
1

On objective function, regularizer and

prediction error of a learning algorithm for

dealing with multiplicative weight noise

John SUM1,2, Chi-sing LEUNG2, Kevin HO3

1 Department of Information Management,

Chung Shan Medical University, Taichung, Taiwan

2 Department of Electronic Engineering,

City University of Hong Kong, Hong Kong

3Department of Computer Science and Communication Engineering

Providence University, Sha-Lu, Taiwan ROC.

March 3, 2007 DRAFT

2

Abstract

In this paper, an objective function for training a functional link network to tolerate multiplicative

weight noise is presented. This objective function is similar to that of other regularizer-based objective

function, which is composed of the mean square training error term and a regularizer term. Based on this

objective function, a simple learning algorithm of attaining a fault tolerant functional link network can be

obtained. In sequel, the mean prediction error of the trained network in response to multiplicative weight

noise effect is analyzed. A formula resembling the Akakie Information Criteria is obatined. Simulatied

experiments on two artificial datasets and one real-world application are made to verify the theoretical

results.

Keywords: Fault tolerance, Mean prediction errors, Multiplicative noise, functional link network.

March 3, 2007 DRAFT

3

1 Introduction

In neural networks, network faults can be exhibited in many different forms, such as

node fault and weight fault. One kind of weight faults is called multiplicative weight noise,

which is due to the finite precision representation of a number, [1], [2]. For instance, in a

digital implementation using a low precision floating point format (say a 16-bit half-float)

to represent a trained weight, the magnitude of its truncation error is proportional to that

of the trained weight [3]. In this regard, the truncation error caused by a finite precision

representation is in essence an inherent source of multiplicative weight noise [4], [5], [6],

[7], [8]. In contrast to additive weight noise in which the noise factor is independent of the

weight magnitude, the resultant effect of a multiplicative weight noise could be so huge

if the corresponding trained weight is of large magnitude. Without properly handling its

effect, drastic performance degradation can be resulted in the performance[3]. For more

than a decade, many studies on multiplicative weight noise have thus been working in

order to alleviate such effect. Although many of them have succeeded in improving the

fault tolerant abililty of a neural network, not much theoretical works on the objective

function for attaining a weight noise tolerant funtional link network and its corresponding

prediction error have been developed.

For the Madaline model, Stevenson et al [9] and Piche [10] gave comprehensive analy-

sis on the effect multiplicative weight noise. For the multilayer perceptron model, Choi

et at [11] applied the statistical approach to derive various output sensitivity measures.

Townsend et al [12] derived the output sensitivity of an radial basis function (RBF) net-

work suffered from perturbations in centers and output weights.

As the output sensitivity is only an indirect view point to understand the effect of

multiplicative weight noise, the actual effect on the performance cannot be identified

easily from the output sensitivity. A more practical approach is to study the effect on the

error sensitivity measure. Catala et al [13] proposed a fault tolerance model and studied

the performance degradation of an RBF network if its RBF centers, widths and weights

are corrupted by multiplicative noise. Bernier et al extended the Choi’s results [11] and

derived the error sensitivity measure for multilayer perceptrons [7] and RBF networks [8].

Similarly, Fontenla-Romero et al[14] derived the error sensitivity measure for functional

March 3, 2007 DRAFT

4

link nets.

While many works have been carried out for the effect of multiplicative weight noise,

various training methods aiming at reducing the effect of multiplicative noise have also

been developed. Since the effect of a multiplicative weight noise is proportional to the

magnitude of a trained weight, one intuitive approach is to control the magnitude of the

network weights during training. There are several some heuristics. For example, Cavalieri

et al [15] have proposed a modified backpropagation learning for multilayer perceptrons. In

their algorithm, whenever the magnitude of a weight has reached a predefined upper limit,

the weight will not be updated unless the update can bring its magnitude down. On the

other hand, considering that the noise effect can largely be reduced at the output node if

all the weight values are equal, Simon [16] suggested a distributed fault tolerance learning

approach, in which the training error is minimized subjected to an equality constraint

on weight magnitude. Extended from their previous work in [13], Parra and Catala [17]

demonstrated how a fault tolerant RBF network can be obtained by using a weight decay

regularizer [18], [19].

From the training error sensitivity point of view [11], Bernier et al in [4] derived a mean

square error sensitivity term for a neural network that is corrupted by weight perturbation.

Later, they proposed to use this sensitivity term as an explicit regularizer [5] [7] for training

a multilayer perceptron to tolerate multiplicative weight noise. In their formulation, the

objective function is defined as

Mean Square Training Error + γMean Square Error Sensitivity.

However, the actual selection rule of γ in the regularization term has not been addressed

theoretically. Bernier et al only proposed to use a validation set to determine its value.

Following the same approach as work done by Bernier et al in [5] [7] and Parra &

Catala in [17], an objective function and the learning algrithm for training a functional

link network to tolerate muliplicative weight noise will be derived. Then, the property of

the corresponding regularizer is discussed and the mean prediction error is analyzed. The

contributions in the paper are listed as follows :

• An objective function and the corresponding learning algorithm are derived.

March 3, 2007 DRAFT

5

• It is shown that under certain speical condition, the regularizer can be reduced to the

weight decay term.

• A formula resembling Akakie Information Criteria has been derived to estimate the mean

prediction error.

In the next section, the background knowledge about the network model, the weight

noise model and the regularization technique will be presented. The objective function for

training a functional link network [20] to tolerate multiplicative weight noise is derived in

Section 3. By minimizing the objective function, a training algorithm is also presented.

Based on the objective function being derived, a formula for estimating the mean predic-

tion error of the trained network is obtained in Section 4. Simulations results verifying

the theoretical works are elucidated in Section 5. In these simulations, we consider the

functional link network as a radial basis function (RBF) network [21], [22] Finally, the

conclusion is presented in Section 6.

2 Background

2.1 Data Model

Throughout the paper, we are given a training dataset Dt,

Dt =
{
(xj, yj) : xj ∈ <K , yj ∈ <, j = 1, · · · , N.

}
,

where xj and yj are the input and output samples of an unknown system, respectively.

We assume that the dataset Dt is generated by a stochastic system[23][21], given by

yj = f(xj) + ej (1)

where f(·) is the unknown system mapping; and ej’s are the random measurement noise.

The noise ei’s are identical independent zero-mean Gaussian random variables with vari-

ance equal to Se.

2.2 Network Model

In the functional link net approach [24], [25], we would like to approximate the mapping

f(·) by a weighted sum of basis functions, given by

f(x) ≈ f̂(x,w) =
M∑

i=1

wiφi(x), (2)

March 3, 2007 DRAFT

6

where w = [w1, · · · , wM]T is the weight vector, and φj(·)’s are the pre-defined basis func-

tions (mappings from the K-dimensional space to real number). In the vector-matrix

notation, (2) can be written as

f̂(x,w) = ΦT (x)w, (3)

where Φ(x) = [φ1(x), · · · , φM(x)]T . Our learning task is to find out a weight vector that

best fits the observations. That means, we would like to find a weight vector that minimizes

the following objective function:

Jmse(w) =
1

N

N∑

j=1

(yj − ΦT (xj)w)2 . (4)

Throughout the paper, we assume the Gram matrix

G =
∫

Φ(x)ΦT (x)P(x)dx ≈ 1

N

N∑

j=1

Φ(xj)Φ
T (xj) (5)

is not near singular, where P(x) is the density function of x.

2.3 Multiplicative Weight Noise

An implementation of a weight vector w is denoted by w̃. In multiplicative weight noise,

each implemented weight deviates from its nominal value by a random percent, i.e.,

w̃i = wi + bi wi ∀ i = 1, 2, · · · ,M , (6)

where bi’s are identical independent mean zero random variables with variance Sb. Denote

b = [b1, · · · , bM]T . The density function of bi’s are symmetrical.

2.4 Regularization

Adding regularizer [18], [26], [27], [28] is a common technique in neural network learning.

A regularized objective function is usually defined as

J (x,R) =
1

N

N∑

j=1

(yj − ΦT (x)w)2 + γwTRw, (7)

where γwTRw is the regularizer term, γ is the weighting factor, and R, the so-called

regularization matrix, is positive definite. In the standard weight decay [18], [27], the

matrix R is an identity matrix.

March 3, 2007 DRAFT

7

In [5] and [7], Bernier et al use the regularization technique to improve the performance

of a multilayer perceptron affected the multiplicative weight noise. In their formulation,

they defined that the regularization term is related to the error sensitivity of weights

(Equation (9) in [5]). In case of functional link net, the explicit regularization term is

given by γwTRexpw. The matrix Rexp is defined as

Rexp =
Sb

N




∑N
j=1 φ2

1(xj) 0 · · · 0

0
∑N

j=1 φ2
2(xj) 0 · · ·

· · · · · · · · · · · ·
0 · · · 0

∑N
j=1 φ2

M(xj)




. (8)

In [5] and [7], the physical meaning of their objective function was not discussed. Besides,

the actual selection rule on γ is not addressed. They only proposed to use a validation set

to determine the value of the weighting factor γ.

Suppose the functional-link basis functions are RBF basis functions[21], [22] with the

same width. If the input x is uniformly distributed, i.e. P(x) is a constant factor depended

on the size of the space of x. The RBF width is small in compared with the input space

and the centers are located not at the boundary of the input space.

1

N

N∑

j

φ2
i (xj) ≈

∫
φ2

i (x)P(x)dx

= ρ,

which is a constant factor. Thus, the explicit regularizer will become a factor depended

on the noise variance Sb and ρ, i.e.

Rexp = Sb ρ I . (9)

Which is a conventional weight decay regularizer.

3 Fault Tolerance for Multiplicative weight Noise

In this section, we will first derive an objection function for minimizing the training

error over weight noise. Our result shows that the proposed objective function consists of

two terms. One is the conventional training error. Another one is the explicit regularizer

proposed in [7]. That means, the explicit regularizer is used for minimizing training

March 3, 2007 DRAFT

8

error. Besides, we will also explain that why the conventional weight decay regularizer

can improve the fault tolerant ability verse multiplicative weight noise. Afterwards, a fault

tolerant training algorithm for multiplicative weight noise based on the proposed will be

introduced. Lastly, we will discuss the way to estimate the prediction error of a network

trained by the proposed algorithm.

3.1 Training error

The training error of an implementation w̃ is given by

J (w̃) =
1

N

N∑

j=1

(yj − ΦT (xj) w̃)2 . (10)

From (6), (10) becomes

J (w,b) =
1

N

N∑

j=1

(
yj −

M∑

i=1

φi(xj)(wi + bi)

)2

=
1

N

N∑

j=1




(
yj −

M∑

i=1

φi(xj)wi

)2

+ 2

(
M∑

i=1

φi(xj)biwi

) (
yj −

M∑

i=1

φi(xj)wi

)

+
M∑

i=1

M∑

i′=1

φi(xj)φi′(xj)bibi′wiwi′

]
. (11)

Since bis are identical independent zero mean random variables with symmetric density,

the expectation value of J (w,b) is equal to

J̄ (w) =
1

N

N∑

j=1




(
yj −

M∑

i=1

φi(xj)wi

)2

+
M∑

i=1

Sbφ
2
i (xj)w

2
i


 . (12)

From (8), (12) can be rewritten in a matrix vector form:

J̄ (w) =
1

N

N∑

j=1

(yj − ΦT (x)w)2 + wTRexpw. (13)

J̄ (w) is the expected training error over weight noise. Compared with (8) adding the

Bernier’s explicit regularizer [7] with γ = 1 is to minimizing the expected training error

over weight noise.

As mentioned in the last section, the regularizer Rexp reduces to the conventional weight

decay regularizer if the functional network is defined as an RBF network and the RBF

March 3, 2007 DRAFT

9

width is small in compared with the input space. In sequel, the expected training error

over weight noise will become

1

N

N∑

j=1

(yj − ΦT (x)w)2 + Sbρw
Tw.

Which is an objective function that has been used to train an RBF network tolerable to

multiplicative weight noise [13] [17].

3.2 Learning algorithm

Taking derivative (13) with respect to w, we have

∂J̄ (w)

∂w
=

1

N

N∑

j=1

(
Φ(xj)Φ

T (xj)w − Φ(xj)yj

)
+ Rexp w, (14)

= (G + Rexp)w − 1

N

N∑

j=1

Φ(xj)yj . (15)

Setting (15) to zero, the optimal weight vector for multiplicative weight noise (for mini-

mizing the training error) is given by

ŵ = (G + Rexp)
−1 1

N

N∑

j=1

Φ(xj) yj. (16)

4 Prediction error

Once an optimal weight vector ŵ has been attained, one would like to know its per-

formance for the future data. Using similar approach as in [18], [29], [26], we are able to

derive a formula for the case that multiplicative weight noise is introduced.

4.1 Data and network models

During the derive, we assume that the modeling error is very small. That means, we

assume that the system output is given by,

y = ΦT (x)wo + e. (17)

where w0 is the true system weight vector, and e is the random measurement noise with

Gaussian distribution and variance equal to Se.

March 3, 2007 DRAFT

10

For our learning algorithm, the trained weight vector is given by

ŵ = (G + Rexp)
−1 1

N

N∑

j=1

Φ(xj) yj.

Recall that when the trained weight is affected by weight noise, the implementation value

is given by

w̃i = ŵi + bi wi ∀ i = 1, 2, · · · ,M , (18)

where bi’s are identical independent mean zero random variables with variance Sb.

The difference between the true weight vector and the trained weight vector is

∆w = ŵ −wo

= (G + Rexp)
−1 1

N

N∑

j=1

Φ(xj)yj −wo

= (G + Rexp)
−1


 1

N

N∑

j=1

Φ(xj)yj − (G + Rexp)wo




= (G + Rexp)
−1


 1

N

N∑

j=1

Φ(xj)yj − 1

N

N∑

j=1

Φ(xj)Φ
T (xj)wo + Rexpwo




= (G + Rexp)
−1


 1

N

N∑

j=1

Φ(xj)ej −Rexpwo


 (19)

4.2 Training error

From the definition, the mean training error (MTE) of a fault-free network is given by

MTE =
1

N

N∑

j=1

(yj − ΦT (xj) ŵ)2

=
1

N

N∑

j=1

(
ΦT (xj)wo + ej − ΦT (xj) ŵ

)2

=
1

N

N∑

j=1

e2
j −

2

N

N∑

j=1

ejΦ
T (xj) ∆w + ∆wT G∆w (20)

Substituting (19) into (20) and then taking the expectation on ej’s, we have

〈MTE〉 = Se − 2
Se

N
Tr

{
G (G + Rexp)

−1
}

+
Se

N
Tr

{
G (G + Rexp)

−1 G (G + Rexp)
−1

}

+ wT
o Rexp (G + Rexp)

−1 G (G + Rexp)
−1 Rexpwo (21)

March 3, 2007 DRAFT

11

where Tr is the trace operator, i.e., the sum of diagonal element of a matrix. Equation

(21) tells us the training error for a fault-free network trained by our proposed algorithm.

4.3 Prediction error

Given an new sample x, it is interesting to estimate the performance of the trained

network affected by multiplicative weight noise. Denote P(x) and P(e) be the density

function of the input x and the measurement noise e, respectively. The mean prediction

error (MPE) of a faulty network is given by

MPE =
∫ ∫

(y − ΦT (x)w̃)2P(x)P(e) dx de . (22)

Considering the average over weight noise, we have

MPE =
∫ ∫

(y − ΦT (x)ŵ)2P(x)P(e) dx de + ŵTRexpŵ . (23)

From (17), (23) becomes

MPE =
∫ ∫

(ΦT (x)wo + e− ΦT (x)ŵ)2P(x)P(e) dx de + ŵTRexpŵ

=
∫ ∫

(e− ΦT (x)∆w)2P(x)P(e) dx de + ŵTRexpŵ .

= Se + ∆wTG∆w + ŵTRexpŵ . (24)

Substituting (19) into (24) and taking the average over measurement noise ej’s, we have

the real MPE, denoted as 〈MPE〉, given by

〈MTE〉 = Se +
Se

N
Tr

{
G (G + Rexp)

−1 G (G + Rexp)
−1

}

+ wT
o Rexp (G + Rexp)

−1 G (G + Rexp)
−1 Rexpwo + ŵTRexpŵ . (25)

Equation (25) tells us the error for a unseen sample for a faulty network trained by our

proposed algorithm.

From (21) and (25), we have the following important relationship between the MPE of

a network affected by weight noise and MTE of the trained network, given by

〈MPE〉 = 〈MTE〉+ 2
Se

N
Tr

{
G (G + Rexp)

−1
}

+ ŵTRexpŵ, (26)

March 3, 2007 DRAFT

12

If we assume that prediction error and training do not deviate much from their expected

values, the following equation can be used as an estimation of the prediction error of a

faulty network trained by the proposed algorithm:

Prediction Error ≈ Training Error + 2
Se

N
Tr

{
G (G + Rexp)

−1
}

+ ŵTRexpŵ, (27)

Whenever N is large enough, this equation gives a good estimation on the prediction error

of a model as one will see in the later section. For fault-free case (Sb = 0, i.e., Rexp = 0),

〈MPE〉 = 〈MTE〉+ 2Se
M

N
. (28)

This is the famous Akakie Information Criteria (AIC) [30]. As noted by Moody [18] and

others working on information criteria, the factor Se is usually an unknown but it can be

approximated by setting [18]

Se ≈ N

N −Meff

Training Error

where Meff is called the effective number of parameters defined by

Meff = Tr
{
G (G + Rexp)

−1
}

.

Equation (26) and Equation (27) can then be rewritten as

〈MPE〉 =

(
N + Meff

N −Meff

)
〈MTE〉+ +ŵTRexpŵ (29)

and

Prediction Error ≈
(

N + Meff

N −Meff

)
× Training Error + ŵTRexpŵ. (30)

Given Sb and a set of training data Dt, the tolerant weight vector ŵ can be obtained.

Afterwards, it is able to get the Training Error from the data set. From the regularization

matrix Rexp and the Gram matrix G, we can obtain the effective number Meff . Putting

all these factors in Equation (29) (or Equation (30)), the performance of the network in

regard to weight noise effect can be estimated.

5 Simulations

To demonstrate the performance of the derived algorithm and the corresponding mean

prediction error equation, we select a special functional network, the radial basis function

March 3, 2007 DRAFT

13

(RBF) network, and apply it to the following problems : (1) Hermite function approxi-

mation problem, (2) Nonlinear time series prediction problem and (3) Astrophysical time

series prediction problem. For the first two problems, the datasets are generated artifi-

cially by computer programs. While the dataset used in the third problem is downloaded

from an Internet website. It is a real-world dataset.

5.1 Hermite function approximation

The Hermite function is a nonlinear function is defined as follows :

f(x) = 1.1(1− x + 2x2) exp(−x2/2) + e, (31)

where x ∈ [−10, 10] and e ∼ N (0, Se) is a mean zero Gaussian noise of variance Se. The

shape of the noise free function is shown in Figure 1. Here in the figure, the output noise

variance Se is 0.01. One interesting property of Hermite function that makes it suitable

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 1. Hermite function. The solid line corresponds to the noisy free function while the ’+’ dots

corresponds to 200 samples from which the output noise with variance Se = 0.01.

to be used as an illustrative example in our simulation is that it fluctuates mainly in the

March 3, 2007 DRAFT

14

middle portion around the origin, i.e. x ∈ [−5, 5]. For |x| > 5, the value of f(x) is almost

zero. Fit well the middle portion will lead to ripples at the flat region, i.e. over fit in the

flat regions. Fit well the flat regions might lead to under fit the middle portion.

We assume a RBF network, denoted by f̂(x), consisting of M basis functions are used

for all the experiments.

f̂(x) = Φ(x)Tw. (32)

The function Φ(x) = [φ(x, c1, σ), φ(x, c2, σ), · · · , φ(x, cM , σ)]T is defined as a Gaussian func-

tion of the form,

φ(x, c, σ) = exp

(
−(x− c)2

σ

)
.

σ controls the width of the radial basis function. In all the experiments, the centers cis

are defined in the following locations : {−9,−8.5,−8, · · · , 8, 8.5, 9}.

5.1.1 Selection of σ

Since adding a regularizer can implicitly improve the generalization ability of a model,

we need to select an appropriate value of σ such that the performance of the model is not

very bad even no regularizer is added. Otherwise, it will be difficult to contrast the benefit

of adding such a regularizer we have derived.

Obviously, for large σ (say σ = 1), the width of a RBF will be large and the matrix

∫
Φ(x)ΦT (x)P(x)dx

will be near singular. The parametric vector θ for the RBF,

w =
(∫

Φ(x)ΦT (x)P(x)dx
)−1 (∫

Φ(x)yP(x)dx
)

will be of large magnitude. To select an appropriate σ, we examine on four models attained

by the following equation

ŵ =


 1

N

N∑

j=1

Φ(xj)Φ
T (xj) + µIM×M



−1 

 1

N

N∑

j=1

Φ(xj)yj




with σ = 0.49, 1 and µ = 0, 0.001. {(xj, yj}200
j=1 are the training data as shown in Figure 1,

the ’+’ signs. This is equivalent to adding a weight decay regularizer penalizing the weight

magnitude. Figure 2 shows the weight values of the corresponding weight vectors. Not

March 3, 2007 DRAFT

15

0 5 10 15 20 25 30 35 40
−60

−40

−20

0

20

40

60

Weight Index

W
ei

gh
t V

al
ue

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Weight Index

W
ei

gh
t V

al
ue

(a) σ = 1 µ = 0 (b) σ = 1 µ = 0.001

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

2

2.5

Weight Index

W
ei

gh
t V

al
ue

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Weight Index

W
ei

gh
t V

al
ue

(c) σ = 0.49 µ = 0 (d) σ = 0.49 µ = 0.001

Fig. 2. The weight magnitudes under different value of σ and µ. The system noise Se is 10−2.

showing in this paper, we have found that the magnitude of the weight values will be even

larger if the system noise variance Se increases from 0.01 to 0.25. Adding a regularizer

µwTw of very small µ (10−3) can then control the weight magnitude. The functions

reconstructed by the respectively weight vectors are shown in Figure 3. As expected,

ripples appear in both cases when no regularizer has been added. Whenever a weight

decay regularizer of small µ has been added, their weight magnitudes are controlled to

smaller values. The approximated functions are smoothened, Figure 3. In case the weight

vectors are corrupted by multiplicative weight noise, their corresponding functions are

shown in Figure 4. Because of the weight values are large, the model attained by setting

March 3, 2007 DRAFT

16

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

(a) σ = 1 µ = 0 (b) σ = 1 µ = 0.001

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

(c) σ = 0.49 µ = 0 (d) σ = 0.49 µ = 0.001

Fig. 3. The reconstructed function after training. The system noise Se is 10−2.

σ = 1 will be very sensitive to multiplicative weight noise. The model attained by setting

σ = 0.49 will be not that sensitive.

Therefore, to avoid adding additional regularizer other than Rexp, the value of σ is

assigned to 0.49 simply because without adding Rexp the shape of a reconstructed function

using σ = 0.49 and µ = 0 is basically identical to the one attained by using σ = 1 and

µ = 0. In term of weight magnitude, the one obtained by setting σ = 0.49 and µ = 0 will

have similar value as the one obtained by setting σ = 0.49 and µ = 0.001 or σ = 1 and

µ = 0.001, as shown in Figure (3). Furthermore, in term of the sensitivity to multiplicative

weight noise, setting σ = 0.49 and µ = 0 will have similar effect as the one obtained by

March 3, 2007 DRAFT

17

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

(a) σ = 1 µ = 0 (b) σ = 1 µ = 0.001

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

(c) σ = 0.49 µ = 0 (d) σ = 0.49 µ = 0.001

Fig. 4. The reconstructed function while multiplicative weight noise (Sb = 10−2) has been added. The

system noise Se is 10−2.

setting σ = 0.49 and µ = 0.001 or σ = 1 and µ = 0.001, as shown in Figure (4). σ = 0.49

is an appropriate choice for the width of the radial basis function. Thus we can ignore the

regularizer term µwTw in all the experiments and focus on studying the tolerance ability

of the trained RBF using the explicit regularizer.

5.1.2 Gaussian weight noise

For the study of multiplicative weight noise effect, we assume the following noise model :

w̃i = wi + biwi (33)

March 3, 2007 DRAFT

18

for all i = 1, · · · ,M and bi is a mean zero Gaussian noise with variance Sb. Furthermore,

we assume that the random variables bi and bj are independent and Sb is small in order

to ensure that w̃i and wi are of same sign.

For each experiment, a set of training data and a set of testing data are generated by

using noisy model, Equation (31). Fix a value for λ, the training set is used for obtaining

the best ŵ, i.e.

ŵ(λ) = (G + λR)−1


 1

N

N∑

j=1

Φ(xj)yj


 ,

where

R =
1

N




∑N
j=1 φ2

1(xj) 0 · · · 0

0
∑N

j=1 φ2
2(xj) 0 · · ·

· · · · · · · · · · · ·
0 · · · 0

∑N
j=1 φ2

M(xj)




.

The training error MTE(ŵ(λ)) is recorded. The best ŵ is plugged in the testing data and

the testing error MPE(ŵ(λ)) is recorded. Finally, a perturbed weight w̃(λ) is generated

by the same ŵ(λ) using the following method :

w̃i = ŵi(λ) + biw̃i(λ),

where bi is a random variable of zero mean variance Sb. The corresponding θ̃ is thus

plugged in the same testing set and the testing error, i.e. MPE(ŵ, b), is recorded. For the

same ŵ(λ), we generate 200 random w̃ and the error shown on the curve is the average

over these 200 simulations.

Figure (5 – 7) show the results obtained by our simulation for different Sb and Se. On

the left column, the results for which Sb equals to 0.16 are shown. While on the right

column, the results are for Sb equals to 0.25. For each row of figures, the observation noise

variance is different. Six different values of Se are examined, 0, 0.01, 0.04, 0.09, 0.16 and

0.25. For each figures, three different curves — the training error (no multiplicative weight

noise), the testing error (no multiplicative weight noise) and the testing error in which the

RBF is perturbed by multiplicative weight noise — are shown. In the figures, we name

them as Training Error curve MTE(ŵ(λ)), Testing Error curve MPE(ŵ(λ)) and Weight

Noise curve MPE(ŵ(λ), b). A few points can be noted from these figures.

March 3, 2007 DRAFT

19

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E
S

β
 = 0.16 S

e
 = 0

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.25 S

e
 = 0

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.16 S

e
 = 0.01

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.25 S

e
 = 0.01

Training Error
Testing Error
Weight Noise

Fig. 5. Simulation results for different values of multiplicative weight noise variance Sb and the observation

noise variance Se is small. The figures on left column are for the Sb being 0.16 while the figures on the

right column are for the Sb being 0.25. Besides, the results shown on different rows are simulated by

using different Se values. The solid lines, labeled ”Weight Noise”, are corresponding to the simulation

results that multiplicative weight noise has been added. Showing on this figures, the values for Se are

defined to be 0 and 0.01. The vertical dash line corresponds to λ = Sb.

• As usual, whenever the model noise variance Se is large, training with no regularizer

(i.e. λ = 0), the weight noise free testing error must be larger than the weight noise free

training error. But we are able to improve the generalization ability of a weight noise free

model by adding a regularizer with small λ, as observed from the Testing Error curves.

• Whenever multiplicative weight noise takes effect, training with no or small regularizer

can give a very poor fitting. It can be noted from the Weight Noise curves when λ is

small. Besides, the larger the Se is, the larger the error. Compare the MPE(ŵ(λ), b) and

March 3, 2007 DRAFT

20

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E
S

β
 = 0.16 S

e
 = 0.04

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.25 S

e
 = 0.04

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.16 S

e
 = 0.09

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.25 S

e
 = 0.09

Training Error
Testing Error
Weight Noise

Fig. 6. Simulation results for different values of multiplicative weight noise variance Sb and observation

noise variance Se. The figures on left column are for the Sb being 0.16 while the figures on the right

column are for the Sb being 0.25. The solid lines, labeled ”Weight Noise”, are corresponding to the

simulation results that multiplicative weight noise has been added. Showing on this figures, the values

for Se are defined to be 0.04 and 0.09. The vertical dash line corresponds to λ = Sb.

MPE(ŵ(λ)), it is observed that

MPE(ŵ(λ), b) > MPE(ŵ(λ)),

whenever Sb > 0 and λ < 1. Nevertheless, their difference increases as Se increases. This

results reflect that adding regularizer not just can improve the performance of a model

against large observation noise, but also can improve the vulnerability of a model against

multiplicative weight noise perturbation.

• For the cases that Se = 0, the optimal regularization constant λ can simply be defined

March 3, 2007 DRAFT

21

10
−3

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ

A
ve

ra
ge

 M
S

E
S

β
 = 0.16 S

e
 = 0.16

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.25 S

e
 = 0.16

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.16 S

e
 = 0.25

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.25 S

e
 = 0.25

Training Error
Testing Error
Weight Noise

Fig. 7. Simulation results for different values of multiplicative weight noise variance Sb and the observation

noise variance Se is large. The figures on left column are for the Sb being 0.16 while the figures on the

right column are for the Sb being 0.25. The solid lines, labeled ”Weight Noise”, are corresponding to

the simulation results that multiplicative weight noise has been added. Showing on this figures, the

values for Se are defined to be 0.25. The vertical dash line corresponds to λ = Sb.

as Sb, as observed from Figure 8. It indeed confirms our theoretical result. Whenever

Se > 0, the optimal regularizer constant λ value shifts to right. It is believed that it is due

to the over fitting problem when the number of training data is small. The larger the Se

is, the effect of over fitting will be larger than the effect of weight noise. To compensate

the effect, λ will have to be a value larger than Sb or the number of training data have to

be increased. From another experiment not shown here, we have found that the optimal

λ converges to Sb when N increases.

March 3, 2007 DRAFT

22

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.01 S

e
 = 0

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.04 S

e
 = 0

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.09 S

e
 = 0

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.16 S

e
 = 0

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.25 S

e
 = 0

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

A
ve

ra
ge

 M
S

E

S
β
 = 0.36 S

e
 = 0

Training Error
Testing Error
Weight Noise

Fig. 8. For the cases that Se = 0, the regularization constant λ can simply be defined as Sb. The solid

lines, labeled ”Weight Noise”, are corresponding to the simulation results that multiplicative weight

noise has been added. The vertical dash line corresponds to λ = Sb.

March 3, 2007 DRAFT

23

5.1.3 Prediction error estimation

In this simulation, we have compared the estimated prediction error against the actual

predict error for N being 100 (Figure 9a) 1000 (Figure 9b). The simulation procedure is

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

Actual MPE

E
st

im
at

ed
 M

P
E

N = 100

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

Actual MPE

E
st

im
at

ed
 M

P
E

N = 1000

(a) (b)

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

A
ct

ua
l M

T
E

N = 100

Actual MPE
10

−3
10

−2
10

−1
10

−4

10
−3

10
−2

10
−1

Actual MPE

A
ct

ua
l M

T
E

N = 1000

(c) (d)

Fig. 9. Estimated prediction error versus actual prediction error for N equals to 100 (a) and 1000 (b).

The plots on the training error against actual prediction error (c) (d) are for reference. A straight

line corresponding to y = x is added for clarification.

shown in Figure 10. Obviously, the larger the value of N , the better the approximation is.

For N = 1000, the estimated error and the actual error almost coincides with the straight.

While for N = 100, some data points deviate from the straight. It is due to the fact

that the training set and the testing set are generated independently. As the estimation

March 3, 2007 DRAFT

24

Se = [0.001:0.001:0.025];

Sb = [[0.001:0.001:0.009] [0.01:0.01:0.16]];

FOR Each Se and Sb

Randomly generate a Training Set of N data;

Randomly generate a Test Set of N data;

Obtain an optimal model M;

Calculate the Testing Error (TE) and Training Error (TR);

Estimate the Expected Testing Error (MTN);

Repeat 1000 times

(1) FOR Each Weight

Generate random Gaussian noise ’rand’

Weight = Weight (1 + rand);

END

(2) Calculate the Error (TN);

Calculate the Mean TN;

END

Fig. 10. Simulation procedure for prediction error estimation.

is relied on the training error, an exceptional small training error will eventually lead to a

poor estimation, as can be observed from Figure 9c.

5.2 Time series prediction

We consider the following nonlinear autoregressive (NAR) time series [31], given by

y(i) =
(
0.8− 0.5 exp(−y2(i− 1))

)
y(i− 1)−

(
0.3 + 0.9 exp(−y2(i− 1))

)
y(i− 2)

+0.1 sin(πy(i− 1)) + e(i), (34)

where e(i) is a mean zero Gaussian random variable that drives the series. Its variance is

equal to 0.09. Figure 11 shows a typical phase plot of the series with y(0) = y(−1) = 0.1.

In each of the following simulation, two independent sets of data are generated by the

March 3, 2007 DRAFT

25

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y
k

y k−
1

Fig. 11. The typical phase plot of the nonlinear system with initial condition: y0 = y1 = 0.1. The output

noise Se is 0.09.

Equation (34) with the same initial condition : y(0) = y(−1) = 0.1, and Se is set to 0.01.

The first set will be used for training, while the second set is used for testing. Our RBF

model is used to predict y(i) based on the past observations y(i − 1) and y(i − 2), given

by

ŷ(i) = f̂(xi,w) =
M∑

j=1

wjφj(x(i)), (35)

where x(i) = [y(i− 1), y(i− 2)]T .

The structure of the model consists of 500 basis functions :

f̂(x,w) =
500∑

j=1

wjφj(x) (36)

where φj(x) = exp
(
−‖x−ci‖2

∆

)
. The centers are assigned as c1 = [y(0), y(1)]T , · · · , c500 =

[y(499), y(500)]T , where y(·)s are from the training dataset. The width of the centers ∆

is set to 0.81.

March 3, 2007 DRAFT

26

5.2.1 Gaussian weight noise

Similar to the simulation conducted for Hermite function approximation, we would like

to see how robust the learning algorithm on the value of Sb. Without loss of generality,

we consider two values of Sb : Sb = 0.01 and Sb = 0.04. For each Sb, the training set is

used for obtaining the best ŵ for each λ ∈ [0.001, 0.5] by the following equation.

ŵ(λ) = (G + λR)−1


 1

N

N∑

j=1

Φ(xj)yj


 . (37)

Then 100 perturbed ŵ(λ) are generated by adding Gaussian multiplicative weight noise,

and plugged in the testing dataset. The noise-free training error, noise-free testing error

and the average multiplicative weight noise corrupted testing error are recorded. The

above experiment is then repeated for 10 times and the results are depicted in Figure 12.

10
−3

10
−2

10
−1

10
0

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

λ

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

λ

Training Error
Testing Error
Weight Noise

(a) Sb = 0.01 (b) Sb = 0.04

Fig. 12. Average mean square errors plot against different value of λ. The solid lines, labeled ”Weight

Noise”, are corresponding to the simulation results that multiplicative weight noise has been added.

The vertical dash line corresponds to λ = Sb.

Similar to the previous example, increasing the value of λ does not improve the general-

ization ability of the network. However, it can improve the weight noise tolerance ability.

Besides, the network can have its best tolerant ability if λ is close to Sb.

March 3, 2007 DRAFT

27

5.2.2 Prediction error estimation

To illustrate the estimation of the prediction error, a similar procedure as shown in

Figure 10 has been taken. In this experiment, 50 values of Sb and 4 values of Se are

examined.

Sb ∈ {0.01, 0.02, · · · , 0.49, 0.5}
Se ∈ {0.01, 0.04, 0.09, 0.16}

For each (Sb, Se), 50 training datasets and 50 testing datasets are generated. Let DTrain
k

and DTest
k be the kth training and testing datasets, where k = 1, 2, · · · , 50. The following

steps are then carried out for each k.

1. Obtain ŵ, matrix G, Rexp and the training error (say MTEk) using DTrain
k .

2. Calculate the effective number of parameter Meff by using the factors obtained.

3. Estimate the prediction error (say PEEstimated
k) by

PEEstimated
k =

(
N + Meff

N −Meff

)
MTE + ŵTRexpŵ.

4. Generate 100 perturbed weight vectors with respect to ŵ and then plug the perturbed

weight vectors in DTest
k to obtain the actual prediction error PEActual

k .

Once the above steps have been repeated for k = 1, · · · , 50, the estimated MPE (i.e.

〈MPE〉) is obtained by

1

50

50∑

k=1

PEEstimated
k

and the actual MPE is obtained by

1

50

50∑

k=1

PEActual
k .

Figure 13 shows the plot of estimated MPE against the actual MPE. The four segments

of points are corresponding to four different values of Se. Starting from the bottom left

to the upper right, the values are 0.01, 0.04, 0.09 and 0.16. It is clear that the estimated

mean prediction error fits well to the actual mean prediction error.

March 3, 2007 DRAFT

28

10
−2

10
−1

10
0

10
−2

10
−1

10
0

Actual MPE

E
st

im
at

ed
 M

P
E

Fig. 13. Estimated MPE versus the actual MPE for the time series data.

5.3 Astrophysical data

The astrophysical data is a the time series recording the time variation of the in-

tensity of the white dwarf star PG1159-035 during March 1989 [32] [33]. The data

samples are noisy and nonlinear in nature and can be downloaded from http://www-

psych.stanford.edu/∼andreas/Time-Series/. The whole dataset is composed of 17 parts.

Each is of different size. In the first experiment, we only use the Part I dataset. While in

the second experiment about the estimation of mean prediction error, we use all 17 parts.

5.3.1 Gaussian weight noise

Similar to the experiments conducted in the previous sections, we would like to in-

vestigate the performance of a RBF network if the constant factor in Rexp is not iden-

tical to Sb. The study will be based on the Part I of the dataset. The time series

of this part is shown in Figure 14. It consists of 618 data samples. An RBF net-

work is treated as a nonlinear regressor, where the output is the prediction of y(i) and

March 3, 2007 DRAFT

29

0 100 200 300 400 500 600
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

i time index

y(
i)

Fig. 14. The Part I of the Astrophysical data.

it is predicted by means of 5 inputs values y(i− 1), · · · , y(i− 5). Before the exper-

iment start, the dataset is preprocessed by concatenating six consecutive values of y

as a pattern vector. In such case, there are totally 613 vectors : {(xk, y(k + 5))}613
k=1

= [y(1), y(2), · · · , y(6)]T , [y(1), y(2), · · · , y(7)]T , · · ·, [y(1), y(2), · · · , y(618)]T . The corre-

sponding input x is defined as x1 = [y(1), y(2), · · · , y(5)]T , x2 = [y(2), y(3), · · · , y(6)]T , · · ·,
x613 = [y(613), y(614), · · · , y(617)]T .

Two values of Sb, 0.01 and 0.04 respectively, are examined. The parameter λ is set to

0.001, 0.002 and so on up to 0.5. For each particular (Sb, Se) pair, 50 training sets (and

the corresponding testing sets) are generated by randomly selection of 306 patterns from

the 613 pattern vectors to be the training set and then the reminding 307 pattern vectors

to be the corresponding testing set.

An RBF network is thus generated for each of these training sets. Each RBF network

consists of 306 radial basis functions, in which the centers are defined as the selected xk

in the training set and the corresponding weight vector ŵ is obtained by Equation 37.

March 3, 2007 DRAFT

30

Finally, 100 perturbed weight vectors are generated and plugged in the corresponding

testing set to check with the testing error.

10
−3

10
−2

10
−1

10
0

1

1.5

2

2.5
x 10

−3

λ

Training Error
Testing Error
Weight Noise

10
−3

10
−2

10
−1

10
0

1

1.5

2

2.5

3

3.5
x 10

−3

λ

Training Error
Testing Error
Weight Noise

(a) Sb = 0.01 (b) Sb = 0.04

Fig. 15. Average mean square errors plot against different value of λ. The solid lines, labeled ”Weight

Noise”, are corresponding to the simulation results that multiplicative weight noise has been added.

The vertical dash line corresponds to λ = Sb.

The results are depicted in Figure 15. Each point shown in the figure is the average

over 100 perturbed weight vectors and 50 training sets. It is clearly found that the fault

tolerant performance of the network is approximately the same as the best performance

whenever λ is set to Sb.

5.3.2 Prediction error estimation

To demonstrate the applicability of the mean prediction error equation, we follow the

same procedure as described for time series prediction problem in Section 5.2.2. All 17

parts of the Astrophysical data are examined and the values of Sb are set to be 0.005, 0.010,

0.015, · · ·, 0.250. For each of the 17 datasets, 50% of the pattern vectors are randomly

selected as training set and the reminding 50% are assigned as testing set. Then, we follow

the same procedure as in Section 5.2.2 to obtain the actual and estimated mean prediction

error. The steps are repeated ten times for each particular Sb and for each part. The

results are depicted in Figure 16. It is clear that the estimated mean prediction error is

similar to the actual mean prediction error for all 17 parts of Astrophysical data.

March 3, 2007 DRAFT

31

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

Actual MPE

E
st

im
at

ed
 M

P
E

Fig. 16. Estimated MPE versus the actual MPE for the astrophysical data.

6 Conclusion

In this paper, an objective function for training a functional neural network to tolerate

multiplicative weight noise has been derived. This objective function has the form similar

to other regularizer-based objective functions. For a functional network is of the form

ΦT (x)w, this objective function is equal to

Mean Square Training Error + wTRexpw,

where Rexp is a diagonal matrix with elements depended on the multiplicative weight

noise and the Gram matrix G defined as 1
N

∑N
j=1 ΦT (xj)Φ(xj). For a special case that

the functional network is a RBF network and its basis functions are of small variances,

it has further been shown that this fault tolerant regularizer reduces to the conventional

weight decay regularizer. Thus, it explains why adding weight decay can improve the fault

tolerant ability of a RBF network in dealing with multiplicative weight noise. Based on

the objective function being derived, a fault tolerant learning algorithm and a formula for

March 3, 2007 DRAFT

32

mean prediction error have also been derived analytically in the paper. It is demonstrated

by the simulation results obtained in three problems – the Hermit function approximation,

nonlinear time series prediction and the Astrophysical time series prediction – the applica-

bility of this mean prediction error formulae. Finally, one should also noted that functional

link network behaves similar to a generalised linear model [34]. Extended work on the fault

tolerant ability of a generalised linear model is worthwhile for future investigation.

Acknowledgement

The authors would like to express their gratitude to the associate editor and the referees

for their valuable comments. The work presented in this paper is supported by a research

grant from the Hong Kong Special Administrative Region RGC Earmarked Grant (Project

No. CityU 115606) and a grant from National Science Council ROC Project Grant (No.

NSC 95-2221-E-040-009).

References

[1] J. Burr, “Digital neural network implementations,” in Neural Networks, Concepts, Applications, and Imple-

mentations, Vol III. Englewood Cliffs, New Jersey: Prentice Hall., 1991.

[2] Jordan Holt and Jenq-Neng Hwang, “Finite precision error analysis of neural network hardware implemen-

tations,” IEEE Transactions on Computers., vol. 42, no. 3, pp. 281–290, 1993.

[3] Ping Man Lam, Chi Sing Leung, and Tien Tsin Wong, “Noise-resistant fitting for spherical harmonics,” IEEE

Transactions on Visualization and Computer Graphics, vol. 12, no. 2, pp. 254–265, 2006.

[4] J.L. Bernier, J. Ortega, M.M. Rodriguez, I. Rojas, and A. Prieto, “An accurate measure for multilayer

perceptron tolerance to weight deviations,” Neural Processing Letters, vol. 10, no. 2, pp. 121–130, 1999.

[5] J.L. Bernier, J. Ortega, I. Rojas, E. Ros, and Prieto, “Obtaining fault tolerance multilayer perceptrons using

an explicit regularization,” Neural Processing Letters, vol. 12, no. 2, pp. 107–113, 2000.

[6] J.L. Bernier, J. Ortega, I. Rojas, E. Ros, and Prieto, “A quantitative study of fault tolerance, noise immunity

and generalization ability of mlps,” Neural Computation, vol. 12, pp. 2941–2964, 2000.

[7] J.L. Bernier, J. Ortega, I. Rojas, E. Ros, and Prieto, “Improving the tolerance of multilayer perceptrons

by minimizing the statistical sensitivity to weight deviations,” Neurocomputing, vol. 31, no. 1-4, pp. 87–103,

2000.

[8] J. L. Bernier, A. F. Diaz, F. J. Fernandez, A. Canas, J. Gonzalez, P. Martin-Smith, and J. Ortega, “Assessing

the noise immunity and generalization of radial basis function networks,” Neural Processing Letters., vol. 18,

no. 1, pp. 35–48, 2003.

[9] M. Stevenson M., R. Winter, and B. Widrow, “Sensitivity of feedfoward neural networks to weight errors,”

IEEE Transactions on Neural Networks, vol. 1, pp. 71–80, 1990.

[10] S.W. Piche, “The selection of weight accuracies for madalines,” IEEE Transactions on Neural Networks, vol.

6, pp. 432–445, 1995.

March 3, 2007 DRAFT

33

[11] J.Y. Choi and C.H. Choi, “Sensitivity of multilayer perceptrons with differentiable activation functions,”

IEEE Transactions on Neural Networks, vol. 3, pp. 101–107, 1992.

[12] N.W. Townsend and L. Tarassenko, “Estimations of error bounds for neural network function approximators,”

IEEE Transactions on Neural Networks, vol. 10, pp. 217–230, 1999.

[13] M.A. Catala and X.L. Parra, “Fault tolerance parameter model of radial basis function networks,” in

Proceedings of IEEE ICNN’96, 1996, vol. 2, pp. 1384–1389.

[14] O. Fontenla-Romero et al, “A measure of fault tolerance for functional networks,” Neurocomputing, vol. 63,

pp. 327–347, 2004.

[15] S. Cavalieri and O. Mirabella, “A novel learning algorithm which improves the partial fault tolerance of

multilayer neural networks,” Neural Networks, vol. 12, pp. 91–106, 1999.

[16] D. Simon, “Distributed fault tolerance in optimal interpolative nets,” IEEE Transactions on Neural Networks,

vol. 12, no. 6, pp. 1348–1357, 2001.

[17] X. Parra and A. Catala, “Fault tolerance in the learning algorithm of radial basis function networks,” in

Proceedings of IJCNN 2000, 2000, vol. 3, pp. 527–532.

[18] J.E. Moody, “Note on generalization, regularization, and architecture selection in nonlinear learning systems,”

in First IEEE-SP Workshop on Neural Networks for Signal Processing, 1991.

[19] J.E. Moody, “A smoothing regularizer for feedforward and recurrent neural networks,” Neural Computation,

vol. 8, pp. 461–489, 1996.

[20] Yoh-Han Pao and Stephen M. Phillips, “The functional link net and learning optimal control,” Neurocom-

puting, vol. 9, no. 2, pp. 149–164, 1995.

[21] S. Chen, X. Hong, C.J. Harris, and P.M. Sharkey, “Sparse modelling using orthogonal forward regression

with press statistic and regularization,” IEEE Trans. Systems, Man and Cybernetics, Part B, pp. 898–911,

2004.

[22] O.J.L. Mark, “Regularization in the selection of radial basis function centers,” Neural Computation, vol. 7,

pp. 606–623, 1995.

[23] S.I. Amari, N. Murata, K.R. Muller, M. Finke, and H.H. Yang, “Asymptotic statistical theory of overtraining

and cross-validation,” IEEE Trans. Neural Networks, vol. 8, pp. 996–985, 1997.

[24] N. C. Steele and J. H. Tabor, “On parity problems and the functional-link artificial neural network,” Neural

Computing and Applications, vol. 2, pp. 205–208, 1994.

[25] Yoh-Han Pao and Yoshiyasu Takefuji, “Functional-link net computing: Theory, system architecture, and

functionalities,” Neural Computing and Applications, vol. 25, pp. 76–79–208, 1992.

[26] Chi Sing Leung, G.H. Young, John Sum, and W.K. Kan, “On the regularization of forgetting recursive least

square,” IEEE Transactions on Neural Networks, vol. 10, pp. 1482–1486, 1999.

[27] Chi Sing Leung, A.C. Tsoi, and L.W. Chan, “On the regularization of forgetting recursive least square,”

IEEE Transactions on Neural Networks, vol. 12, pp. 1314–1332, 2001.

[28] Yong Xu, K.W. Wong, and C.S. Leung, “Generalized rls approach to the training of neural networks,” IEEE

Transactions on Neural Networks, vol. 17, pp. 19–34, 2006.

[29] N. Murata, S. Yoshizawa, and S. Amari, “Network information criterion–determining the number of hidden

units for an artificial neural network model,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp.

865–872, 1994.

[30] H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic Control,

vol. 19, pp. 716–723, 1974.

March 3, 2007 DRAFT

34

[31] S. Chen, “Local regularization assisted orthogonal least squares regression,” Neurocomputing, vol. 69, no.

4-6, pp. 559–585, 2006.

[32] S. Singh, “Noise impact on time-series forecasting using an intelligent pattern matching technique,” Pattern

Recognition, vol. 32, pp. 1389–1398, 1999.

[33] Eric W. M. Lee, Chee Peng Lim, Richard K. K. Yuen, and S. M. Lo, “A hybrid neural network model for

noisy data regression,” IEEE Trans. Systens, Man, and Cybernetics PART B, vol. 34, pp. 951–960, 2004.

[34] N. McCullagh, Generalised Linear Models, Chapman and Hall, 1989.

March 3, 2007 DRAFT

