Key notations

Notation Description

k20 Training data set

Dk Testing data set

p Fault rate—probability that a node will be failure
M Number of radial basis functions (nodes)

i) Weight vector obtained by Eq. (12)

(-) Expectation operator

E(Z110) Mean square training errors of the faulty network
E(Z¢10) Mean prediction error of the faulty network

—2(1 = p)OyH4((1 — p)Hy + pG) ' Hy 0. (20)

Using a similar method, the second term in E(Zr|0) is given by

S
=201 = Tr{Hy((1 = p)Hy +pG)~!
—2(1 = p)0gHy4((1 — p)Hy + pG)~'Hy 0. (21)
As a result, the difference between the mean prediction error and
mean training error which is given by

E(@Z§10) — E(Z7110) = 2(1 — p)y¢" (0)0) 5,

—2(1 = py'd"x)0) - (22)

By (20) and (21), the mean prediction error is given as follows:

s - Se
E(Z¢10) = E(Z110) + 25 Tr((1 — p)Hy((1 = p)Hy

+pG)7'). (23)
Let

Merr = Tr{(1 — p)Hy((1 — p)Hy +pG) ')

This parameter can be interpreted as the effective number of
parameter of an RBF network of (1 — p)M number of nodes as the
way in [16]. Therefore, the true S, can be approximated by the
following equation:

Se ~ E(Zr)0).

N
N — Mgt
The prediction error can then be approximated by
E¢l0) = —ME“E(? 10)- (24)
To use this approximation, the simulation to be conducted is a bit
not as usual. Suppose we have a set of measure data, Zr. After a
robust network is thus obtained by Eq. (12), as many as possible
faulty RBF networks are generated. Their average training error is
thus obtained by simulation. This average value is regarded as
E(27|0) that is used for predicting E(Zg|0) based on Eq. (24)
immediately.

4. Estimation of MPE

Given a trained network, obtaining the true value of
E(@ﬂ@m, -)) is very expensive. This is because the number of
faulty networks follows a binomial probability distribution. For
example, for a trained network with 50 RBF nodes and five faulty
nodes, the number of possible faulty networks with five faulty
nodes is equal to 50!/(5! x 45!). Hence examining all faulty
networks for all possible faulty node numbers is nearly impos-
sible. So, we only approximate the average training error by the
sampling average.

If S and p are given, a number of faulty networks are generated
uniformly random. The same set of training data is thus fed into
the networks. The average value of the training errors will thus be
used as an approximation of E(%7|0). It is equivalent to
approximate the prediction error by the following equation:

A Se
E(Z110) + 25 Tr{(1 — p)Hy((1 — p)Hy
+pG)'), (25)

E(Z10) ~

where H, and G could be obtained by using the training data only.
If S, is not given, the prediction error could be estimated by

N+M

eff
N B0, (26)

E(Z§10) ~
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As a result, the mean prediction error can thus be estimated by the
following steps:

(1) Calculate Hy, and G based on the training data.

(2) Obtain 6 based on the value of p.

(3) Random generate a sample set of faulty networks in
accordance with the fault rate p.

(4) Obtain the mean training error for each faulty network.

(5) The average mean training error is evaluated by the sample
average of all these mean training errors.

(6) Estimate E(Zy|0) either by Eq. (25) or (26).

The faulty network specified in Step (3) is realized by indepen-
dently setting each of the weights to zero with probability p, so as
to mimic a multiple-nodes fault effect.

5. Experimental results

To validate the usefulness of the mean prediction error derived,
a simulated experiment has been carried out. The first experiment
demonstrates the viability of the mean prediction error deduced
in approximating the actual prediction error. The second experi-
ment shows how the deduced mean prediction error can be
applied to select the width of the RBFs.

5.1. Function approximation

In this experiment, 20 RBF networks are generated to
approximate a simple noisy_function

f(x) =tanh(x) + e where e~.4(0,0.01)

a mean zero Gaussian noise. Each RBF network consists of 17
centers generated uniformly in the range of [-4,4] with 0.5
distance apart. The width of a basis function, i.e. o, is set to 0.49.
Twenty independent training data sets are generated for each of
the RBF networks. Each training set consists of 50 training data,
with inputs are uniformly randomly generated in the range [—4, 4]
and noises are randomly generated in accordance with Gaussian
distribution. An extra data set consisting of 100 data is also
generated as the testing set for the evaluation of prediction error.

Follow the steps described above, each network is trained with
its own training data set for different fault rates. Here, the fault
rate is set to be 0.01,0.02,0.03,...,0.2. For each p, 0 is obtained
after H, and G have been calculated. Then 100 faulty networks are
generated and their training errors are measured. With this setup,
we have generated 20 x 100 faulty networks.

The estimated mean prediction error E(@H@) is estimated by
Eq. (25). Finally, the actual prediction error is obtained simply by
feeding the testing data set to these 100 faulty networks again and
taking their average. The actual prediction error against the
estimated prediction error for different values of p is thus shown
in Fig. 1. The solid line, y = x, is used for reference. It is clearly that
the points lie symmetrically along the solid straight line. For
reference, Fig. 2 shows the results comparing the training error
and actual mean prediction error. It should be noted that a shift of
the data points to left-hand side of the figure could be found.

5.2. Selection of RBF width

Selection of an appropriate value for the RBF width (i.e. g) is
always a crucial step leading the success of application. In this
experiment, we make use of a nonlinear time series that is
presented in [5] as an example and demonstrate how the deduced

0.1

0.09
0.08
0.07
0.06
0.05

Actual

0.04
0.03
0.02

0.01

0

0 0.02 0.04 0.06 0.08 0.1
Estimated

Fig. 1. Actual MPE versus estimated MPE.

0.1

0.09
0.08
0.07
0.06
0.05 ¢
0.04

Actual MPE

0.03
0.02 ¢

0.01 ¢

0 0.02 0.04 0.06 0.08 0.1
Training Error

Fig. 2. Actual MPE versus training error.

mean prediction error can be applied to select a good value of ¢
for a fault tolerant RBF.
The nonlinear time series is defined as follows:

Y = (0.8 — 0.5 exp(—yz_)Vk_1
— (0.3 +0.9exp(—yf_)Vk 2
+ 0.1 sin(mtyy_q) + ey, (27)

where e, is a mean zero Gaussian noise with variance equals to
0.04.

One thousand samples (¥1,Y5,- - -,Y1000) are generated by using
Eq. (27) and setting y_; =y, = 0.1. The first 500 samples are used
for training and the other 500 samples are used for testing. We
consider an RBF as a two input one output nonlinear model
defined as follows:

Yk :f(yk—1’yk—2’0> 0) + e

M
= > 0ipiVi-1.Yk-2-0) + €k,
P

where ¢ specifies the width of the basis functions and M is the
number of basis functions being included in the network.
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Nine different values of ¢ are examined: 0.01, 0.04, 0.09, 0.16,
0.25, 0.36, 0.49, 0.64 and 0.81. For each value of ¢, we apply LROLS
method [5] to select the significant samples from the training
samples to be the centers of the basis functions. As a result, nine
different sets of significant samples are generated to constitute
nine different RBF networks.

Given a value for p (the fault rate), the output weights of an
RBF network can thus be obtained by Eq. (12). Its performance in

terms of average mean training error E(%7|6), average mean

testing error E(2¢|0) and mean prediction error, Eq. (25), can be
evaluated by the following procedure:

(1) Given p and 0 = (01,04, ...,00)".
(2) Forj=1,2,...,Run.
(2.1) Generate M uniformly random numbers, say

Uy, Us,..., U
(2.2) Fori=1,2,...,M, set §; = 1 if U;<p and zero otherwise.
(2.3) Generate a fault model 0, in which 0; = ;0; for all

i=1,...,M.
(2.4) Ei.in(j) is the mean training error.
(2.5) Etest(j) is the mean testing error.
(2.6) Evaluate PE(j) by Eq. (25).

(3) E@110) = (1 /Rum) -2 Exrain()-

(4) E(Z§10) = (1/Rum) > Ecest()-

(5) Mean prediction error = (1 /Run)zf:”{‘PE(j).

In our experiment, Run is set to 6000. The results for p = 0.05,
0.10, 0.15 and 0.20 are depicted in Table 2.

In the table, the data in bold face are the smallest average error
within the column. It is readily found that the value of ¢ selected
based on E(@T\é) is either 0.01_or 0.04. The value of ¢ selected
based on E(@H@) is 0.36, and the value selected based on Eq. (25)
is 0.16. The values being selected based on training error will lead
to poor performance. While the value being selected based on our
approach can lead to an RBF with performance similar to that of
the best choice: (i) 0.0695 versus 0.0682 for p = 0.05, (ii) 0.0789
versus 0.0771 for p = 0.10, (iii) 0.0889 versus 0.0864 for p = 0.15
and (iv) 0.0989 versus 0.0957 for p = 0.20. The percentage is less
than 4%.

6. Discussion

The success of the estimation of the mean prediction errors
relies very much on the assumption that Hy ~ Hy and G' ~ G. It
happens when the number of samples is large enough, i.e. N and
N’ are large. For small number of samples, the mean prediction
errors would be given by the following equation:

E(Zrl0) ~ E(Z110) + (1 — p)0" (1 — p)AH, + pAG)D
—2(1 = p)0gAH4((1 — p)Hy + pG)""Hy0o

Se _
+ 25 Tr{(1 = pHy((1 — p)Hy + pG) . (28)

Here AHy =Hy —Hy and AG =G, — Gy. In this equation, one
should note that it requires information other than the training
data to evaluate the factors AH, and AG. However, these
information are assumed to be unavailable during time of
training. As our objective is to estimate the performance of an
RBF network right after the network has been trained, Eq. (28) is
not suitable for application.

Statistical analysis on the properties of AH, and AG might
help. Nice approximations to these factors might be obtained and
accurate estimation of the mean prediction error for a fault

Table 2
Results for the RBF width selection problem

o E(Z+10) E(Z510) Eq. (25)
p = 0.05

0.01 0.0336 01797 0.0648
0.04 0.0419 0.0875 0.0562
0.09 0.0468 0.0786 0.0538
0.16 0.0475 0.0695 0.0523
0.25 0.0524 0.0698 0.0560
0.36 0.0518 0.0682 0.0547
0.49 0.0555 0.0734 0.0580
0.64 0.0545 0.0687 0.0566
0.81 0.0568 0.0718 0.0588
p=0.10

0.01 0.0471 0.1903 0.0754
0.04 0.0506 0.0962 0.0634
0.09 0.0555 0.0903 0.0617
0.16 0.0554 0.0789 0.0596
0.25 0.0605 0.0795 0.0636
0.36 0.0590 0.0771 0.0616
0.49 0.0641 0.0847 0.0662
0.64 0.0631 0.0795 0.0649
0.81 0.0653 0.0825 0.0670
p=0.15

0.01 0.0607 0.2019 0.0868
0.04 0.0592 0.1056 0.0708
0.09 0.0646 0.1018 0.0703
0.16 0.0635 0.0889 0.0674
0.25 0.0678 0.0886 0.0707
0.36 0.0664 0.0864 0.0687
0.49 0.0725 0.0954 0.0744
0.64 0.0716 0.0903 0.0733
0.81 0.0745 0.0936 0.0760
p=020

0.01 0.0745 0.2138 0.0987
0.04 0.0681 0.1157 0.0789
0.09 0.0738 0.1135 0.0790
016 0.0717 0.0989 0.0752
0.25 0.0759 0.0989 0.0785
0.36 0.0739 0.0957 0.0760
0.49 0.0808 0.1060 0.0826
0.64 0.0791 0.0994 0.0806
0.81 0.0821 0.1028 0.0835

tolerant RBF could be deduced. We leave this problem, in regard to
small sample size situation, open for further investigation.

7. Conclusion

Following the objective function we have derived in [11], we
have analyzed in this paper the mean prediction error for such a
fault tolerant neural network being attained and then derived a
simple procedure to estimate such value after training. As mean
prediction error is in fact a measure on the performance of a
neural network towards the future data, the equation and the
estimation procedure derived can be used as a mean to estimate
the generalization ability of such a (multiple-nodes) fault tolerant
neural network after trained by the robust learning algorithm we
derived in [11]. We have demonstrated how to use the prediction
error to select the width for a fault tolerant RBF network. Finally,
the estimation of the mean prediction error in small sample size
situation is discussed. Approach to refine the equation is
suggested for future research.
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