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Prediction error is a powerful tool that measures the performance of a neural network. In this paper, we

extend the technique to a kind of fault tolerant neural networks. Considering a neural network with

multiple-node fault, we derive its generalized prediction error. Hence, the effective number of

parameters of such a fault tolerant neural network is obtained. The difficulty in obtaining the mean

empirically suggested.

& 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Obtaining a neural network to tolerate random node fault is of
paramount important as node fault is an unavoidable factor while
a neural network is implemented in VLSI [19]. In view of the
importance of making a neural network being fault tolerant,
various researches have been conducted throughout the last
decade in order to attain a fault tolerant neural network that can
alleviate problems due to random node fault.

Injecting random node fault [3,23] together with random node
deletion and addition [7] during training is one common
approach. Adding network redundancy by replicating hidden
nodes/layers after trained [9,21,26], adding weight decay regular-
izer [7] and hard bounding the weight magnitude during training
[4] are other techniques that have also been proposed in the
literature. In accordance with simulation results, all these
heuristic techniques have demonstrated that the trained networks
are able to tolerate against random node fault, either single node
or multiple nodes have stuck-on faults. As these techniques are
heuristics, it is not clear in theory about their underlying objective
function or their prediction errors being achieved. In sequel,
analysis and comparison on the similarities and differences
between one technique to another can hardly be accomplished
except by extensive simulations.
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An alternative approach in training a fault tolerant neural
network is to formulate the learning problem as a constraint
optimization problem. Neti et al. [20] defined the problem as a
minimax problem in which the objective function to be mini-
mized is the maximum of the mean square errors over all possible
faulty networks. Deodhare et al. [8] formulated the problem by
defining the objective function to be minimized as the maximum
square error over all possible faulty networks and all training
samples. A drawback of the above approaches is that the
complexity of solving such problem could be very complex as
the number of hidden units are large and the number of possible
faulty nodes cannot be larger than one. Simon and El-Sherief [24]
and Phatak and Tcherner [22] formulated the learning problem as
an unconstraint optimization problem in which the objective
function consists of two terms. The first term is the mean square
errors of a fault-free network while the second term is the
ensemble average of the mean square errors over all possible
faulty networks.

One limitation of these formulations is that the problem being
formulated can be very complicated when the number of fault
nodes is large. Extend their formulations to handling multiple-
node fault will become impractical. In view of the lacking of a
simple objective function to formalize multiple-node fault and the
lacking of an understanding of the relation between fault tolerant
and generalization, Leung and Sum [11] have recently derived a
simple objective function and yet another regularizer from
Kullback–Leibler divergence for robust training a neural network
that can optimally tolerate multiple-node fault.

In this paper, we extend the idea elucidated in [11] by deducing
the mean prediction error equation for such a fault tolerant neural
101
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network model being attained. As it is believed that prediction
error is an alternative measure for the performance of a neural
network [15,25] and for neural network pruning [12–14]. The rest
of the paper will be organized as follows. The next section will
define what a node fault tolerant neural network is and present an
objective function derived in [11] for attaining such a fault
tolerant neural network. The prediction error equation (main
contribution of the paper) will be derived in Section 3. Section 4
will describe how this error can be obtained in practice.
Experimental results are described in Section 5. The estimation
of the prediction error for small sample size is discussed in Section
6. Then, we conclude this paper in Section 7.
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2. Node fault tolerant neural network

Throughout the paper, we are given a training data set
DT ¼ fðxk; ykÞg

N
k¼1, where xk and yk are the kth input and output

sample of a stochastic system, respectively. We assume that the
data set DT is generated by a stochastic system [2,6], given by

yk ¼ f ðxkÞ þ ek, (1)

where f ð�Þ is the unknown deterministic part of the stochastic
system and ek’s are the random measurement noise. The noise ek’s
are independent zero-mean Gaussian random variables with
variance equal to Se. Hence, the output y of the stochastic system
is a dependent random variable governed by the input x. The
behavior of the system is denoted by the conditional probability
P0ðyjxÞ, which is the probability density function of y given the
input x. Our problem is to construct a neural network to
approximate the unknown mapping f ð�Þ based on the data set DT.

A radial basis function (RBF) network consisting of M hidden
nodes is defined as follows:

f̂ ðx; yÞ ¼
XM
i¼1

yifiðxÞ, (2)

where fiðxÞ for all i ¼ 1;2; . . . ;M are the RBFs given by

fiðxÞ ¼ exp �
ðx� ciÞ

2

s

 !
, (3)

ci’s are the RBF centers and the positive parameter s40 controls
the width of the RBFs. Without loss of generality, we assume that
ci 2 R for all i. A network given by (2) is called a fault-free RBF

network.
Next, we assume that a node fault is a stuck-on-zero node fault.

That is, the output of the node will permanently be stuck on zero
value once it has became faulty. A faulty RBF network that is
denoted by f̂ bðx; yÞ could be expressed as a summation of fiðxÞ

times yi and a random binary variable bi:

f̂ bðx; yÞ ¼
XM
i¼1

biyifiðxÞ. (4)

If bi ¼ 1, the ith node is operating normally. If bi ¼ 0, the ith node
is faulty. Furthermore, it is assumed that all hidden nodes are of
equal fault rate p, i.e. PðbiÞ ¼ p if bi ¼ 0 and PðbiÞ ¼ ð1� pÞ if
bi ¼ 1, for all i ¼ 1;2; . . . ;M and b1; . . . ;bM are independent
random variables. Eq. (4) define a faulty RBF network.

In sequel, the unknown deterministic system f ð�Þ is approxi-
mated by the RBF network f̂ bðx; yÞ. Based on the stochastic model
in neural networks [2], the stochastic system, given by (1), is
approximated by

y � f̂ bðx;yÞ þ e, (5)

where e is a mean zero Gaussian noise defined in (1). The behavior
of this stochastic faulty RBF network is described by a conditional
Please cite this article as: J. Sum, A.C.-S. Leung, Prediction erro
doi:10.1016/j.neucom.2008.05.009
probability Pðyjx; y;bÞ. Let ~y ¼ ðb1y1; . . . ;bMyMÞ. Now, the condi-
tional probability of a faulty RBF network given x as input could be
denoted by Pðyjx; ~yÞ.

Let P0ðxÞ be probability distribution of input x, the joint
probability distribution of the input x and the output y of the
stochastic system (1) is given by

P0ðx; yÞ ¼ P0ðyjxÞP0ðxÞ. (6)

For the stochastic RBF network (5), the joint probability distribu-
tion is given by

Pðx; yj ~yÞ ¼ Pðyjx; ~yÞP0ðxÞ. (7)

To measure the discrepancy between the two distributions (the
faulty RBF network and the data set (the stochastic system)), we
use the Kullback–Leibler divergence [10], given by

DðP0kP ~yÞ ¼

ZZ
P0ðx; yÞ log

P0ðx; yÞ

Pðx; yj ~yÞ
dx dy. (8)

Since ~y is an unknown and it is depended on the fault-free weight
vector y, the average discrepancy of all possible faulty networks
(all possible b 2 f0;1gM) with reference to the true distribution
P0ðx; yÞ can be defined as

D̄ðP0kPyÞ ¼

Z ZZ
P0ðx; yÞ log

P0ðx; yÞ

Pðx; yj ~yÞ
dx dy

( )
Pð ~yjyÞd ~y (9)

¼

ZZ
P0ðx; yÞ log

P0ðx; yÞ

Pðx; yj ~yÞ
dx dy

* +
Ob

. (10)

Here Ob corresponds to the set consisting all the possible b.
It can be shown [11] that minimizing D̄ðP0kPyÞ is equivalent to

minimizing the following objective function:

Eðy; pÞ ¼
1

N

XN

k¼1

y2
k � 2ð1� pÞ

1

N

XN

k¼1

ykf
T
ðxkÞy

þ ð1� pÞyT
fð1� pÞHf þ pGgy, (11)

Hf ¼
1

N

XN

k¼1

fðxkÞf
T
ðxkÞ,

G ¼ diag
1

N

XN

k¼1

f2
1ðxkÞ; . . . ;

1

N

XN

k¼1

f2
MðxkÞ

( )
,

where fðxk; ykÞg
N
k¼1 is the training data set and p is the node fault

rate. Taking the first derivative of Eðy; pÞ with respect to y and
setting the derivative to zero, the corresponding optimal fault
tolerant RBF will be given by

ŷ ¼ ðHf þ pðG� HfÞÞ
�1 1

N

XN

k¼1

ykfðxkÞ. (12)

Since Hf and G are functions of fðx1Þ; . . . ;fðxNÞ, ŷ can be obtained
as long as fxk; ykg

N
k¼1 are given. Now, f̂ bðx; ŷÞ defines an optimal

fault tolerant RBF network.
3. Mean prediction error

It should be noticed that minimizing the training square error
does not mean that the network will perform well on an unseen
test set. As mentioned by Moody [16,17], estimating the general-
ization performance from the training error is very important. It
allows us not only to predict the performance of a trained network
but also to select the model from various settings. It should be
noticed that in the real situation data are very valuable and we
may not have a test set for model selection. In such case, the
performance of a fault tolerant neural network could be estimated
by a mean prediction error equation, a formula similar to that of
r of a fault tolerant neural network, Neurocomputing (2008),
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AIC [1], GPE [16] or NIC [18]. For presentation clarity, a summary
of the notations being used is depicted in Table 1.

Given the estimated weight vector ŷ and an input x, the mean
square error between the output of the stochastic system and the
faulty network output is given by

hðy� f̂ bðx; yÞÞ
2
i ¼ y2 � 2ð1� pÞyfT

ðxÞŷ

þ ð1� pÞŷ
T
fð1� pÞHf þ pGgŷ. (13)

Let fðxk; ykÞg
N
k¼1 and fðx0k; y

0
kÞg

N0

k¼1 be the training set and the testing
set, respectively. The mean training error EðDTjŷÞ and the mean
prediction error EðDFjŷÞ are given by

EðDTjŷÞ ¼ hy2iDT
� 2ð1� pÞhyfT

ðxÞŷiDT

þ ð1� pÞŷT
fð1� pÞHf þ pGgŷ, (14)

EðDFjŷÞ ¼ hy02iDF
� 2ð1� pÞhy0fT

ðx0ÞŷiDF

þ ð1� pÞŷT
fð1� pÞH0f þ pG0gŷ, (15)

where Hf ¼ ð1=NÞ
PN

k¼1fðxkÞf
T
ðxkÞ, H0f ¼ ð1=N0Þ

PN0

k¼1fðx
0
kÞf

T
ðx0kÞ

G ¼ diag
1

N

XN

k¼1

f2
1ðxkÞ; . . . ;

1

N

XN

k¼1

f2
MðxkÞ

( )

and

G0 ¼ diag
1

N0
XN0
k¼1

f2
1ðx
0
kÞ; . . . ;

1

N0
XN0
k¼1

f2
Mðx
0
kÞ

( )
.

Assuming that N and N0 are large, H0f � Hf, G0 � G and
hy2iDT

� hy02iDF
. So, the difference between EðDFjŷÞ and EðDTjŷÞ

lies in the difference between their second terms.
Following the same technique as using in [15,18], we assume

that there is a y0 such that

yk ¼ yT
0fðxkÞ þ ek, (16)

y0k ¼ yT
0fðx

0
kÞ þ e0k, (17)

where ek’s and e0k’s are independent zero-mean Gaussian random
variables with variance equal to Se. One should further note that ŷ
is obtained entirely by DT, which is independent of DF. Therefore,
we can have

hy0fT
ðx0ÞŷiDF

¼
1

N0
XN0
k¼1

y0kf
T
ðx0kÞ

 !
ŷ. (18)

The second term in EðDFjŷÞ can thus be given by

� 2ð1� pÞhy0fT
ðx0ÞŷiDF

¼ �2ð1� pÞ
1

N0
XN0
k¼1

y0kf
T
ðx0kÞ

 !
ðHf þ pðG� HfÞÞ

�1

�
1

N

XN

k¼1

ykfðxkÞ

 !
. (19)

From (16) and (17), the second term in EðDFjŷÞ becomes
Table 1
Key notations

Notation Description

DT Training data set

DF Testing data set

p Fault rate—probability that a node will be failure

M Number of radial basis functions (nodes)

ŷ Weight vector obtained by Eq. (12)

h�i Expectation operator

EðDTjŷÞ Mean square training errors of the faulty network

EðDFjŷÞ Mean prediction error of the faulty network

Please cite this article as: J. Sum, A.C.-S. Leung, Prediction error
doi:10.1016/j.neucom.2008.05.009
�2ð1� pÞyT
0Hfðð1� pÞHf þ pGÞ�1Hfy0. (20)

Using a similar method, the second term in EðDTjŷÞ is given by

� 2ð1� pÞ
Se

N
TrfHfðð1� pÞHf þ pGÞ�1

g

� 2ð1� pÞyT
0Hfðð1� pÞHf þ pGÞ�1Hfy0. (21)

As a result, the difference between the mean prediction error and
mean training error which is given by

EðDFjŷÞ � EðDTjŷÞ ¼ 2ð1� pÞhyfT
ðxÞŷiDT

� 2ð1� pÞhy0fT
ðx0ÞŷiDF

. (22)

By (20) and (21), the mean prediction error is given as follows:

EðDFjŷÞ ¼ EðDTjŷÞ þ 2
Se

N
Trfð1� pÞHfðð1� pÞHf

þ pGÞ�1
g. (23)

Let

Meff ¼ Trfð1� pÞHfðð1� pÞHf þ pGÞ�1
g.

This parameter can be interpreted as the effective number of
parameter of an RBF network of ð1� pÞM number of nodes as the
way in [16]. Therefore, the true Se can be approximated by the
following equation:

Se �
N

N �Meff
EðDTjŷÞ.

The prediction error can then be approximated by

EðDFjŷÞ ¼
N þMeff

N �Meff
EðDTjŷÞ. (24)

To use this approximation, the simulation to be conducted is a bit
not as usual. Suppose we have a set of measure data, DT. After a
robust network is thus obtained by Eq. (12), as many as possible
faulty RBF networks are generated. Their average training error is
thus obtained by simulation. This average value is regarded as
EðDTjŷÞ that is used for predicting EðDFjŷÞ based on Eq. (24)
immediately.
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4. Estimation of MPE

Given a trained network, obtaining the true value of
EðDTjŷðp; �ÞÞ is very expensive. This is because the number of
faulty networks follows a binomial probability distribution. For
example, for a trained network with 50 RBF nodes and five faulty
nodes, the number of possible faulty networks with five faulty
nodes is equal to 50!=ð5!� 45!Þ. Hence examining all faulty
networks for all possible faulty node numbers is nearly impos-
sible. So, we only approximate the average training error by the
sampling average.

If Se and p are given, a number of faulty networks are generated
uniformly random. The same set of training data is thus fed into
the networks. The average value of the training errors will thus be
used as an approximation of EðDTjŷÞ. It is equivalent to
approximate the prediction error by the following equation:

EðDFjŷÞ � EðDTjŷÞ þ 2
Se

N
Trfð1� pÞHfðð1� pÞHf

þ pGÞ�1
g, (25)

where Hf and G could be obtained by using the training data only.
If Se is not given, the prediction error could be estimated by

EðDFjŷÞ �
N þMeff

N �Meff
EðDTjŷÞ. (26)
of a fault tolerant neural network, Neurocomputing (2008),
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As a result, the mean prediction error can thus be estimated by the
following steps:
690.08

0.09
(1)
P
d

Calculate Hf and G based on the training data.

(2)
 Obtain ŷ based on the value of p.
710.07

(3)
0.06l
Random generate a sample set of faulty networks in
accordance with the fault rate p.
73ua
(4)
 Obtain the mean training error for each faulty network.

0.05

A
ct
(5)
750.04

The average mean training error is evaluated by the sample
average of all these mean training errors.
(6)
 Estimate EðDFjŷÞ either by Eq. (25) or (26).
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0.03
The faulty network specified in Step (3) is realized by indepen-
dently setting each of the weights to zero with probability p, so as
to mimic a multiple-nodes fault effect.
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Fig. 1. Actual MPE versus estimated MPE.
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Fig. 2. Actual MPE versus training error.
5. Experimental results

To validate the usefulness of the mean prediction error derived,
a simulated experiment has been carried out. The first experiment
demonstrates the viability of the mean prediction error deduced
in approximating the actual prediction error. The second experi-
ment shows how the deduced mean prediction error can be
applied to select the width of the RBFs.

5.1. Function approximation

In this experiment, 20 RBF networks are generated to
approximate a simple noisy function

f ðxÞ ¼ tanhðxÞ þ e where e�Nð0;0:01Þ

a mean zero Gaussian noise. Each RBF network consists of 17
centers generated uniformly in the range of ½�4;4� with 0.5
distance apart. The width of a basis function, i.e. s, is set to 0.49.
Twenty independent training data sets are generated for each of
the RBF networks. Each training set consists of 50 training data,
with inputs are uniformly randomly generated in the range ½�4;4�
and noises are randomly generated in accordance with Gaussian
distribution. An extra data set consisting of 100 data is also
generated as the testing set for the evaluation of prediction error.

Follow the steps described above, each network is trained with
its own training data set for different fault rates. Here, the fault
rate is set to be 0:01;0:02;0:03; . . . ;0:2. For each p, ŷ is obtained
after Hf and G have been calculated. Then 100 faulty networks are
generated and their training errors are measured. With this setup,
we have generated 20� 100 faulty networks.

The estimated mean prediction error EðDFjŷÞ is estimated by
Eq. (25). Finally, the actual prediction error is obtained simply by
feeding the testing data set to these 100 faulty networks again and
taking their average. The actual prediction error against the
estimated prediction error for different values of p is thus shown
in Fig. 1. The solid line, y ¼ x, is used for reference. It is clearly that
the points lie symmetrically along the solid straight line. For
reference, Fig. 2 shows the results comparing the training error
and actual mean prediction error. It should be noted that a shift of
the data points to left-hand side of the figure could be found.

5.2. Selection of RBF width

Selection of an appropriate value for the RBF width (i.e. s) is
always a crucial step leading the success of application. In this
experiment, we make use of a nonlinear time series that is
presented in [5] as an example and demonstrate how the deduced
lease cite this article as: J. Sum, A.C.-S. Leung, Prediction erro
oi:10.1016/j.neucom.2008.05.009
mean prediction error can be applied to select a good value of s
for a fault tolerant RBF.

The nonlinear time series is defined as follows:

yk ¼ ð0:8� 0:5 expð�y2
k�1ÞÞyk�1

� ð0:3þ 0:9 expð�y2
k�1ÞÞyk�2

þ 0:1 sinðpyk�1Þ þ ek, (27)

where ek is a mean zero Gaussian noise with variance equals to
0.04.

One thousand samples (y1; y2; . . . ; y1000) are generated by using
Eq. (27) and setting y�1 ¼ y0 ¼ 0:1. The first 500 samples are used
for training and the other 500 samples are used for testing. We
consider an RBF as a two input one output nonlinear model
defined as follows:

yk ¼ f̂ ðyk�1; yk�2; y;sÞ þ ek

¼
XM
i¼1

yifiðyk�1; yk�2;sÞ þ ek,

where s specifies the width of the basis functions and M is the
number of basis functions being included in the network.
r of a fault tolerant neural network, Neurocomputing (2008),
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Table 2
Results for the RBF width selection problem

s EðDTjŷÞ EðDFjŷÞ Eq. (25)

p ¼ 0:05

0.01 0.0336 0.1797 0.0648

0.04 0.0419 0.0875 0.0562

0.09 0.0468 0.0786 0.0538

0.16 0.0475 0.0695 0.0523
0.25 0.0524 0.0698 0.0560

0.36 0.0518 0.0682 0.0547

0.49 0.0555 0.0734 0.0580

0.64 0.0545 0.0687 0.0566
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Nine different values of s are examined: 0.01, 0.04, 0.09, 0.16,
0.25, 0.36, 0.49, 0.64 and 0.81. For each value of s, we apply LROLS
method [5] to select the significant samples from the training
samples to be the centers of the basis functions. As a result, nine
different sets of significant samples are generated to constitute
nine different RBF networks.

Given a value for p (the fault rate), the output weights of an
RBF network can thus be obtained by Eq. (12). Its performance in

terms of average mean training error EðDTjŷÞ, average mean

testing error EðDFjŷÞ and mean prediction error, Eq. (25), can be
evaluated by the following procedure:
77

79

0.81 0.0568 0.0718 0.0588
(1)
Pl
do
Given p and ŷ ¼ ðŷ1; ŷ2; . . . ; ŷMÞ
T.
p ¼ 0:10
(2)
81

83

85

87

0.01 0.0471 0.1903 0.0754

0.04 0.0506 0.0962 0.0634

0.09 0.0555 0.0903 0.0617

0.16 0.0554 0.0789 0.0596
0.25 0.0605 0.0795 0.0636

0.36 0.0590 0.0771 0.0616

0.49 0.0641 0.0847 0.0662

0.64 0.0631 0.0795 0.0649

0.81 0.0653 0.0825 0.0670
For j ¼ 1;2; . . . ;Run.
(2.1) Generate M uniformly random numbers, say

U1;U2; . . . ;UM .
(2.2) For i ¼ 1;2; . . . ;M, set bi ¼ 1 if Uipp and zero otherwise.
(2.3) Generate a fault model ~y, in which ~yi ¼ biŷi for all

i ¼ 1; . . . ;M.
(2.4) EtrainðjÞ is the mean training error.
(2.5) EtestðjÞ is the mean testing error.
(2.6) Evaluate PEðjÞ by Eq. (25).
ease
i:10.1
89p ¼ 0:15
(3)
 EðDTjŷÞ ¼ ð1=RunÞ
PRun

j¼1 EtrainðjÞ.P
 0.01 0.0607 0.2019 0.0868

0.04 0.0592 0.1056 0.0708

(4)
 EðDFjŷÞ ¼ ð1=RunÞ Run

j¼1 EtestðjÞ. P
 91
0.09 0.0646 0.1018 0.0703
(5)
 Mean prediction error ¼ ð1=RunÞ Run

j¼1 PEðjÞ.
93

95

97

99

101

103

105

0.16 0.0635 0.0889 0.0674
0.25 0.0678 0.0886 0.0707

0.36 0.0664 0.0864 0.0687

0.49 0.0725 0.0954 0.0744

0.64 0.0716 0.0903 0.0733

0.81 0.0745 0.0936 0.0760

p ¼ 0:20

0.01 0.0745 0.2138 0.0987

0.04 0.0681 0.1157 0.0789

0.09 0.0738 0.1135 0.0790

0.16 0.0717 0.0989 0.0752
0.25 0.0759 0.0989 0.0785

0.36 0.0739 0.0957 0.0760

0.49 0.0808 0.1060 0.0826

0.64 0.0791 0.0994 0.0806

0.81 0.0821 0.1028 0.0835
In our experiment, Run is set to 6000. The results for p ¼ 0:05,
0.10, 0.15 and 0.20 are depicted in Table 2.

In the table, the data in bold face are the smallest average error
within the column. It is readily found that the value of s selected
based on EðDTjŷÞ is either 0.01 or 0.04. The value of s selected
based on EðDFjŷÞ is 0.36, and the value selected based on Eq. (25)
is 0.16. The values being selected based on training error will lead
to poor performance. While the value being selected based on our
approach can lead to an RBF with performance similar to that of
the best choice: (i) 0.0695 versus 0.0682 for p ¼ 0:05, (ii) 0.0789
versus 0.0771 for p ¼ 0:10, (iii) 0.0889 versus 0.0864 for p ¼ 0:15
and (iv) 0.0989 versus 0.0957 for p ¼ 0:20. The percentage is less
than 4%.
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6. Discussion

The success of the estimation of the mean prediction errors
relies very much on the assumption that H0f � Hf and G0 � G. It
happens when the number of samples is large enough, i.e. N and
N0 are large. For small number of samples, the mean prediction
errors would be given by the following equation:

EðDFjŷÞ � EðDTjŷÞ þ ð1� pÞŷT
ðð1� pÞDHf þ pDGÞŷ

� 2ð1� pÞyT
0DHfðð1� pÞHf þ pGÞ�1Hfy0

þ 2
Se

N
Trfð1� pÞHfðð1� pÞHf þ pGÞ�1

g. (28)

Here DHf ¼ H0f � Hf and DG ¼ G0f � Gf. In this equation, one
should note that it requires information other than the training
data to evaluate the factors DHf and DG. However, these
information are assumed to be unavailable during time of
training. As our objective is to estimate the performance of an
RBF network right after the network has been trained, Eq. (28) is
not suitable for application.

Statistical analysis on the properties of DHf and DG might
help. Nice approximations to these factors might be obtained and
accurate estimation of the mean prediction error for a fault
cite this article as: J. Sum, A.C.-S. Leung, Prediction error
016/j.neucom.2008.05.009
tolerant RBF could be deduced. We leave this problem, in regard to
small sample size situation, open for further investigation.
7. Conclusion

Following the objective function we have derived in [11], we
have analyzed in this paper the mean prediction error for such a
fault tolerant neural network being attained and then derived a
simple procedure to estimate such value after training. As mean
prediction error is in fact a measure on the performance of a
neural network towards the future data, the equation and the
estimation procedure derived can be used as a mean to estimate
the generalization ability of such a (multiple-nodes) fault tolerant
neural network after trained by the robust learning algorithm we
derived in [11]. We have demonstrated how to use the prediction
error to select the width for a fault tolerant RBF network. Finally,
the estimation of the mean prediction error in small sample size
situation is discussed. Approach to refine the equation is
suggested for future research.
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