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A Fault-Tolerant Regularizer for RBF Networks
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Abstract—In classical training methods for node open fault,
we need to consider many potential faulty networks. When the
multinode fault situation is considered, the space of potential
faulty networks is very large. Hence, the objective function and
the corresponding learning algorithm would be computationally
complicated. This paper uses the Kullback–Leibler divergence
to define an objective function for improving the fault tolerance
of radial basis function (RBF) networks. With the assumption
that there is a Gaussian distributed noise term in the output data,
a regularizer in the objective function is identified. Finally, the
corresponding learning algorithm is developed. In our approach,
the objective function and the learning algorithm are computa-
tionally simple. Compared with some conventional approaches,
including weight-decay-based regularizers, our approach has a
better fault-tolerant ability. Besides, our empirical study shows
that our approach can improve the generalization ability of a
fault-free RBF network.

Index Terms—Kullback–Leibler divergence, node open fault,
regularization.
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1-D output of the system.
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Number of training samples.

Training set.
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Variance of .
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Width of RBFs.

The collection of RBF values.

The th weight of a faulty network.

The fault factor of the th RBF node.

Fault vector.

Fault rate.

Weight vector of a faulty network.

MSE of a fault-free network.

MSE of a faulty network with fault vector

Collection of fault vectors.

Collection of fault vectors with one fault.

Conditional density function of a faulty
network.

Joint density function of the input–output
of the faulty RBF network.

Average Kullback–Leibler divergence
over all possible fault vectors.

The objective function of our robust
method.

Autocorrelation matrix of RBFs.

The diagonal of .

Regularizer matrix of our robust method.

Optimal weight vector of our robust
method.

I. INTRODUCTION

I T WAS commonly assumed that neural networks have a
built-in ability against node failures. In fact, many literatures

[1]–[4] showed that if special care is not taken during training,
the fault situation could lead to a drastic performance degra-
dation. Hence, obtaining a fault-tolerant neural network is of
paramount importance. Among many fault models [5], an im-
portant fault model is the multinode open fault [5]–[8]. In this
fault model, some hidden nodes are disconnected to the output
layer. Several algorithms for handling this fault model have been
developed. They can be roughly classified into three categories.

In the first category, the trick is to add some heuristics during
training. Injecting random node fault [4], [9] during training is
a typical example. In [6], Zhou proposed the powerful T3 al-
gorithm to train a network. The algorithm identifies the break
point from the fault curve. Afterwards, injecting random node
fault is used to train the network. However, when the size of
networks is large, the space of potential faulty networks is very
large, and then extensive amount of training time is required.
Since the output of a network is very sensitive to large weights,
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another technique is to limit the weight magnitude. Limiting
weight magnitude can be achieved by adding a weight decay
regularizer [4] or hard bounding the weight magnitude [10]. One
deficiency of limiting weight magnitude is that the theoretical
support of the underlying objective function is not so clear. For
example, in [4], the way to set the weight decay constant is not
discussed even though the fault statistics is available.

The second category considers the replication technique in
which hidden nodes are replicated from a trained network [5],
[8]. However, in this approach, we need to use an additional
source.

In the third category, the idea is to formulate the training
process as solving unconstraint or constraint optimization
problems. Neti et al. [11] and Deodhare et al. [12] defined the
training objective as a minimax problem. The beauty of these
approaches is that the nice objective functions are defined.
However, their drawback is that solving a minmax problem is
very complicated. Simon and Sherief [13] and Phatak and Tch-
ernev [14] formulated the learning problem as an unconstrained
optimization problem in which the objective function consists
of two terms. The first term is the mean square error (MSE)
of a fault-free network. The second term is the sum of MSEs
of faulty networks. Zhou et al. [7] defined a similar objective
function and developed the corresponding learning algorithm.
They also empirically showed that the proposed objective
function can improve generalization and fault tolerance.

The aforementioned formulations are effective to handle
single-node fault. However, they are computationally compli-
cated when the multinode open fault situation is considered. For
example, in a radial basis function (RBF) network [15]–[19]
with nodes, for multinode fault, the number of potentially
faulty networks is , where is the
maximum number of faulty nodes. Also, in [7], the theoretical
guideline to set the weighting factors of those MSE terms was
not addressed.

Many regularization techniques [20] for improving general-
ization, such as weight decay, can improve fault tolerance [4].
Based on the Vapnik-Cervonenkis (VC) dimension, Phatak [21]
qualitatively explained why adding redundancy can improve
fault tolerance and generalization. It means that the training
methods that improve fault tolerance can also lead to a better
generalization and vice versa [6], [7] [13], [22].

In regularization techniques [20], [23]–[25] for improving the
generalization ability, these training algorithms are usually com-
putationally simple. In view of this, it is interesting to develop
a regularization term for handling multinode open fault and to
develop the corresponding computational friendly training al-
gorithm.

This paper uses the RBF network model as an example to
develop a regularizer for multinode open fault. Assuming that
there is a Gaussian distributed noise term in the output data,
we use the Kullback–Leibler divergence to develop an objec-
tive function for fault tolerance. Afterwards, the corresponding
regularizer is identified in the objective function. With the pro-
posed objective function, we develop a simple optimal training
rule that minimizes the Kullback–Leibler divergence. The or-
ganization of this paper is as follows. In Section II, we review
the concept of RBF networks and fault tolerance. In Section III,

the objective function for multinode open fault and the corre-
sponding regularizer are defined. Afterwards, the corresponding
training algorithm is derived. Section IV presents our simulation
results. Conclusion is presented in Section V. The Appendix de-
scribes the background of some conventional regularizers for
improving the generalization.

II. BACKGROUND

A. Data Model

Throughout this paper, we are given a training data set

where and are the input and output samples of an unknown
system, respectively. We assume that the data set is generated
by a stochastic system [26], [27], given by

(1)

where is the unknown system, and ’s are the random
measurement noise. The noise ’s are independent zero-mean
Gaussian random variables with variance equal to . The
input–output relationship is specified by the conditional prob-
ability density function . Let be the density
function of the input . The joint probability density of the
input–output is given by

(2)

Now, our problem is to construct a model for approximating the
mapping .

B. RBF Model

In the RBF approach, the mapping is approximated by
an RBF network, given by

(3)

where is the input, is the RBF
weight vector, and is the th kernel function, given by

(4)

Vectors ’s are the RBF centers. The parameter con-
trols the width of the kernel function. In the vector–matrix no-
tation, (3) can be written as

(5)

where . Our learning task is to
find a weight vector that best fits the observations.

C. Multinode Open Fault

A faulty RBF network can be described by a weight multi-
plicative model, given by

(6)
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for . The fault factor describes whether the th
node operates properly or not. When , the th node is out
of work. Otherwise, the th node operates properly. Define

as the fault vector. In vector–matrix notation, (6)
can be rewritten as

(7)

where is the elementwise multiplication operator.
For a fault-free network, the average error is given by

(8)

For a particular fault vector , the average error is given by

(9)

In [7], [13], and [14], the following objective function is used:

(10)

where is the set of all possible fault vectors considered, and
is the number of fault vectors in . The parameters and
are the weighting factors. With (10), we can develop training

algorithms based on the backpropagation method or genetic al-
gorithm. In [7], it is shown that the training algorithm, based
on (10), can improve fault tolerance as well as generalization.
However, when the number of faulty nodes is greater than one,
the number of potential faulty networks is very large. Also, the
rule to set the two weighting factors was not theoretically dis-
cussed [7], [14].

III. ROBUST LEARNING FOR MULTINODE OPEN FAULT

This section uses the Kullback–Leibler divergence to develop
an objective function of RBF networks for multinode open fault.
In the derivation, we assume that there is a Gaussian distributed
noise term in the output data. This assumption is commonly
used in the literature [26]. A regularization term for multinode
open fault in RBF networks is then identified in the proposing
objective function. Finally, based on the objective function, we
develop a simple optimal training rule that minimizes the Kull-
back–Leibler divergence between the data set model and the net-
work model.

A. Kullback–Leibler Divergence

Assume that the fault factors ’s are identical, indepen-
dent binary random variables with and

. With the fault model (7), we can
assume that the data set is generated by the following sto-
chastic model:

(11)

Based on the stochastic model in the neural networks [26], the
input–output relationship of the faulty RBF network is specified
by the conditional probability density function .
The conditional density function is Gaussian. The mean and
variance of are equal to and , respectively. The
joint probability density function of the input–output is then
given by

(12)

To measure the discrepancy between a faulty RBF network
and the data set, we use the Kullback–Leibler divergence [28],
given by

(13)

As is a random fault vector, we need to consider the av-
erage Kullback–Leibler divergence over all possible fault vec-
tors, given by

(14)

where is the expectation operator, and denotes the set of
all possible fault vectors.

As is independent of and

(15)

From (12), (15) can be rewritten as

(16)

From (11), is given by

(17)

Since the logarithm of is

(18)

we have

(19)

From (19), our task is to find the expression for
. Afterwards,

we minimize (19) with respect to the weight vector.
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B. Objective Function

In (19), the second term is positive. Hence, minimizing the
average Kullback–Leibler divergence is equivalent to mini-
mizing this second term with respect to the weight vector. The
second term in (19) can be rewritten as

(20)

Since and for ,
we have

(21)

(22)

where

(23)

and

(24)

If the number of samples is large enough, we have

, and
. Now, the

objective function can be rewritten as

(25)

C. Regularizer for Multinode Open Fault

Since the term in (25) is independent of ,
we can rescale this term by a constant . Thus, we have

(26)

where

(27)

In (26), the second term is similar to the conventional regular-
ization term in regularization techniques [29], [23] [15], [30],

Fig. 1. (a) Hermite function. (b) Training set MSE of faulty networks for the
Hermite function approximation.

[31]. Hence, we could define the multinode open fault regular-
izer as

(28)

where is the so-called regularization matrix.

D. Our Robust Algorithm

Taking the derivative of (26) with respect to , we have

(29)

Hence, the optimal RBF weight vector for minimizing the Kull-
back–Leibler divergence is given by

(30)

E. Property of Multinode Open Fault Regularizer

Improving the generalization ability of a neural network has
been studying for more than two decades. The common tech-
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Fig. 2. Training data for the noisy Hermite function approximation: (a) � = 0:0025 and (b) � = 0:01.

nique is to add a regularization term [23], [31], such as weight
decay [20] and local regularizer [32], [33], into the objective
function. The objective function for multinode open fault also
has a similar form, so it is interesting to know whether there is a
regularizer that optimizes generalization that can also be used to
optimize fault tolerance which is in terms of Kullback–Leibler
divergence.

By inspecting the objective function (26), we can see that the
optimal regularizer for fault tolerance is equal to

. The corresponding regularization matrix is given by
. Since the diagonal elements of the matrix

are equal to zero and the matrix is symmetric, the summa-
tion of all eigenvalues of must be zero and all its eigenvalues
must be real. This means that for multinode open fault toler-
ance, the regularization matrix should contain both positive
and negative eigenvalues. Now, our question is “Do regular-
izers for improving generalization have the similar property?”
From the Appendix, the regularizer matrices of the common
regularizers, such as the Tipping’s regularizer and the Chen’s
regularizer [32], [33], are positive definite or semipositive def-
inite. Hence, in the sense of Kullback–Leibler divergence, the
Tipping’s regularizer and the Chen’s regularizer cannot achieve
the optimal fault tolerance for multinode open fault.

IV. SIMULATIONS

In our simulations, two rough guidelines are used for se-
lecting the number of RBF nodes. We vary the fault rate from
0.02 to 0.2. To ensure that there are some faulty nodes in faulty
networks for small fault rates, we should select enough RBF
nodes. Hence, one simple guideline is that the number of RBF
nodes should not be much lower than . On the other
hand, if the number of nodes is too large, we may have a se-
rious overfitting problem. Therefore, the number of RBF nodes
should be lower than the number of training samples.

We consider four data sets: the Hermite function [23], the
function [32], [34], [35], the nonlinear time series [32], and the
astrophysical data [36], [37].

In the Hermite and function examples, we use 37 nodes.
We uniformly distribute 37 centers in the input domain. For the

nonlinear time series and astrophysical data examples, the input
dimension is greater than one and then it is very difficult for us to
select RBF centers. Hence, we use the Chen’s local regularized
assisted orthogonal least squares (LROLS) [32] to select impor-
tant RBF centers from the training samples. For the nonlinear
time–series example, the number of selected nodes is 21. For
the astrophysical data example, the number of selected nodes is
53 nodes.

A. Fault Tolerance

Three other techniques are also considered in the simulation.
They are the pseudoinverse, Chen’s OLS regularizer [27], [32],
and Zhou’s method [7]. The pseudoinverse is a reference which
tests the performance of faulty networks when special care is not
considered. In the pseudoinverse, the weight vector is given by

. The Chen’s local OLS
regularizer [32] is a typical version of weight decay regularizers.
It is an extension of the Bayesian framework on RBF networks
[15] and is able to automatically estimate the hyper-parameters
(weight decay constants). The Zhou’s method [7] considers the
following objective function:

(31)

where is the MSE of the fault-free network,
is the MSE of a faulty network with fault vector , and is
the set of all possible fault vectors with single-node open fault.
The values of and are given by and

, where is the probability that all RBF nodes work
properly, and is the probability that an RBF node is faulty.

1) Hermite Function: We consider the Hermite function,
shown in Fig. 1(a), given by

(32)

where . The RBF network model
has 37 RBF nodes. The 37 centers are selected as

. The parameter is set to 0.49.
After training, we randomly generate 100 000 faulty networks
for each fault rate.
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Fig. 3. MSEs of faulty networks for the noisy Hermite function approximation,
where � = 0:0025. (a) Training error. (b) Testing error.

Noise-Free Training Data: A training set (200 random
samples) is generated based on (32). As there is no output
noise in the data, we do not consider the testing samples.
The average MSEs for various fault rates are shown in
Fig. 1(b). The pseudoinverse and OLS regularizer have the
similar performance. This is because the target function is
a very smooth function and overtraining by the pseudoin-
verse is very small. Hence, the OLS regularizer and pseu-
doinverse produce similar results and have similar perfor-
mance. The Zhou’s method and our robust method can im-
prove fault tolerance. Compared with the Zhou’s method,
our approach has a much better performance for high fault
rates.

Fig. 4. MSEs of faulty networks for the noisy Hermite function approximation,
where � = 0:01. (a) Training error. (b) Testing error.

Noisy Training Data: In real situation, noise may be added
during the data collection process. Therefore, the common
practice [29], [26], [27], [34] usually assumes that the mea-
surement output is contaminated by the measurement
noise. That means that the training output is generated by

(33)

where the noise term is a mean zero Gaussian noise
with variance . Our goal is to test whether the trained
networks can capture the underlying model

. We consider two noise levels (
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Fig. 5. Magnitude of the trained weights for the noisy Hermite function approximation, where � = 0:01.

and ). For each noise level, a training data set
(200 samples), shown in Fig. 2, is generated. Also, a

noise-free testing data set (200 samples) is generated based
on (32).
The average training and testing MSEs are shown in Figs. 3
and 4. For , the OLS regularizer has a larger training
error but can achieve a better testing error. This confirms
that the OLS regularizer can improve generalization. For
the noisy training data, the pseudoinverse gives out a very
poor performance, especially, for high output noise level
(Fig. 4). This result could be explained by investigating
the magnitude of RBF weights (Fig. 5). For noisy condi-
tions, since the model trained by the pseudoinverse is not
regularized, the RBF network is overtrained and then the
weight magnitude is relatively large. Especially, for the
RBF nodes whose centers are around 9 to 5 and 5 to 9,
the magnitude of weights obtained from pseudoinverse is
much greater than that of weights obtained from our robust
method. Hence, if node fault appears in these RBF nodes,
the degradation on the training and testing MSEs is very
large. As shown in Fig. 5, the OLS regularizer and Zhou’s
method can suppress the weight magnitude and then im-
prove fault tolerance (shown in Figs. 3 and 4). However,
our robust approach gives out the best MSE performance.

Fig. 6. Training data for the function.

2) Sinc Function: The function is a common benchmark
example [32], [34], [35]. The output is generated by

(34)

where the noise term is a mean zero Gaussian noise with vari-
ance . A training data set (100 samples), shown in
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Fig. 7. MSEs of faulty networks for the noisy function approximation, where
� = 0:01. (a) Training error. (b) Testing error.

Fig. 6, is generated. Also, a noise-free testing data set (100 sam-
ples) is generated. The RBF network model has 37 RBF nodes.
The 37 centers are selected as .
The parameter is set to 0.1. For each fault rate, we randomly
generate 60 000 faulty networks. The training and testing MSEs
are depicted in Fig. 7. The results are quite similar to those of
the noisy Hermite function example. That is, for the fault-free
case , the OLS regularizer can improve the generaliza-
tion. For faulty networks , among those four algorithms,
our algorithm gives out the best fault tolerance.

3) Nonlinear Time–Series Example: We consider the fol-
lowing nonlinear autoregressive time series [32], given by

(35)

where is a mean zero Gaussian random variable that drives
the series. Its variance is equal to 0.09. One thousand samples
were generated given . The first 500 data
points were used for training and the other 500 samples were
used for testing. Our RBF model is used to predict based

Fig. 8. MSEs of faulty networks for the NAR prediction. (a) Training error.
(b) Testing error.

on the past observations and . The prediction
is given by

(36)

where .
For this 2-D input case, the Chen’s LROLS is applied to select

important RBF centers (basis functions). The initial structure of
the model consists of 500 basis functions

(37)
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Fig. 9. Astrophysical data.

where . The centers are as-
signed as ,
and the width of the centers is set to 0.81. Chen in [32] pro-
posed a method to rank the importance of RBF centers. After
the ranking process, we use the change of the regularized error
reduction ratio (RERR) [32] as the termination condition for the
selection process. If the change of RERR is smaller than 0.0001,
we stop the selection. The number of selected RBF nodes is 21.
Let be the RBF network attained

(38)

where are the indices of the RBF nodes being se-
lected.

After the selection process, four RBF networks are trained
with the four algorithms: pseudoinverse, Chen’s OLS regular-
izer, Zhou’s method, and our robust method. We then randomly
generate 60 000 faulty networks for each fault rate. The perfor-
mances of the trained RBF networks are depicted in Fig. 8. Sim-
ilar to previous examples, the pseudoinverse gives out a very
poor performance. The OLS regularizer can improve the per-
formance a bit. The Zhou’s method and our robust method can
greatly improve fault tolerance. Among those four methods, our
robust method gives out the best fault tolerance.

4) Astrophysical Data: We consider the time–series predic-
tion of a real data set. The series is the time variation of the in-
tensity of the white dwarf star PG1159-035 during March 1989
[36], [37]. The data samples are noisy and nonlinear in nature.1

Part one of this data set, shown in Fig. 9, is selected. There are
618 data samples.

Our task is to train RBF networks to predict the current
value based on five past values .
That means that the RBF model has five inputs and one output.
Hence, there are 613 input–output pairs. The first 309 pairs are
the training data and the remaining pairs are the testing data.
In this example, we also use the LROLS algorithm to select
important RBF centers from the training set. After selection, we
have 53 important RBF nodes. RBF networks are then trained

1It can be downloaded from http://www-psych.stanford.edu/�andreas/Time-
Series/SantaFe.html

Fig. 10. MSEs of faulty networks for the astrophysical data prediction.
(a) Training error. (b) Testing error.

with the four algorithms. For each case, we randomly generate
60 000 faulty networks for each fault rate. The performance of
the trained RBF networks is depicted in Fig. 10. The results are
also similar to those of the previous examples. Among those
methods, our robust method gives out the best performance.

B. Further Enhancement: Triple Modular Redundancy

To further enhance fault tolerance, we investigate the replica-
tion of RBF nodes [5], [8]. We adopt the idea of triple modular
redundancy (TMR). The examples considered are the NAR
prediction and the astrophysical data prediction. The setting
of the RBF networks used here is the same as that used in
Sections IV-A3 and IV-A4. After training, for each trained
RBF network, we duplicate two more identically trained RBF
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Fig. 11. MSEs of faulty networks with TMR for the NAR prediction.
(a) Training error. (b) Testing error.

networks. The three network outputs are added together with
the output divided by three. The performances are depicted in
Figs. 11 and 12, respectively. Compared with the non-TMR
approach (shown in Figs. 8 and 10), the TMR approach can
further improve fault tolerance. Our robust method with TMR
gives out the best performance.

C. Incorrect Training Fault Rates

With our robust learning, we can find the optimal RBF weight
(with respect to the Kullback–Leibler divergence) if we know
the exact fault rate, i.e., fault statistics. In some practical situa-
tions, there may be some differences between the training fault
rate and the exact fault rate. Hence, it is interesting to study the
degradation due to the deviation.

Fig. 12. MSEs of faulty networks with TMR for the astrophysical data predic-
tion. (a) Training error. (b) Testing error.

The examples we considered here are the noisy function
with and the astrophysical data prediction. The
setting of the RBF model used here is the same as that used in
Sections IV-A2 and IV–A4. In the simulation, for our robust
method and the Zhou’s method, we use two training fault
rates and to train RBF networks. The MSEs of
the RBF networks trained with training fault rates are then
measured on various true fault rates. For each RBF network,
we randomly generate 60 000 faulty networks for each true
fault rate. The MSE performances are depicted in Figs. 13
and 14.

For the training error, the degradation of our robust method
due to using an incorrect training fault rate is not so large. For
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Fig. 13. MSEs of faulty networks with incorrect guess fault rate for the noisy function example. (a) and (b) MSEs for the guess fault rate p = 0:02. (c) and
(d) MSEs for the guess fault rate p = 0:1.

a small training fault rate , the degradation becomes
larger as the true fault rate increases. For a large training fault
rate , the degradation is large when the true fault rate is
small. The interesting result is that even though we use a small
training fault rate we still obtain certain improvement on fault
tolerance for large true fault rates. For example, when the incor-
rect fault rate is equal to 0.02, for large true fault rates, the
performance of our approach is still much better than that of the
pseudoinverse and OLS regularizers. Compared with the Zhou’s
method with incorrect fault rates, our robust method with incor-
rect fault rates gives out a better MSE performance.

For the testing error, the result is quite similar to that of the
training error. However, there is an interesting phenomenon.
That is, as the true fault increases, the testing error first decreases
and then increases. That means that the proposed regularizer has
a certain generalization ability for fault-free networks or faulty
networks with very small true fault rates. When the true fault
rate is small , the effect of the multinode open fault
is not so large. As the proposed method can control the weight
magnitude, it can improve the generalization. However, as the
true rate further increase, the effect of the multinode open fault
becomes larger and the testing error starts to increase.
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Fig. 14. MSEs of faulty networks with incorrect guess fault rate for the astrophysical data prediction. (a) and (b) MSEs for the guess fault rate p = 0:02. (c) and
(d) MSEs for the guess fault rate p = 0:1.

D. Generalization Ability

From Section IV-C, we observe that the proposed robust
method could improve certain generalization ability. This
section investigates the generalization ability of the proposed
robust method under fault-free condition. We use the proposed
robust method with various training fault rates to train a number
of RBF networks. Afterwards, we test the generalization ability
of the trained RBF networks under “fault-free condition.”
The examples we considered here are the noisy function with

and the astrophysical data prediction.

The results are depicted in Fig. 15, where we can observe that
with an appropriate value of our algorithm can also improve
generalization. For the function example, for some training fault
rates, our method is even better than the OLS regularizer. This
does not mean that the OLS regularizer is not good for general-
ization. This is because the OLS regularizer can automatically
select the appropriate regularization parameters while our robust
method cannot. This means that the limitation of our algorithm
for improving the generalization is that we need to have an ad-
ditional validation set for selecting appropriate training value of

.
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Fig. 15. Generalization ability of various algorithms under the fault-free con-
dition. Networks are trained with the training fault rate p. (a) Noisy function.
(b) Astrophysical data prediction.

V. CONCLUSION

This paper addresses the fault tolerance of RBF networks
where all hidden nodes have the same fault rate and their fault
probabilities are independent. Assuming that there is a Gaussian
distributed noise in the output data, we have derived an objec-
tive function for robustly training an RBF network based on the

Kullback–Leibler divergence. We also find that for a fault-toler-
ance regularizer some eigenvalues of the regularization matrix
should be negative. For the Tipping’s regularizer and the OLS
regularizer, the regularization matrices are positive or semiposi-
tive definite. Hence, they cannot efficiently handle the multinode
open fault. Various simulation studies confirm that in terms of
fault tolerance our approach is better than other methods being
tested. Also, the proposed robust method can improve fault tol-
erance even when an incorrect training fault rate is used. Be-
sides, we test the generalization ability of the proposed method.

Although our discussion focuses on the RBF networks, one
can follow our derivation to handle networks with other acti-
vations, such as sigmoid and hyperbolic tangent. Of course, in
such extended cases, the objective function is similar to that of
the RBF networks but the learning algorithm may not be sim-
ilar. Hence, one future direction is to generalize our approach to
handle an node open fault or a weight open fault for multilayer
networks with other activation functions.

Our robust method is designed for open node fault. It may
not be able to handle other fault models, such as “stuck-at-max-
imum” and “stuck-at-minimum.” Hence, another future direc-
tion is to generalize our method to handle other fault models.

APPENDIX

The Tipping local regularizer [33] is given by

(39)

where . Each weight is controlled by an independent hy-
perparameter that can be obtained by the evidence maximiza-
tion [30]. In accordance with the reestimation technique shown
in [33], the parameter satisfies the condition

where the expectation is taken over the posterior probability of
’s given training data set and the regularizer. Obviously, all

eigenvalues of the regularization matrix are nonnegative. There-
fore, it is able to penalize the weight magnitude but it is unlikely
to train an RBF network with optimal tolerance for multinode
open fault.

Inspired by Tipping’s local regularization, Chen in [32] ex-
tended the idea of OLS by introducing a regularizer term with

hyperparameters. The objective function to be minimized is
given by

(40)

The matrix is an upper triangular matrix satisfying the fol-
lowing condition:

...
...

. . .
...

(41)
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where and are obtained by a modified
Gram–Schmitt procedure called the OLS method. It should be
noticed that column vectors ’s form an orthogonal basis. The
matrix is a diagonal matrix

(42)

Elements in are the hyperparameters satis-
fying the following equalities:

(43)

(44)

where is the th element of the vector . It should be
noticed that and . Hence, all eigenvalues
of the matrix are nonnegative. Similar to the Tipping’s
local regularizer, the Chen’s regularizer is able to penalize the
weight magnitude but it is unlikely to train an RBF network to
have the optimal fault tolerance.
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