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Abstract— Although many analytical works have been
done to investigate the change of prediction error of a
trained NN if its weights are injected by noise, seldom of
them has truly investigated on the dynamical properties
(such as objective functions and convergence behavior)
of injecting weight noise during training. In this paper,
four different online weight noise injection training al-
gorithms for multilayer perceptron (MLP) are analyzed
and their objective functions are derived. Most impor-
tance, the objective function of injecting multiplicative
weight noise during training is shown to be different from
the prediction error of a trained MLP if its weights are
injected by the same multiplicative weight noise. It pro-
vides a firm response to a question being posed for 14
years [8]: Can deterministic penalty terms model the effects
of synaptic weight noise on network fault-tolerance?. Besides,
we show that the objective function of injecting addi-
tive weight noise during training is equivalent to adding
a regularizer penalizing the magnitude of the gradient
vector of the MLP output with respect to its weight vec-
tor. Finally, the issue on their convergence proofs will
be discussed.

1 Introduction

Many methods have been developed throughout the
last two decades to improve tolerance of a neural net-
work towards random node fault, stuck-at node fault
and weight noise. Known methods include injecting
random or stuck-at node fault during training [20], [3],
injecting (synaptic) weight noise during training (spe-
cially for multilayer perceptrons (MLP) [16], [17], a re-
current neural network (RNN) [12], or a pulse-coupled
neural networks (PCNN) [9], injecting node noise (re-
sponse variability) during training [2] (specifically for
a model of PCNN) applying weight decay training [6],
introducing network redundancy [19], formulating the
training algorithm as a nonlinear constraint optimiza-
tion problem [7], [18], bounding weight magnitude dur-
ing training [5], [10], [13], and adding fault tolerant reg-
ularizer [4], [14], [21]. Amongst all, the weight/node
noise-injection-based on-line training algorithms are of
least theoretical studied [1], [2], [16], [17]. Especially,
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the objective functions and the convergence properties
of these algorithms for multilayer perceptron (MLP)
have not been derived and proved.
Murray & Edward in [8], [17] have derived the pre-

diction error of a (trained) MLP if multiplicative weight
noise is injected after training (see Section II.A and II.B
in [17]). For the dynamics of the weight vector dur-
ing training, only a qualitative analysis has been pre-
sented (see Section II.C in [17]). Convergence proof
and objective function have not been analyzed. An
has attempted to derive an objective function for this
weight-noise injection training algorithm (see Section 4
in [1]). However, An has not succeeded to a conver-
gence proof. The objective function derived is not true
objective function for training with weight noise injec-
tion. It is again the prediction error of a trained MLP
if weight noise is injected after training. Until recently,
Ho et al [11] have showed that the convergence of out-
put weight noise injection-based training a radial basis
function (RBF) network is almost sure. For MLP, the
convergence proof is still missing.
In this regard, the objective functions of online weight

noise injection training algorithms for MLP are de-
rived in this paper. The next section will introduce
four different online weight noise injection training algo-
rithms. Their corresponding objective function will be
presented in Section 3. The objective functions for pure
multiplicative weight noise injection and pure additive
weight noise injection during training will be derived in
Section 4. The issue on their convergence behavior will
be discussed in Section 5. Section 6 will present the
conclusion.

2 Weight noise injection during training

Let f(⋅, ⋅) ∈ Rl be a single output multilayer per-
ceptron (MLP) consisting of m hidden nodes, n input
nodes and l linear output nodes.

f(x,w) = DT z(ATx+ c), (1)
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where D = [d1,d2, ⋅ ⋅ ⋅ ,dl] ∈ Rm×l is the hidden to
output weight vector, z = (z1, z2, ⋅ ⋅ ⋅ , zm)T ∈ Rm is
the output of the hidden nodes, A = [a1,a2, ⋅ ⋅ ⋅ ,am] ∈
Rn×m is the input to hidden weight matrix, ai ∈ Rn

is the input weight vector of the itℎ hidden node and
c ∈ Rm is the input to hidden bias vector.
w in (1) is a vector augmenting all the parameters,

i.e.

w = (dT
1 ,d

T
2 , ⋅ ⋅ ⋅ ,dT

l ,a
T
1 ,a

T
2 , ⋅ ⋅ ⋅ ,aTm, cT )T .

For i = 1, 2, ⋅ ⋅ ⋅ ,m, zi(x,ai, ci) = ¿(aTi x + ci), where
¿(⋅) is the neuronal transfer function. Training dataset
is denoted by D = {(xk,yk)}Nk=1. The random noise
vector is denoted by b.
For simplicity, we assume that there is only one

output node, i.e. l = 1. In such case, the gra-
dient of f(x,w) with respect to w is denoted by
g(xt,w(t)). The Hessian matrix of f(x,w) is denoted
by gw(xt,w(t)).
The online weight noise injection training for

f(x,w) given a dataset D can be written as follows :

w(t+ 1) = w(t) + ¹t(yt − f(xt, w̃(t)))g(xt, w̃(t)). (2)

w̃(t) = w(t) + b⊙w(t). (multi. noise) (3)

w̃(t) = w(t) + b. (additive noise) (4)

Here b⊙w = (b1w1, b2w2, ⋅ ⋅ ⋅ , bMwM )T and bi, for all
i, is a mean zero Gaussian distribution with variance
Sb.
For simultaneous weight noise injection and

weight decay, the update equations are similar except
the decay term is added.

w(t+ 1) = w(t) + ¹t {(yt − f(xt, w̃(t)))g(xt, w̃(t))

−®w(t)} . (5)

w̃(t) = w(t) + b⊙w(t). (multi. noise) (6)

w̃(t) = w(t) + b. (additive noise) (7)

Clearly, the difference between pure noise injection
during training, and the one with weight decay lies in
the last term of the update equation, i.e. −®w(t), which
can limit the growth of ∥w(t)∥ to infinity.

3 Objective functions

In this section the mean update equations of the on-
line weight noise injection training algorithms together
with their corresponding objective functions will be pre-
sented. The derivation of those objective functions will
be presented later in the subsequent sections.

3.1 Multiplicative weight noise

Let g(x,w) and gw(x,w) be the gradient and the
Hessian matrix of f(x,w). For small Sb, one can assume

that w̃ is close to w and then apply Taylor expansion
to f(⋅, ⋅) and g(⋅, ⋅) and get that

f(xt, w̃(t)) ≈ f(xt,w(t)) + g(xt,w(t))Tb⊙w(t), (8)

g(xt, w̃(t)) ≈ g(xt,w(t)) + gw(xt,w(t))b⊙w(t). (9)

The mean update of Equation (2) together with Equa-
tion (3) will be given by

w(t+ 1) = w(t) + ¹th(w(t)). (10)

In which,

h(w) =
1

N

N∑

k=1

∫
(yk − f(xk, w̃))g(xk, w̃)P (w̃)dw̃,

(11)
where P (w̃) is defined as a Gaussian distribution with
mean w and covariance matrix

diag{Sbw
2
1, Sbw

2
2, ⋅ ⋅ ⋅ , Sbw

2
M}.

Putting the above approximations (8) and (9) into (11),
h(w(t)) in the mean update Equation (10) together
with Equation (3) can be given by

h(w) =
1

N

N∑

k=1

(yk − f(xk,w))g(xk,w)

−Sb

N

N∑

k=1

gw(xk,w)v(xk,w), (12)

where

v(xk,w(t)) =

⎡
⎢⎢⎢⎣

w1(t)
2g1(xk,w(t))

w2(t)
2g2(xk,w(t))

...
wM (t)2gM (xk,w(t))

⎤
⎥⎥⎥⎦ . (13)

It can be shown that the objective function being min-
imized by Equation (12) is given by

V(w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

M∑

j=1

w2
j gj(xk,w)2

⎫
⎬
⎭

−Sb

N

N∑

k=1

∫ w

w0

u(xk, r)dr, (14)

where

u(xk,w) =

⎡
⎢⎢⎢⎣

w1g1(xk,w)2

w2g2(xk,w)2

...
wMgM (xk,w)2

⎤
⎥⎥⎥⎦ (15)
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and the last term is the line integral taking any path
from w0 to w.

3.2 Additive weight noise

For the case that the injection weight noise is addi-
tive, P (w̃) is defined as a Gaussian distribution with
mean 0 and covariance matrix diag{Sb, Sb, ⋅ ⋅ ⋅ , Sb}.
Apply Taylor expansion to f(⋅, ⋅) and g(⋅, ⋅) and get that

f(xt, w̃(t)) ≈ f(xt,w(t)) + g(xt,w(t))Tb, (16)

g(xt, w̃(t)) ≈ g(xt,w(t)) + gw(xt,w(t))b. (17)

Thus, the mean update equation can be expressed as
follows :

w(t+ 1) = w(t) + ¹th(w(t)), (18)

where

h(w(t)) =
1

N

N∑

k=1

(yk − f(xk,w(t)))g(xk,w(t))

−Sb

N

N∑

k=1

gw(xk,w(t))g(xk,w(t)). (19)

Similarly, it can be shown that the objective function
being minimized by Equation (19) is given by

V(w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

M∑

j=1

gj(xk,w)2

⎫
⎬
⎭ . (20)

3.3 Multiplicative weight noise with weight decay

The mean update equation can be expressed as fol-
lows :

w(t+ 1)

= w(t) + ¹t

{
1

N

N∑

k=1

(yk − f(xk,w(t)))g(xk,w(t))

−Sb

N

N∑

k=1

gw(xk,w(t))v(xk,w(t))

−®w(t)} . (21)

Similarly, it can be shown that the objective function
being minimized by Equation (21) is given by

V(w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

M∑

j=1

w2
j gj(xk,w)2

⎫
⎬
⎭

−Sb

N

N∑

k=1

∫ w

w0

u(xk, r)dr+
®

2
∥w∥2.(22)

where u(xk,w) is given by Equation (15) and the last
second term is the line integral taking any path from
w0 to w.

3.4 Additive weight noise with weight decay

The mean update equation can be expressed as fol-
lows :

w(t+ 1)

= w(t) + ¹t

{
1

N

N∑

k=1

(yk − f(xk,w(t)))g(xk,w(t))

−Sb

N

N∑

k=1

gw(xk,w(t))g(xk,w(t))

−®w(t)} . (23)

Similarly, it can be shown that the objective function
being minimized by Equation (23) is given by

V(w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

M∑

j=1

gj(xk,w)2 + ®∥w∥2
⎫
⎬
⎭ .(24)

4 Derivations of the objective functions

In this section, the derivations of the objective func-
tions will be presented. Detail steps will only be pre-
sented for the cases of injecting multiplicative weight
noise and injecting additive weight noise. For the cases
of combining injecting weight noise and weight decay,
their derivations are just a simple extension of the first
two cases.

4.1 Derivation of Equation (14)

By the fact that the itℎ row of gw is equal to ∂gi
∂w

T

and thus the itℎ element of h(w(t)) in Equation (11) is
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given by

ℎi(w)

=
1

N

N∑

k=1

(yk − f(xk,w))gi(xk,w)

−Sb

N

N∑

k=1

M∑

j=1

w2
j gj(xk,w)

∂gi(xk,w)

∂wj
, (25)

the following equations can be obtained.

(yk − f(xk,w))gi(xk,w)

= −1

2

∂

∂wi
(yk − f(xk,w))2. (26)

M∑

j=1

w2
j gj(xk,w)

∂

∂wj
gi(xk,w)

=
1

2

∂

∂wi

M∑

j=1

w2
j gj(xk,w)2

−wigi(xk,w)2. (27)

Using Equation (26) and Equation (27), Equation (12)
can be rewritten as follows :

h(w(t)) = − ∂

∂w
ℒ(w(t)) +

Sb

N

N∑

k=1

u(xk,w(t)), (28)

where

ℒ1(w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

M∑

j=1

w2
j gj(xk,w)2

⎫
⎬
⎭ (29)

and u(xk,w) in Equation (28) is given by Equa-
tion (15). As a result, the mean update equation (10)
with additive weight noise injection can be expressed as
follows :

w(t+1) = w(t)−¹t
∂

∂w
ℒ1(w(t))+¹t

Sb

N

N∑

k=1

u(xk,w(t)).

(30)
This recursive algorithm is identical to the gradient de-
scent algorithm which minimizes the objective function
given by Equation (14).
One should note that ℒ1(w) in Equation (29) is ba-

sically the objective function derived in [1], [4], [8] and
[17]. It is the prediction error of a trained MLP if its
weight is injected by multiplicative weight noise.

4.2 Derivation of Equation (20)

Again, by the same fact that the itℎ row of gw is

equal to ∂gi
∂w

T
and thus the itℎ element of h(w(t)) in

Equation (19) is given by

ℎi(w(t))

=
1

N

N∑

k=1

(yk − f(xk,w(t)))gi(xk,w(t))

− Sb

N

N∑

k=1

M∑

j=1

gj(xk,w(t))
∂

∂wj
gi(xk,w(t)), (31)

the following equation can be obtained.

M∑

j=1

gj(xk,w(t))
∂

∂wj
gi(xk,w(t))

=
1

2

∂

∂wi

M∑

j=1

wj(t)
2gj(xk,w(t))2. (32)

Using Equation (26) and Equation (32), Equation (12)
can be rewritten as follows :

h(w(t)) = − ∂

∂w
ℒ(w(t)), (33)

where

ℒ2(w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

M∑

j=1

gj(xk,w)2

⎫
⎬
⎭ . (34)

As a result, the mean update equation (10) with addi-
tive weight noise injection can be expressed as follows :

w(t+ 1) = w(t)− ¹t
∂

∂w
ℒ2(w(t)). (35)

This recursive algorithm is identical to the gradient de-
scent algorithm which minimizes the objective function
given by Equation (20). The second term in Equa-
tion (34) acts like a regularizer penalizing the magni-
tude of the gradient vector ∂f

∂w .
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4.3 Derivation of Equation (22)

The derivation of Equation (22) is accomplished by
the following equality.

1

2

∂

∂w

{
ℒ1(w)− Sb

N

N∑

k=1

∫ w

w0

u(xk, r)dr+ ®∥w∥2
}

=
1

N

N∑

k=1

(yk − f(xk,w(t)))g(xk,w(t))

−Sb

N

N∑

k=1

gw(xk,w(t))v(xk,w(t)) + ®w(t). (36)

4.4 Derivation of Equation (24)

The derivation of Equation (24) is accomplished by
the following equality.

1

2

∂

∂w

{ℒ2(w) + ®∥w∥2}

=
1

N

N∑

k=1

(yk − f(xk,w(t)))g(xk,w(t))

+®w(t). (37)

5 Convergence issue

Even though we are able to derive the objective func-
tion for onlinemultiplicative weight noise injection
training, it is not sufficient to prove the convergence
of the learning algorithm based on Equation (2) and
Equation (3). It is because the lower bound of Equa-
tion (14) has not been founded. Therefore, the con-
vergence of this training algorithm cannot be claimed.
As a matter of fact, we have identified a few counter
examples showing the divergence of training MLP with
online multiplicative weight noise injection. Interesting
readers can refer to [22].
For the algorithms based on injecting additive weight

noise, (2) and (4), and adding weight decay during
training (5), simulation results have demonstrated that
their weight vectors are able to converge [23]. Their con-
vergence proofs are underway and will be reported in
the future paper. The major idea of proof is similar (but
not identical to) stochastic gradient descent. For a neu-
ral network that is injected by input noise, stochastic
gradient descent can be applied right the way. For in-
jecting weight noise, we need to apply the ODE method
[15].

6 Conclusion

In our recent works, we have derived the objective
functions for some online noise/fault injection training

algorithms for radial basis function networks [11]. In
this paper, we follow the same direction and derived the
true objective functions for online weight noise injection
training algorithms for multilayer perceptron. By anal-
ysis on the actual update equations, we have derived the
true objective functions for four online weight noise in-
jecting training algorithms, including (1) multiplicative
weight noise injection, (2) additive weight noise injec-
tion, (3) simultaneous multiplicative weight noise injec-
tion and weight decay, (4) simultaneous additive weight
noise injection and weight decay.

In accordance with these objective function, we have
found that the objective function of injecting multi-
plicative weight noise during training a MLP is different
from the prediction error of a trained MLP if its weights
are injected by the same multiplicative weight noise.
This result provides a clue responding to a question
that have been posed for 14 years [8]: Can determin-
istic penalty terms model the effects of synaptic weight
noise on network fault-tolerance?. For injecting addi-
tive weight noise during training a MLP, the objective
function has also been derived and we have found that it
is similar to adding a simple regularizer that penalizes
the magnitude of the gradient of the network output
with respect to the weight vector.

Even though we have derived the objective functions
for these weight noise injection based training algo-
rithms, their convergence (divergence) proofs are still
underway and will be reported in future papers. We
should point out that this possible divergence behav-
ior could be a big problem in biological learning, as
our brain is full of intrinsic synaptic weight noises.
Those noises are not removable. Further investigation
along this line would be another valuable future work.
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