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Abstract—Regularization techniques have attracted many 

researches in the past decades. Most focus on designing the 
regularization term, and few on the optimal regularization parameter 
selection, especially for faulty neural networks. As is known that in the 
real world, the node faults often inevitably take place, which would 
lead to many faulty network patterns. If employing the conventional 
method, i.e., the test set method or cross-validation, to find the optimal 
regularization parameter, it will cost a lot of time. Moreover, although 
some statistic methods have been proposed, almost of them aim at the 
fault-free networks. Thus, in the paper, a MPE formula is derived to 
evaluate the mean prediction error in the multi-node open fault 
situations and then used to select the optimal regularization parameter. 
Experiment results have shown that the optimal parameter value 
selected by our proposed formula is very close to the actual one, 
chosen by the conventional test set method. Our contribution is that 
our proposed MPE formula can be used in choosing the regularization 
parameter instead of the test set method for faulty neural networks 
with multi-node open fault. 
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I. INTRODUCTION 
S is known that the node faults inevitably take place in the 
real application for neural networks, especially in VLSI 

[1]. Without the special care, the fault situation could result in 
drastic performance degradation [2]. Due to the simplicity of 
computation and structure, regularization methods have been 
considered as one of the most effective techniques for 
improving the fault tolerant through adding one regularization 
term, consisting of regularization parameter and regularization 
matrix, in the objective function [3]. The regularization 
parameter plays an important role in the regularization method 
and controls the overfitting or underfitting of the network 
learning process. If the improper regularization parameter is 
selected, the network learning performance, i.e., generalization, 
will suffer from the drastic degradation [4]. Thus, it is 
necessary to choose a proper regularization parameter for 
improving the generalization performance of faulty neural 
network with the regularization method. 
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Traditional methods of choosing the regularization 
parameter is the test set method or cross-validation [5]-[7], i.e., 
calculating the prediction error with the testing or training 
dataset for each the candidate regularization parameter and then 
selecting the optimal regularization parameter with the 
minimum prediction error value. However, when the network 
suffers from the multi-node open fault, i.e., multiple nodes 
synchronously take no effect in the training process [8], the 
above operation process has to be repeated for each faulty 
network pattern and then the mean prediction error (MPE) is 
calculated, which will cost a lot of dealing time. In addition, 
though some statistical methods have been proposed to 
evaluate the mean prediction error, e.g., Moody’s GPE [9], 
most of them aim at the fault-free neural networks. To our best 
knowledge, no literatures about regularization parameter 
selection for faulty neural networks have been published. 

Thus, the paper derive a formula, called as MPE formula, to 
evaluate the mean prediction error for faulty neural networks in 
multi-node open fault conditions based on Moody’s thinking 
and then use it to choose the optimal regularization parameter. 
Simulation results show that our proposed MPE formula can 
quickly find the optimal regularization parameter, which is very 
close to the actual one by the test set method.  

II. FAULTY NEURAL NETWORKS 
In the section, we shall present the basic framework of the 

faulty neural networks.  

A. RBF model 
We consider the RBF network model as an example. For 

clarity, the bold letter denotes the vector in the paper. Thus, the 
unknown function mapping ( )f ⋅  can be approximated as [10]  
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jc ’s are the center of RBF,   is the kernel width of RBF.  Δ

B. Faulty model 
The existing literatures often discuss two kinds of fault 

models, i.e., multi-node open fault [8] and multiplicative 
weight noise [11], [12]. In the paper, we mainly consider the 
multi-node open fault situation, where the node fault means that 
the corresponding weights are equal to zero. Therefore, the 
faulty weight vector is 

 = ⊗w b w ,                                      (2) 
where is the element-wise multiplication operator, 

 is the node fault vector with 
⊗

1 2[ , , , ]  T
Mb b b=b [0,1]ib ∈ . 

Moreover, when , the i th node is out of work. 
Otherwise, the i th one works. 

0ib =
p  is the node fault rate with the 

following relation 

( )

'

' 2 '

1 ,  if 

1 ,  if i i

p i i
bb

p i

⎧ − =⎪= ⎨
− ≠⎪⎩ i

.                       (3) 

 To enhance the fault tolerant of the faulty neural networks, 
some methods have been proposed, such as injecting weight 
noise during training [13], adding the node redundancy [14] 
and regularization [15] and so on.    

C. Regularization learning 
Generally speaking, the regularization method employs a 

regularization term to limit weight magnitude since the large 
weights have a big effect on the output of the neural network. 
As one of the most common regularizers, the weight decay has 
been widely researched and applied in the past years. Studies 
have shown that weight decay regularizer to some extend can 
improve the fault tolerant in the faulty neural networks, but it is 
not the best one [8]. Hence, Leung et al. have developed a new 
regularizer, which has a better ability to tolerate the multi-node 
open fault than others, e.g., the standard weight decay [16].  

III. MEAN PREDICTION ERROR 
The regularizer for faulty RBF neural networks with 

multi-node open fault proposed by Leung et al. is , 
where

Tλw Rw
φ= −R G H is the regularization matrix, λ is the 

regularization parameter, ( ) ( )
1

1 N
T

j
j

jx x
Nφ φ φ

=

= ∑H and 

( )diag φ=G H . Therefore, the error objective function for 

faulty neural networks with multi-node open fault can be 
expressed as 
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and the training error is ( )trainE w
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Following the Moody’s thinking [9], we can know that the 

mean testing error for faulty networks ( ),testE w b  is 

( ) ( ), , 2 eff
test train e

M
S

N
E E= +w b w b ,        (6) 

where
eff

M is the effective number of  weights in the RBF 

model, is the measured noise variance, the first term is the 
mean training error for faulty networks. 

eS
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Therefore,  
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In addition, the mean train error for faulty neural networks 
can be expressed as 
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and the mean training error for fault-free neural networks is 
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Thus, comparing (9) and (10), we can get 
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Thereby, substituting (8) and (11) into (6), we have 
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Using the MPE formula, we can rapidly obtain the MPE 
value and select the optimal regularization parameter. 

IV. SIMULATIONS 
To test our theoretic results, two function approximation 

examples have been employed, i.e., sinc function and nonlinear 
autoregressive (NAR) time series prediction problems. In the 
simulations, firstly, we use our proposed formula method, MPE 
formula, and the test set method to calculate the testing error 
values of each the candidate regularization parameterλ , and 
then take the optimal parameter value with the minimal testing 
error value, respectively. Finally, two results have been 
compared to verify our theoretic results. Therefore, to get the 
best test results, it is important to select the approximate 
candidate regularization parameter. Taking the tradeoff of the 
complexity and accuracy, we set the candidate regularization 
parameter as . Moreover, we random 

generate 10000 faulty networks to calculate the actual MPE 
with the test set method. In addition, the variance of measured 
noise  can be obtained using the Fedorov’s method [17], i.e., 

4 3.95 010 ,10 , ,10λ − −= ⎡⎣ ⎤⎦

eS
2

y (x)wT

eS
N M

− Φ
=

−
.                             (10) 

A. One-dimension function approximation 
The sinc function approximation problem is a benchmark 

one-dimension function learning example [18]. The function 
relation equation can be generated by 

sinc( )=y x + n .                             (11) 
where is the independent identity distribution Gaussian 
random noise vector with mean zero and variance 0.01. In 
simulation, 200 training dataset and 1000 testing dataset are 
generated. The RBF network model has 37 nodes, which are 
taken uniformly between -4.5 and 4.5. In addition, the kernel 
width value of RBF network is 0.49 according to Sum’s method 
in [19]. Our task is to find and compare the optimal 
regularization parameters for two methods, i.e., MPE formula 
and the test set method.  

n

Fig.1 has shown simulation results for the sinc function 
approximation example using two evaluation methods, i.e., 
MPE formula and test set method. From the figures, we can see 
that the optimal regularization parameters selected by the two 
methods are very close. For example, when the fault rate is 
equal to 0.05, the chosen regularization parameter for two 
methods are both about 0.056234. Moreover, we have repeated 
the simulations for 50 times and found the range of optimal 
regularization parameter values chosen by the MPE formula is 
around from 0.050119 to 0.063096. 

In addition, to deeply affirm our results, we set the fault rate 
as 0.1 and repeat the above training and testing process. The 
similar curve shapes can be observed in fig.1(b), i.e., the lowest 
points of two curves almost are in one vertical line as well. 
Therefore, we can find that no matter how the fault rate varies, 
the optimal regularization parameter selected by our proposed 
formula is very close to the one by the conventional method, i.e., 

the test set method.  
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Fig. 1 Optimal regularization parameter selection for sinc function 
approximation example with the different methods, i.e., MPE formula 
and test set method. 

B. Multi-dimension function approximation 
We consider the nonlinear autoregressive time series 

example as the multi-dimension function approximation 
problem [20]. Those function expression can be given as 

( ) ( )( )( ) ( )

( )( )( ) (
( )( ) ( )

2

2

0.8 0.5exp 1 1

0.3 0.9exp 1 2

0.1sin 1

y i y i y i

y i y i

y i n iπ

)

= − − − −

− + − − −

+ − +

,       (12) 

where ( )n i is a mean-zero Gaussian random variable with 

variance 0.01. The RBF model is to predict ( )y i  based on 

( )1y i − and ( )2y i − , i.e., ( ) ( ) ( )1 , 2x i y i y i= − −⎡ ⎤⎣ ⎦ . In 

simulation, 500 training dataset and 500 testing dataset are 
generated based on the initial setting, ( ) ( )0 1y y 0= − = . 

Moreover, the Chen’s LROLS method is applied to select 
important RBF centers [21]. The number of selected nodes is 
40. 

Fig.2 has shown the simulation results for the NAR time 
series prediction with two evaluation methods, i.e., MPE 
formula and the test set method, when or0.05p = 0.1p = . 
From the figures, we can find that the regularization parameters 
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chosen by the MPE formula are very close to that by the test set 
method. For instance, in fig.2(a), when the fault rate is equal to 
0.05, the selected regularization parameter for two methods are 
both about 0.063096. Furthermore, we have repeated the 
simulations for 50 times and found the range of optimal 
regularization parameter values chosen by the MPE formula is 
around from 0.056234 to 0.070795. In addition, we can obtain 
the similar results from fig.2(b). 
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Fig. 2 Optimal regularization parameter selection for nonlinear 
autoregressive time series prediction example with the different 
methods, i.e., MPE formula and test set method. 

V. CONCLUSION 
The paper derives a MPE formula to find the optimal 

regularization parameter for faulty neural networks. Simulation 
results have shown that our proposed formula method can 
quickly find the optimal regularization parameter, which is very 
close to the actual one by the conventional method, i.e., the test 
set method. It implies that ones can selection the optimal 
regularization parameter using our MPE formula instead of the 
test set method for faulty neural networks.  
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