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Abstract In the past three decades, the properties of
associative networks has been extensively investigated.
However, most existing results focus on the fault-free
networks only. In implementation, network faults can be
exhibited in different forms, such as open weight fault and
multiplicative weight noise. This paper studies the effect of
weight fault on the performance of the bidirectional asso-
ciative memory (BAM) model when multiplicative weight
noise and open weight fault present. Assuming that con-
nection weights are corrupted by these two common fault
models, we study how many number of pattern pairs can be
stored in a faulty BAM. Since one of important feature of
associative network is error correction, we also study the
number of pattern pairs can be stored in a faulty BAM
when there are some errors in the initial stimulus pattern.
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1 Introduction

In the past three decades, associative networks have been
intensively studied in the past decade [1-5]. Besides, a
wide range of applications [1, 2, 6-8] were proposed, such
as document processing [6] and fault diagnosis [8]. One
form of associative networks is the bivalent additive bidi-
rectional associative memory (BAM) [3].

A BAM is a two-layer heteroassociator that stores a
prescribed set of bipolar pattern pairs, namely library pairs.
It consists of two layers of neurons, Fy and Fy. Layer Fy
has n neurons, and layer Fy has p neurons. The recall
process of the BAM is an iterative process between the two
layers. The BAM model has some nice features. First, it
performs both heteroassociative and autoassociative data
recalls. Second, the stimulus input can be fed in layer F or
layer Fy. Besides, the BAM is stable during recall. That is,
the state of the two layer converges to a fixed point in a
finite number of iterations.

In the past, the research on BAM focuses on improve
the capacity and capacity analysis. For example, in [9-13]
various modified encoding methods were introduced.
Besides, BAM has been intensively analyzed with a
perfect laboratory environment consideration [5, 14-16].
Amari [5] theoretically showed that the memory capacity
of a BAM is equal to % for random library pairs.
That means, a library pair has a high chance to be stored
as a fixed point when the number of library pairs is less
than %ﬁ'&)m. In [15], the memory capacity of the BAM
model with a forgetting learning rule was given. Besides,
the guideline for choosing the forgetting constant was
addressed. Simpson [14] empirically studied the memory
capacity of the BAM model with high order intercon-
nection but the theoretical memory capacity has not yet
been derived. In [16], the stability and statistical
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properties of the second order BAM were examined. The
result in [16] showed that the stability of the BAM model
with high- order interconnection is not guaranteed. For
this result, the statistical dynamics was introduced for
estimating the capacity of the BAM model with high-
order interconnection.

In neural networks, network faults can be exhibited in
many different forms, such as weight noise and weight
fault. The multiplicative weight noise results from the finite
precision representation of trained weights in the imple-
mentation [17]. For example, to implement a neural net-
work in digital circuits, the trained weights are usually
obtained first by a high precision computer. Then, the
trained weights are encoded in digital implementation, like
on FPGA [18]. The encoding process will cause a precision
problem as the number representation in FPGA is a low
precision floating point format [19], which is different from
the format used in a computer. In accordance with the
studies in [20, 21], the rounding error is proportional to the
magnitude of the number encoded. Therefore, a digital
implementation of a computer-simulated neural network
will lead to a problem identical to adding multiplicative
weight noise to that neural network. For example, in the
FPGA implementation, the loss of precision in the encod-
ing interconnection weights is equivalent to the multipli-
cative noise added to the interconnection weights.
Distinguishing from the multiplicative weight noise, in
open weight fault [22-25], some weights are disconnected
to the output layer. For example, in VLSI implementation,
some physical faults, such as defects in the silicon, open
circuits in metal, and holes in oxides used in transistors
[26], may appear. Those implementation defects cause the
weights to be failed.

Until now, most researchers focus on the capacity of
associative memories and the recall performance of asso-
ciative memories with initial noise input. Only a few arti-
cles [27] studied how the weight noise affects the recall
performance. For instance, in [27], the recall performance
of a median associative memory was studied in a deter-
ministic way.

This paper focuses on the quantitative impact of weight
fault to the BAM capacity in a statistics way. We will study
how many number of pattern pairs can be stored as fixed
points when weight fault presents. Since the memory
capacity is not meaningful without considering the error
correction capability, we also present the memory capacity
of BAM with weight fault when there are some errors in
the input pattern. The rest of this paper is organized as
follows. Section 2 introduces the BAM model and multi-
plicative weight noise. In Sect. 3, the capacity analysis on
BAM with multiplicative weight noise is used. Simulation
examples are given in Sect. 4. Then, we conclude our work
in Sect. 5.
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2 Background
2.1 Introduction to BAM

A BAM [3] is a two-layer nonlinear feedback heteroasso-
ciative memory. It consists of two layers. Layer Fx has n
neurons while layer Fy has p neurons. A BAM is used to
store library pairs ()?1 , 171), cey (fm, ?m), where X ¢
{—1,1}" and Y,e{—1,1}”. The m library pairs are encoded
into a connection matrix W. The encoding equation,
proposed by Kosko, is given by
m
w=>S 7%, (1)
h=1

which can be rewritten as
m

Wiji = inh)’jm (2)
h=1

whereXh = (X[h,th, .. .,th)T and Yh = (Y1h,YZh, .. .,yph)T.

The recall process of the BAM modgloemploys inter-
layer feegll%'jlck. With an initial stimulus X in F, the net
input WX’ in layer Fy is obtained and then is thresholded.
Afterward, a new state YV in F y is obtained. The new state
is passed back through W’ and is thresholded again, lead-
ing to a new state X" in Fy. The process repeats until the
state of BAM converges. Mathematically, the recall pro-
cess is:

?UH) = sgn(Wf(t)), and )?UH) = sgn(WT)_/'(Hl)),
(3)
where sgn(-) is the sign operator:
+1 x>0
sgn(x) = ¢ —1 x<0

state unchanged x =0

Using an element-by-element notation, the recall process
can be written as:

ylwl) = sgn (Z wjixl(»l)> , and
i=1
(++1) ’ (t41)
xj = sgn Zwﬁyi s (4)
Jj=1

where xft) is the state of the ith Fx neuron and y](-t) is the

state of the jth Fy neuron. The above bidirectional process
produces a sequence of pattern pairs (X, Y®): (x(),
yM), (x®,y®),.... This sequence converges to one of
the fixed points (X’, ¥) and this fixed point ideally should
be one of the library pairs or nearly so. A fixed point (X,
¥) has the following properties:

V= sgn(W}_('f) and X = sgn(WTI?f). (5)
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Hence, a library pair can be retrieved only if it is a fixed
point. One of the advantages of Kosko’s encoding method
is the ability of incremental learning, i.e., the ability of
encoding new library pairs to the model based on the
current connection matrix only. With the Kosko’s encoding
method, when the number of library pairs is less than
%, a library pair can have a high chance to be
stored as a fixed point.

2.2 Multiplicative weight noise

An implementation of a weight w;; is denoted by wj;. In
multiplicative weight noise, each implemented weight
deviates from its nominal value by a random percent, i.e.,

Wrji = (1+ bji) wii (6)

where b;;’s are identical independent mean zero random
variables with variance o7. The density function of bj;’s is
symmetrical.

2.3 Open weight fault

In weight fault model, a implemented weight is given by
Wwgji = (14 Bji)wii (7)

where f; ’s are independent {—1, O} random variables,
Prob (f; = —1) = e. and Prob (f; = 0) = 1 — . A weight
wj; is opened, when f8; = —1.

3 Analysis on BAM with weight fault
3.1 Memory capacity of BAM

We will investigate the BAM’s memory capacity when the
weight fault is presented.

(1) Assumption and notation: The following assump-
tions and notations are used.

e The dimensions, n and p, are large. Also, p =r n,
where r is a positive constant.

e Each component of library pairs (X;,Y,)’s
equiprobable independent random variable.

e EU,;, is the event that Z Wy jiXin 18 equal to Yin ( (the
Jj-th component of the library pattern Y4). Also, EU, g
is the complement event of EU, .

e EV,,, is the event that Z WpjiYjn 1S equal to x;;, (the
i-th component of the hbrary pattern X n). Also, EVb ih
is the complement event of EV ;.

e [EUg;, is the event that Z WgjiXin 18 equal to yj;, (the
J-th component of the library pattern Yu). Also, EU Bih
is the complement event of EUg .

isa=+1

e EVpg,, is the event that Z W jiVjn 18 equal to x;, (the
i-th component of the hbrary pattern X n)- Also, EV/; ih
is the complement event of EVpg; ;.

(2) Useful lemmas: With the above assumptions, we will
introduce Lemmas 1-4. They will assist us to derive the
memory capacity of BAM with weight fault.

Lemma 1 The probability Prob(EU, ;) is approximately
equal to

(/v

for j=1,.
\/ﬁf exp(= )dz

Proof Event EU,;;, means that sgn(X:f':1 vT/hJixih) # Vin-
From (2) and (6), we have

n n
> i =Y wi(1+ bji)xin
i—1 i=1
n m
= Z Z)’jh’xih’ (1 + bji)xin
=1\
n m
= nyj, + Z (Z yjh’xih’> Xih

i=1 \I'2h

+ Z (Z )’]h’xzh’> jiXih (8)

Without loss of generality, we consider the library pair
(X4, Yy) having all components positive: X, =
(1,...,1)" and ¥, = (1,...,1)". This consideration is
usually used [5] and does not affect our results. We can
easily verify this by use of conditional probability. Now,
(8) becomes

Z WpjiXih = I + Z <Zy]h’xlh’> + Z (Z y]h’xlh’> ji

i=1 \I'7h
:n—s—Zaji—i—ZVﬁ, (9)
i=1 i=1

where o;;’s are independent identical zero mean random
variables (i.e., E[a;] = 0, and E[o; a;7] = O fori # i") and
the variance of a;;’s, denoted as Var[ ,] isequalto (m — 1).
Since 7;;’s are independent identical zero mean random
variables and they are independent of (3" | ywxi) ’s.
Hence, y;’s are independent identical zero mean
random variables, where E[y;] =0, Ely; 7] =0 for
i # i, Var[y;] = apm.

For large n, the summations, ) 7' | o; and " 7;;, tend
to normal with variances equal to (m — 1)n and oimn7
respectively. Hence, (9) becomes

and h=1,...,m, where Q(z)=
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Zwb_ﬂxih:n+Zaji+2yﬁ:n+a+?. (10)
=1 =1 i=1
We have E[ay] = E[¢]E[y] =0, E[lz+ 7] =0 and

Var[o + y] = (m — 1)n + ojmn. Besides, the sum of the
two normal random variables is still a normal random
variable. Let ¢ = « + 7. Event EU,;, means that ¢ < — n.

Hence, Prob(EU,;;) ~ Q< m) For large

m, Q< /M) ~ Q( /(H%)") (Proof completed).

Using the similar way, we can have Lemma 2.

Lemma 2 The probability Prob (EV,;;) is approxi-
mately equal to

(/e

fori=1,..,pand h=1,....m.

Lemma 3 The probability Prob (EUg;,) is approxi-
mately equal to

Q( (1 ;e)n)

forj=1,...nand h=1,...,m.

Proof Event EUpj; means that sgn(ZLl W,;i,-ixih) # Vin-
From (2) and (6), we have

n n m
Z WgjiXin = nyjn + Z (Z yjh'xih'>xm
=1

i=1 \I'#h
n m

+§ E yiwXiw | Bjixin
i=1 \I=1

Without loss of generality, we consider the library pair
(X1, Yy) having all components positive: X, =
(1,...,1)" and ¥, = (1,...,1)". Now, (11) becomes

(11)

Z We,jiXin = 1+ (Z(l + B;i) (Z yjh’xih’> )
i=1 1

i= Wh

(o) ®
i=1
Let &; = (1+ ﬁji)(ZZf?éh YiwXi ). So (12) becomes
Zwﬂ.jixih =n+ ZéjiJFZBji' (13)
i1 P =1

For large n, the summation ¢ = ;| & tends to normal.
Besides, the summation y = Y/, B;; also tends to normal.
After careful analysis, we have E[¢ + y] = —en, and Var
[¢ + x1=(1 — e)m — 1 + €) n. Event EUp;, means that

@ Springer

¢ + 1 < — n. Hence, Prob(EUp ) ~ Q( (r(nl:fj:’f)). For

,5,1_12'16) ~ Q(\/ %) (Proof completed).

Using the similar way, we can have Lemma 4.

large m, Q(

Lemma 4 The probability Prob (EVpgj,) is approxi-
mately equal to

Q( (1 :ne)P)

forj=1,...pand h=1,....m.

(3) Memory Capacity: Now, we start to estimate the
memory capacity. For multipli_‘cati_\’/e weight noise, let the
probability that a library pair (X, ¥;) is fixed point be P*:
P, =Prob(EU, 14N+ NEUps NEVy 150+~ NEUp pp)

=1—Prob(EUp,13U---UEU i UEV,, 1, U---UEV}, )
>1—pProb(EU, ) — nProb(EV, ). (14)

From Lemmas 1 and 2, (14) becomes

(15)

Letting Pp —pQ( W) and Py —nQ< @)

we get

P*b21—PB—PA. (16)
If z is large,

a 1
0(2) %exp{—a—logz—ilogﬁt}, (17)

which is quite accurate for z > 3. Using the approximation
a7,

1 1
1 " ——log2n}

n
Px = expq logp — -5
4 exp{ ogp 2(1+o)m 2 Og(l +o2)m 2

1 1
— 1 — ~log2
2+ am 2 E(Itom 2°° }
n 7£10 n
20 +om 2 21+ odym

= exp{longr logn —

= exp{log n— + constant}

(18)

. ” e
C}eérly, if m<W,PA tends zero as n tends infinity.
Similarly, we can get that as p—oo and m<

MW’ Pg — 0. To sum up, for large n and p, If

min(n, p)
< , ,
2(1 + ¢7) log min(n, p)

(19)

then P*, —1. That means for the multiplicative weight
noise, if the number m of library pairs is less than

min(n,p)

31507 log min(n )’ & library pair is with a very high chance to
b '
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be a fixed point. So the memory capacity of BAM with
multiplicative weight noise is equal to

min(n, p)
2(1 + 07)log min(n, p)’

(20)

For open weight fault, let the probability that a library
pair (X, Y},) is fixed point be P*g:

Pxg=Prob(EUg 1N+ NEUgu NEV 1N+ NEUg )
=1—Prob(EUp14U--UEU s UEV g1, U---UEVy ;)
>1—pProb(EUp j,) —nProb(EVg ). (21)

Based on Lemmas 3 and 4, we can also prove that for open

weight fault, if the number m of library pairs is less than
(1—¢)min(n,p)
2logmin(n,p) ?

fixed point. So the memory capacity of BAM with open
weight fault is equal to

(1 = ) min(n, p)
2logmin(n,p)

a library pair is with a very high chance to be a

(22)
3.2 Error correction

In this section, we will investigate the memory capacity of
BAM with weight fault when the initial input is a noise
version X7° of a library pattern X ;. Let X/ contains p n
bit errors, where p is the input noise level. If

= ~ —noise

Y, =sgn(WX, ) (23)
X, =sgn(W'Y,) (24)
= sgn(WX,), (25)

. . S noise g
then a noise version X, of X, can successfully recall the

correct the desire library pair ()? Y »). Similarly, we hope

that a noise version ¥ ZOW of ¥, can successfully recall the
correct the desire library pair ()? h,Y’h). We will study
under what condition of m, the probability of successful
recall tends to one.

(1) Notations:

o Define EU}%" be the event that Y/ w,;ixj"* is equal
to yj, (the j-th component of the library pattern Y3).
Also, E UZ"ZE is the complement event of EU,’};Z”.

e Also, define EV;}"}f‘f be the event that Z W i ”0’“ is
equal to x;, (the i-th component of the llbrary pattern
X,). Also, E_Vznihm is the complement event of EVZ?,’;”.

o Define EUj" be the event that Y7 wpxi™ is equal
to yj, (the j-th component of the library pattern Y7).
Also, E U;j';e is the complement event of EU’“”“

e Also, define EV;}";;LW be the event that Z wg J,yj",f”e is
equal to x;, (the i-th component of the hbrary pattern

X,). Also, W;of,fe is the complement event of EV/’;‘:;IW.

With the above definition, we can follow the proofs of
Lemmas 1 and 3 to get the following four lemmas.

Lemma 5 The probability Prob (WZO;:&) is approxi-
mately equal to

(1 —2p)n
Q( ( +a§)m>

fori=1,...pandh=1,...m

Proof Let I be the index set of i’s such that x?h”m = Xin
and Let 7 be the index set of i’s such that x%¢ = —x;,.

. . —noise . -
Since there are pn errors in X, , the sizes of lIl and |I| are

—=55noise

equal to (1 — p) n and pn, respectively. Event EU,;,
means that Zl Wy ji 7 Yjn. From (2) and (6), we have

§ : noise § : § :
Wh jiXip, th 1 + b]z Xih — W]l + bjl Xih

iel

= (1 =2p)ny;, + Z (Z yjh’xih’>xih

il \I#h

+ Z (Z y]h’xlh’> jiXih

iel /

+ Z (Z )’jh’xih’> Xih

id \Ii7h
m
+ Z Z YiwXiw | bjixin
id \Ji=1

Following the proof of Lemma 1,

Prob(EU,; ;) ~ Q( m) For

m Q<1 /m) ~ Q( /W) (Proof completed).

Using the similar way, we can have Lemmas 6 and 7.

(26)

we can have

large

Lemma 6 The probability Prob (EV,.") is approxi-
mately equal to

(1-2p)p
Q( (1+0§)m>

fori=1,....pandh=1,...m

Lemma 7 The probability Prob (WZU;,;E) is approxi-
mately equal to

Q( (1— 2p})751 - e)n>

fori=1,....pandh=1,...m

Lemma 8 The probability Prob (W;DJ;E) is approxi-
mately equal to

@ Springer
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Q( a-—zﬁxl—-op>

fori=1,...pand h=1,...,m.

For multiplicative weight noise, define P**, be the
probability that a noise version with p fraction of errors can
recall the desired library pair. It is not difficult to show that

Py > 1 — p(Prob(Wb_jh) + Prob(mzzfe))
—n (Prob(Wbﬂ-h + Prob(E_VZf'ii:e))) . (27)

From Lemmas 1, 2 and 5, 6 for, large n and p, if

(1~ 20) min(n,p)
2(1 + 62)log min(n, p)’

(28)

then P**, —1. That means, when there are pn (or pp) bit
errors in the initial input, the capacity of BAM with
multiplicative weight noise is equal to

(1 = 20) min(n,p)
2(1 + 07)log min(n, p)’

(29)

For open weight fault, define P**; be the probability
that a noise version with p fraction of errors can recall the
desired library pair. It is not difficult to show that

Pixg>1 — p(Prob(W/} jh) T Prob(ﬁ%if))
_n (Prob(E_Vﬁ,ih) + Prob (Wgﬁ;";e))) . (30)

From Lemmas 3, 4 and 7, 8, for large n and p, if

<(1 —2p)(1 — €) min(n, p)
2 log min(n, p)

; (31)

then P**;—1. That means, when there are p n (or pp) bit
errors in the initial input, the capacity of BAM with open
weight fault is equal to
(1—2p)(1 - ¢) min(n, p)
2log min(n, p) '

(32)
3.3 Summary

We have shown that under multiplicative weight noise with

noise variance equal to 67, the memory capacity is equal to
min(n,p)

3(157) log min(n )" Compared with the original fault-free

model, the degradation factor is only equal to m When
b

the initial stimulus contains prn bit errors, a library pair can
be correctly recalled, if the number of library pairs is less
(1-2p) min(n,p)

than 2(1+07) log min(n,p)
For open weight fault with fault rate equal to e, the
memory capacity is equal to %m Compared with

the original fault-free model, the degradation factor is only

@ Springer

equal to (1 — €). When the initial stimulus contains pn bit
errors, a library pair can be correctly recalled, if the

(1-)(1-2p) min(np)

number of library pairs is less than ~—; ogmmn(np)

4 Simulation
4.1 Memory capacity

The memory capacity of BAMs under multiplicative
weight noise and open weight fault will be experimentally
investigated. We consider that n = p = 512. For each m,
we randomly generate 1,000 sets of library pairs. The
Kosko’s rule is then used to encode the matrices.

For the multiplicative weight noise, we add the multi-
plicative weight noise to the matrices. The variances a7 of
weight noise are set to 0, 0.2, 0.4. Figure 1 shows the per-
centage of a library pair being successfully stored. From our
analysis, i.e., (20), forn = p = 512, a BAM can store up to
41, 34, and 29 pairs for 022) equal to 0, 0.2, and 0.4,
respectively. From Fig. 1, all the corresponding successful
rates are very high. Also, there are sharply decreasing
changes in successful rate for {m > 41,05 =0},
{m > 34,67 = 0.2}, and {m > 29,57 = 0.4}. To sum up,
the simulation result is consistent with our analysis (20).

For the open weight fault, we add the random weight
fault to the connection weight. The fault rates € are set to
0.1, 0.2, 0.3. Figure 2 shows the percentage of a library
pair being successfully stored. From our analysis, i.e., (22),
for n = p = 512, a BAM can store up to 41, 32, and 28
pairs for € equal to 0, 0.2 and 0.3, respectively. From
Fig. 2, all the corresponding successful rates are very high.
Also, there are a sharply decreasing changes in successful

Successful Rate

m : Number of library pairs

Fig. 1 Successful rate of a library pair being a fixed point under
multiplicative weight noise. For each value of m, we generate 1,000
sets of library pairs
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m: Number of library pairs

Fig. 2 Successful rate of a library pair being a fixed point under open
weight fault. For each value of m, we generate 1,000 sets of library
pairs

rate for {m > 41, e =0}, {m > 32, e = 0.2}, and {m >
28, ¢ = 0.3}. To sum up, the simulation result is consistent
with our analysis (22).

4.2 Error correction

We will experimentally investigate the recall performance
of faulty BAMs when the initial stimulus is a noise
version of a library pattern. The dimension is equal to
512. We considers three input error levels, p =
0.003125, 0.0625, 0.125. For each m, we randomly gen-
erate 1,000 sets of library pairs. The Kosko’s rule is then
used to encode the matrices.

For the multiplicative noise, we add the multiplicative
weight noise to the matrices. For each library pair, we
generate ten noise versions. We then feed the noise ver-
sions as initial stimulus input and check whether the desire
library can be recalled or not. Figure 3 shows the suc-
cessful recall rate. From our analysis, i.e., (28), for the
dimension n = p = 512 and weight noise level ai =02a

BAM can store up to 32, 30, and 25 pairs for the input error
level p equal to 0.03125, 0.0625, and 0.125, respectively.
For other weight noise levels, we obtained similar
phenomena.

For the open weight fault, we add the random weight
fault to the connection weight. The fault rates € are set to
0.1, 0.3. Figure 4 shows the successful recall rate. From
our analysis, i.e., (31), for the dimension n = p = 512 and
open weight fault rate ¢ = 0.1, a BAM can store up to 34,
and 27 pairs for the input error level p equal to 0.03125 and
0.125, respectively. From Fig. 4, all the corresponding
successful rates are high. Also, there are sharply decreasing
changes in successful recall rates for {m >34, p =
0.03125}, and {m > 27, p = 0.125}. For fault rates, we
obtained similar results.

4.3 Low precision floating point

In the digital implementation, such as FPGA, we may use
low precision floating representation to encode the inter-
connect weights. As shown in [20], the effect of precision
error is similar to the multiplicative noise. Let ¢ is the
number of bits allotted to the mantissa. The corresponding
rounding error € on a weight w can be modeled as w =
w(1 + €), where € is an independent random variable uni-

formly distributed in (— 277, 27) with variance 2%2' From

the above analysis, when BAM weights (under outer

product rule) are encoded by the low precision floating

point, the capacity is at least equal to
min(n, p)

2(1 + 2%7') log min(n, p)

(33)

For instance, if we use 3 bits mantissa, the capacity
becomes

min(n, p)
2(1 4 0.0052) log min(n, p)’

(34)

Note that even we use a floating point format with 1 bit
mantissa, degradation on the capacity is less than 8%.

Fig. 3 Successful recall rate (a) 1 . . (b) 1
‘ge i —w—p=0.03125 —#—$=0.03125
from a noise input. For each o 09f 00625 o 09f P o625 |
value of m, we generate 1,000 T osl — p=0.125 T osl — p=0125
sets of library pairs. For each oc 0_: '7
library pattern, we generate 10 T 07T c_g 07 ¢
noise versions. an = p = 512, g 067 2 0.6
weight noise level a7 = 0.2. b E 05¢ = 0.5+
n = p = 512, weight noise 2 04} % 04l
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Fig. 4 Successful recall rate
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from a noise input. For each
value of m, we generate 1,000
sets of library pairs. For each
library pattern, we generate 10
noise versions. a n = p = 512,
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The memory capacity of BAMs under precision error will
be experimentally investigated to verify the above analysis.
We consider three cases of dimensions, n = p = 512,
n=p=1,024,n = p = 2,048. In the simulation, we use a
floating point format with 1 bit mantissa and 4 bit exponent to
encode the BAM weights. It is because if we assign more bits
to the mantissa, the degradation becomes very small and it
cannot observe from the simulation.

Figure 5 shows the percentage of a library pair being
successfully stored. From Fig. 5, the degradation on the
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recall performance due to the precision error is very small
and it agrees with our expectation.

5 Conclusion

This paper examined the statistical storage behavior of
BAM with multiplicative weight noise and open weight
fault. Compared with the original fault-free BAM, the
degradation factor in the memory capacity is equal to
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Fig. 5 Successful rate of a library pair being a fixed point under floating error precision error multiplicative weight noise. For each value of m,
we generate 100 sets of library pairs. an =p =512.bn=p = 1,024, n = p = 2,048
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when multiplicative weight noise presents. When open
weight fault presents, the degradation factor is equal to
(1 — €). Since we expect BAM has certain error correction
ability, we have investigated the capacity of BAM with
weight noise when the initial input is a noise version of a
library pattern. For multiplicative weight noise, we show

that if m<w

(1702) log min(n,p)’ a noise version with pn (or pp)

errors has a high chance to recall the desire library pair. For

multiplicative  weight noise, we show that if
m <W, a noise version with p n (or pp) errors

has a high chance to recall the desire library pair. Computer
simulations have been carried out to verify our analysis.
Besides, we have found that the degradation on the recall
performance is very small when the floating precision error
exists. This small degradation proves the robustness of the
outer product rule. The results presented here can be
extended to Hopfield network. By adopting the approach
set above, we can easily obtain the result in Hopfield net-
work by replacing min(#n, p) with n in the above equations.
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