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Abstract In the past three decades, the properties of

associative networks has been extensively investigated.

However, most existing results focus on the fault-free

networks only. In implementation, network faults can be

exhibited in different forms, such as open weight fault and

multiplicative weight noise. This paper studies the effect of

weight fault on the performance of the bidirectional asso-

ciative memory (BAM) model when multiplicative weight

noise and open weight fault present. Assuming that con-

nection weights are corrupted by these two common fault

models, we study how many number of pattern pairs can be

stored in a faulty BAM. Since one of important feature of

associative network is error correction, we also study the

number of pattern pairs can be stored in a faulty BAM

when there are some errors in the initial stimulus pattern.

Keywords Fault tolerance � Associative networks

1 Introduction

In the past three decades, associative networks have been

intensively studied in the past decade [1–5]. Besides, a

wide range of applications [1, 2, 6–8] were proposed, such

as document processing [6] and fault diagnosis [8]. One

form of associative networks is the bivalent additive bidi-

rectional associative memory (BAM) [3].

A BAM is a two-layer heteroassociator that stores a

prescribed set of bipolar pattern pairs, namely library pairs.

It consists of two layers of neurons, FX and FY. Layer FX

has n neurons, and layer FY has p neurons. The recall

process of the BAM is an iterative process between the two

layers. The BAM model has some nice features. First, it

performs both heteroassociative and autoassociative data

recalls. Second, the stimulus input can be fed in layer FX or

layer FY. Besides, the BAM is stable during recall. That is,

the state of the two layer converges to a fixed point in a

finite number of iterations.

In the past, the research on BAM focuses on improve

the capacity and capacity analysis. For example, in [9–13]

various modified encoding methods were introduced.

Besides, BAM has been intensively analyzed with a

perfect laboratory environment consideration [5, 14–16].

Amari [5] theoretically showed that the memory capacity

of a BAM is equal to
minðn;pÞ

2 log minðn;pÞ for random library pairs.

That means, a library pair has a high chance to be stored

as a fixed point when the number of library pairs is less

than
minðn;pÞ

2 log minðn;pÞ: In [15], the memory capacity of the BAM

model with a forgetting learning rule was given. Besides,

the guideline for choosing the forgetting constant was

addressed. Simpson [14] empirically studied the memory

capacity of the BAM model with high order intercon-

nection but the theoretical memory capacity has not yet

been derived. In [16], the stability and statistical
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properties of the second order BAM were examined. The

result in [16] showed that the stability of the BAM model

with high- order interconnection is not guaranteed. For

this result, the statistical dynamics was introduced for

estimating the capacity of the BAM model with high-

order interconnection.

In neural networks, network faults can be exhibited in

many different forms, such as weight noise and weight

fault. The multiplicative weight noise results from the finite

precision representation of trained weights in the imple-

mentation [17]. For example, to implement a neural net-

work in digital circuits, the trained weights are usually

obtained first by a high precision computer. Then, the

trained weights are encoded in digital implementation, like

on FPGA [18]. The encoding process will cause a precision

problem as the number representation in FPGA is a low

precision floating point format [19], which is different from

the format used in a computer. In accordance with the

studies in [20, 21], the rounding error is proportional to the

magnitude of the number encoded. Therefore, a digital

implementation of a computer-simulated neural network

will lead to a problem identical to adding multiplicative

weight noise to that neural network. For example, in the

FPGA implementation, the loss of precision in the encod-

ing interconnection weights is equivalent to the multipli-

cative noise added to the interconnection weights.

Distinguishing from the multiplicative weight noise, in

open weight fault [22–25], some weights are disconnected

to the output layer. For example, in VLSI implementation,

some physical faults, such as defects in the silicon, open

circuits in metal, and holes in oxides used in transistors

[26], may appear. Those implementation defects cause the

weights to be failed.

Until now, most researchers focus on the capacity of

associative memories and the recall performance of asso-

ciative memories with initial noise input. Only a few arti-

cles [27] studied how the weight noise affects the recall

performance. For instance, in [27], the recall performance

of a median associative memory was studied in a deter-

ministic way.

This paper focuses on the quantitative impact of weight

fault to the BAM capacity in a statistics way. We will study

how many number of pattern pairs can be stored as fixed

points when weight fault presents. Since the memory

capacity is not meaningful without considering the error

correction capability, we also present the memory capacity

of BAM with weight fault when there are some errors in

the input pattern. The rest of this paper is organized as

follows. Section 2 introduces the BAM model and multi-

plicative weight noise. In Sect. 3, the capacity analysis on

BAM with multiplicative weight noise is used. Simulation

examples are given in Sect. 4. Then, we conclude our work

in Sect. 5.

2 Background

2.1 Introduction to BAM

A BAM [3] is a two-layer nonlinear feedback heteroasso-

ciative memory. It consists of two layers. Layer FX has n

neurons while layer FY has p neurons. A BAM is used to

store library pairs ðX~1; Y~1Þ; . . .; ðX~m; Y~mÞ; where X~h�

f�1; 1gn
and Y~h�f�1; 1gp: The m library pairs are encoded

into a connection matrix W. The encoding equation,

proposed by Kosko, is given by

W ¼
Xm

h¼1

Y~hX~
T

h ð1Þ

which can be rewritten as

wji ¼
Xm

h¼1

xihyjh; ð2Þ

where Xh ¼ ðx1h; x2h; . . .; xnhÞT and Yh ¼ ðy1h; y2h; . . .; yphÞT :
The recall process of the BAM model employs inter-

layer feedback. With an initial stimulus X~
ð0Þ

in FX, the net

input WX~
ð0Þ

in layer FY is obtained and then is thresholded.

Afterward, a new state Y(1) in FY is obtained. The new state

is passed back through WT and is thresholded again, lead-

ing to a new state X(1) in FX. The process repeats until the

state of BAM converges. Mathematically, the recall pro-

cess is:

Y~
ðtþ1Þ ¼ sgn WX~

ðtÞ� �
; and X~

ðtþ1Þ ¼ sgn WT Y~
ðtþ1Þ� �

;

ð3Þ

where sgnð�Þ is the sign operator:

sgnðxÞ ¼
þ1 x [ 0

�1 x\0

state unchanged x ¼ 0

8
<

:

Using an element-by-element notation, the recall process

can be written as:

y
ðtþ1Þ
i ¼ sgn

Xn

i¼1

wjix
ðtÞ
i

 !
; and

x
ðtþ1Þ
j ¼ sgn

Xp

j¼1

wjiy
ðtþ1Þ
i

 !
; ð4Þ

where x
ðtÞ
i is the state of the ith FX neuron and y

ðtÞ
j is the

state of the jth FY neuron. The above bidirectional process

produces a sequence of pattern pairs ðXðtÞ; Y ðtÞÞ : ðXð1Þ;
Y ð1ÞÞ; ðXð2Þ; Y ð2ÞÞ; . . .: This sequence converges to one of

the fixed points (Xf, Yf) and this fixed point ideally should

be one of the library pairs or nearly so. A fixed point (Xf,

Yf) has the following properties:

Y~
f ¼ sgnðWX~

f Þ and X~
f ¼ sgnðWT Y~

f Þ: ð5Þ
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Hence, a library pair can be retrieved only if it is a fixed

point. One of the advantages of Kosko’s encoding method

is the ability of incremental learning, i.e., the ability of

encoding new library pairs to the model based on the

current connection matrix only. With the Kosko’s encoding

method, when the number of library pairs is less than
minðn;pÞ

2 log minðn;pÞ; a library pair can have a high chance to be

stored as a fixed point.

2.2 Multiplicative weight noise

An implementation of a weight wji is denoted by ~wji: In

multiplicative weight noise, each implemented weight

deviates from its nominal value by a random percent, i.e.,

~wb;ji ¼ ð1þ bjiÞ wji ð6Þ

where bji’s are identical independent mean zero random

variables with variance rb
2. The density function of bji’s is

symmetrical.

2.3 Open weight fault

In weight fault model, a implemented weight is given by

~wb;ji ¼ ð1þ bjiÞwji ð7Þ

where bji ’s are independent {-1, 0} random variables,

Prob ðbji ¼ �1Þ ¼ �: and Prob ðbji ¼ 0Þ ¼ 1� �: A weight

wji is opened, when bji = -1.

3 Analysis on BAM with weight fault

3.1 Memory capacity of BAM

We will investigate the BAM’s memory capacity when the

weight fault is presented.

(1) Assumption and notation: The following assump-

tions and notations are used.

• The dimensions, n and p, are large. Also, p = r n,

where r is a positive constant.

• Each component of library pairs ðX~h; Y~hÞ0s is a ± 1

equiprobable independent random variable.

• EUb,j,h is the event that
Pn

i ~wb;jixih is equal to yjh (the

j-th component of the library pattern Y~h). Also, EUb;j;h

is the complement event of EUb,j,h.

• EVb,i,h is the event that
Pp

j ~wb;jiyjh is equal to xih (the

i-th component of the library pattern X~h). Also, EVb;i;h

is the complement event of EVb,i,h.

• EUb,j,h is the event that
Pn

i ~wb;jixih is equal to yjh (the

j-th component of the library pattern Y~h). Also, EUb;j;h

is the complement event of EUb,j,h.

• EVb,i,h is the event that
Pp

j ~wb;jiyjh is equal to xih (the

i-th component of the library pattern X~h). Also, EVb;i;h

is the complement event of EVb,i,h.

(2) Useful lemmas: With the above assumptions, we will

introduce Lemmas 1–4. They will assist us to derive the

memory capacity of BAM with weight fault.

Lemma 1 The probability Prob(EUb;j;h) is approximately

equal to

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ð1þ r2
bÞm

r� �

for j ¼ 1; . . .; n and h ¼ 1; . . .;m; where QðzÞ ¼
1ffiffiffiffi
2p
p
R1

z expð�z2

2
Þdz:

Proof Event EUb;j;h means that sgn
Pn

i¼1 ~wb;jixih

� �
6¼ yjh:

From (2) and (6), we have

Xn

i¼1

~wb;jixih ¼
Xn

i¼1

wjið1þ bjiÞxih

¼
Xn

i¼1

Xm

h0
yjh0xih0

 !
ð1þ bjiÞxih

¼ nyjh þ
Xn

i¼1

Xm

h0 6¼h

yjh0xih0

 !
xih

þ
Xn

i¼1

Xm

h0¼1

yjh0xih0

 !
bjixih ð8Þ

Without loss of generality, we consider the library pair

ðX~h; Y~hÞ having all components positive: X~h ¼
ð1; . . .; 1ÞT and Y~h ¼ ð1; . . .; 1ÞT : This consideration is

usually used [5] and does not affect our results. We can

easily verify this by use of conditional probability. Now,

(8) becomes

Xn

i¼1

~wb;jixih ¼ nþ
Xn

i¼1

Xm

h0 6¼h

yjh0xih0

 !
þ
Xn

i¼1

Xm

h0¼1

yjh0xih0

 !
bji

¼ nþ
Xn

i¼1

aji þ
Xn

i¼1

cji; ð9Þ

where aji’s are independent identical zero mean random

variables (i.e., E[aji] = 0, and E[aji aji0] = 0 for i = i0) and

the variance of aji’s, denoted as Var[aji], is equal to (m - 1).

Since cji’s are independent identical zero mean random

variables and they are independent of
Pm

h0¼1 yjh0xih0
� �

’s.

Hence, cji’s are independent identical zero mean

random variables, where E[cji] = 0, E[cji cji’] = 0 for

i 6¼ i0;Var½cji� ¼ r2
bm:

For large n, the summations,
Pn

i¼1 aji and
Pn

i¼1 cji; tend

to normal with variances equal to (m - 1)n and r2
bmn;

respectively. Hence, (9) becomes
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Xn

i¼1

~wb;jixih ¼ nþ
Xn

i¼1

aji þ
Xn

i¼1

cji ¼ nþ aþ c: ð10Þ

We have E[ac] = E[a]E[c] = 0, E[a ? c] = 0 and

Var½aþ c� ¼ ðm� 1Þnþ r2
bmn: Besides, the sum of the

two normal random variables is still a normal random

variable. Let 1 ¼ aþ c: Event EUb;j;h means that 1\� n:

Hence, ProbðEUb;j;hÞ � Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ðm�1Þþr2

b
m

q� �
: For large

m;Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ðm�1Þþr2

b
m

q� �
� Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ð1þr2
b
Þm

q� �
: (Proof completed).

Using the similar way, we can have Lemma 2.

Lemma 2 The probability Prob ðEVb;i;hÞ is approxi-

mately equal to

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ð1þ r2
bÞm

r� �

for i ¼ 1; . . .; p and h ¼ 1; . . .;m:

Lemma 3 The probability Prob ðEUb;j;hÞ is approxi-

mately equal to

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þn

m

r !

for j ¼ 1; . . .; n and h ¼ 1; . . .;m:

Proof Event EUb;j;h means that sgn
Pn

i¼1 ~wb;jixih

� �
6¼ yjh:

From (2) and (6), we have

Xn

i¼1

~wb;jixih ¼ nyjh þ
Xn

i¼1

Xm

h0 6¼h

yjh0xih0

 !
xih

þ
Xn

i¼1

Xm

h0¼1

yjh0xih0

 !
bjixih ð11Þ

Without loss of generality, we consider the library pair

ðX~h; Y~h) having all components positive: X~h ¼
ð1; . . .; 1ÞT and Y~h ¼ ð1; . . .; 1ÞT : Now, (11) becomes

Xn

i¼1

~wb;jixih ¼ nþ
Xn

i¼1

ð1þ bjiÞ
Xm

h0 6¼h

yjh0xih0

 ! !

þ
Xn

i¼1

bji

 !
: ð12Þ

Let nji ¼ ð1þ bjiÞð
Pm

h0 6¼h yjh0xih0 Þ: So (12) becomes

Xn

i¼1

~wb;jixih ¼ nþ
Xn

i¼1

nji þ
Xn

i¼1

bji: ð13Þ

For large n, the summation u ¼
Pn

i¼1 ni tends to normal.

Besides, the summation v ¼
Pn

i¼1 bji also tends to normal.

After careful analysis, we have E[u ? v] = -�n, and Var

[u ? v] = (1 - �)(m - 1 ? �) n. Event EUb;j;h means that

u ? v\ - n. Hence, ProbðEUb;j;hÞ � Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1��Þn
ðm�1þ�Þ

q� �
: For

large m;Q
ffiffiffiffiffiffiffiffiffiffiffi
ð1��Þn
m�1þ�

q� �
� Q

ffiffiffiffiffiffiffiffiffiffi
ð1��Þn

m

q� �
: (Proof completed).

Using the similar way, we can have Lemma 4.

Lemma 4 The probability Prob ðEVb;j;hÞ is approxi-

mately equal to

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þp

m

r !

for j ¼ 1; . . .; p and h ¼ 1; . . .;m:

(3) Memory Capacity: Now, we start to estimate the

memory capacity. For multiplicative weight noise, let the

probability that a library pair ðX~h; Y~hÞ is fixed point be P*b:

P�b¼Prob EUb;1h\���\EUb;nh\EVb;1h\���\EUb;ph

� �

¼1�Prob EUb;1h[���[EUb;nh[EVb;1h[���[EVb;ph

� �

�1�pProbðEUb;jhÞ�nProbðEVb;ihÞ: ð14Þ

From Lemmas 1 and 2, (14) becomes

P �b � 1� pQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ð1þ r2
bÞm

r� �
� nQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ð1þ r2
bÞm

r� �
:

ð15Þ

Letting PB ¼ pQ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ð1þr2

b
Þm

q� �
and PA ¼ nQ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ð1þr2
b
Þm

q� �
;

we get

P �b � 1� PB � PA: ð16Þ

If z is large,

QðzÞ � exp �z2

2
� log z� 1

2
log 2p

� 	
; ð17Þ

which is quite accurate for z [ 3. Using the approximation

(17),

PA ¼ exp log p� n

2ð1þ r2
bÞm
� 1

2
log

n

ð1þ r2
bÞm
� 1

2
log 2p

� 	

¼ exp log r þ log n� n

2ð1þ r2
bÞm
� 1

2
log

n

ð1þ r2
bÞm
� 1

2
log 2p

� 	

¼ exp log n� n

2ð1þ r2
bÞm
� 1

2
log

n

ð1þ r2
bÞm
þ constant

� 	

ð18Þ

Clearly, if m\ n
2ð1þr2

b
Þ log n

;PA tends zero as n tends infinity.

Similarly, we can get that as p!1 and m\
p

2ð1þr2
b
Þ log p

;PB ! 0: To sum up, for large n and p, If

m\
minðn; pÞ

2ð1þ r2
bÞ log minðn; pÞ; ð19Þ

then P*b ?1. That means for the multiplicative weight

noise, if the number m of library pairs is less than
minðn;pÞ

2ð1þr2
b
Þ log minðn;pÞ; a library pair is with a very high chance to

Neural Comput & Applic

123



be a fixed point. So the memory capacity of BAM with

multiplicative weight noise is equal to

minðn; pÞ
2ð1þ r2

bÞ log minðn; pÞ: ð20Þ

For open weight fault, let the probability that a library

pair ðX~h; Y~hÞ is fixed point be P*b:

P�b¼Prob EUb;1h\���\EUb;nh\EVb;1h\���\EUb;ph

� �

¼1�Prob EUb;1h[���[EUb;nh[EVb;1h[���[EVb;ph

� �

�1�pProbðEUb;jhÞ�nProbðEVb;ihÞ: ð21Þ

Based on Lemmas 3 and 4, we can also prove that for open

weight fault, if the number m of library pairs is less than
ð1��Þminðn;pÞ
2logminðn;pÞ ; a library pair is with a very high chance to be a

fixed point. So the memory capacity of BAM with open

weight fault is equal to

ð1� �Þminðn; pÞ
2 log minðn; pÞ : ð22Þ

3.2 Error correction

In this section, we will investigate the memory capacity of

BAM with weight fault when the initial input is a noise

version Xnoise
h of a library pattern X~h: Let Xnoise

h contains q n

bit errors, where q is the input noise level. If

Y~h ¼ sgnð ~WX~
noise

h Þ ð23Þ

X~h ¼ sgnð ~WT Y~hÞ ð24Þ

Y~h ¼ sgnð ~WX~hÞ; ð25Þ

then a noise version X~
noise

h of X~h can successfully recall the

correct the desire library pair ðX~h; Y~hÞ: Similarly, we hope

that a noise version Y~
noise

h of Y~h can successfully recall the

correct the desire library pair ðX~h; Y~hÞ: We will study

under what condition of m, the probability of successful

recall tends to one.

(1) Notations:

• Define EUnoise
b;jh be the event that

Pn
i ~wb;jix

noise
ih is equal

to yjh (the j-th component of the library pattern Y~h).

Also, EU
noise
b;jh is the complement event of EUnoise

b;jh :

• Also, define EVnoise
b;ih be the event that

Pp
j ~wb;jiy

noise
jh is

equal to xih (the i-th component of the library pattern

X~h). Also, EV
noise
b;ih is the complement event of EVnoise

b;ih :

• Define EUnoise
b;jh be the event that

Pn
i ~wb;jix

noise
ih is equal

to yjh (the j-th component of the library pattern Y~h).

Also, EU
noise
b;jh is the complement event of EUnoise

b;jh :

• Also, define EVnoise
b;ih be the event that

Pp
j ~wb;jiy

noise
jh is

equal to xih (the i-th component of the library pattern

X~h). Also, EV
noise
b;ih is the complement event of EVnoise

b;ih :

With the above definition, we can follow the proofs of

Lemmas 1 and 3 to get the following four lemmas.

Lemma 5 The probability Prob ðEU
noise
b;ih Þ is approxi-

mately equal to

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2qÞn
ð1þ r2

bÞm

s !

for i ¼ 1; . . .; p and h ¼ 1; . . .;m:

Proof Let I be the index set of i’s such that xnoise
ih ¼ xih

and Let I be the index set of i’s such that xnoise
ih ¼ �xih:

Since there are qn errors in X~
noise

h ; the sizes of |I| and jIj are

equal to (1 - q) n and qn, respectively. Event EU
noise
b;j;h

means that
Pn

i ~wb;ji 6¼ yjh: From (2) and (6), we have

Xn

i¼1

~wb;jix
noise
ih ¼

X

i�I

wjið1þ bjiÞxih �
X

i6�I
wjið1þ bjiÞxih

¼ ð1� 2qÞnyjh þ
X

i�I

Xm

h0 6¼h

yjh0xih0

 !
xih

þ
X

i�I

Xm

h0¼1

yjh0xih0

 !
bjixih

þ
X

i 6�I

Xm

h0 6¼h

yjh0xih0

 !
xih

þ
X

i 6�I

Xm

h0¼1

yjh0xih0

 !
bjixih ð26Þ

Following the proof of Lemma 1, we can have

ProbðEUb;j;hÞ � Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ðm�1Þþr2

b
m

q� �
: For large

m;Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ðm�1Þþr2

b
m

q� �
� Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ð1þr2
b
Þm

q� �
: (Proof completed).

Using the similar way, we can have Lemmas 6 and 7.

Lemma 6 The probability Prob ðEV
noise
b;ih Þ is approxi-

mately equal to

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2qÞp
ð1þ r2

bÞm

s !

for i ¼ 1; . . .; p and h ¼ 1; . . .;m:

Lemma 7 The probability Prob ðEU
noise
b;ih Þ is approxi-

mately equal to

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2qÞð1� �Þn

m

r !

for i ¼ 1; . . .; p and h ¼ 1; . . .;m:

Lemma 8 The probability Prob ðEV
noise
b;ih Þ is approxi-

mately equal to
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Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2qÞð1� �Þp

m

r !

for i ¼ 1; . . .; p and h ¼ 1; . . .;m:

For multiplicative weight noise, define P**b be the

probability that a noise version with q fraction of errors can

recall the desired library pair. It is not difficult to show that

P��b� 1� p ProbðEUb;jhÞ þ ProbðEU
noise
b;jh Þ

� �

� n ProbðEVb;ih þ ProbðEV
noise
b;ih ÞÞ

� �
: ð27Þ

From Lemmas 1, 2 and 5, 6 for, large n and p, if

m\
ð1� 2qÞminðn; pÞ

2ð1þ r2
bÞ log minðn; pÞ; ð28Þ

then P**b ?1. That means, when there are qn (or qp) bit

errors in the initial input, the capacity of BAM with

multiplicative weight noise is equal to

ð1� 2qÞminðn; pÞ
2ð1þ r2

bÞ log minðn; pÞ: ð29Þ

For open weight fault, define P**b be the probability

that a noise version with q fraction of errors can recall the

desired library pair. It is not difficult to show that

P��b� 1� p ProbðEUb;jhÞ þ ProbðEU
noise
b;jh Þ

� �

� n ProbðEVb;ihÞ þ ProbðEV
noise
b;ih ÞÞ

� �
: ð30Þ

From Lemmas 3, 4 and 7, 8, for large n and p, if

m\
ð1� 2qÞð1� �Þminðn; pÞ

2 log minðn; pÞ ; ð31Þ

then P**b?1. That means, when there are q n (or qp) bit

errors in the initial input, the capacity of BAM with open

weight fault is equal to

ð1� 2qÞð1� �Þminðn; pÞ
2 log minðn; pÞ : ð32Þ

3.3 Summary

We have shown that under multiplicative weight noise with

noise variance equal to rb
2, the memory capacity is equal to

minðn;pÞ
2ð1þr2

b
Þ log minðn;pÞ: Compared with the original fault-free

model, the degradation factor is only equal to 1
ð1þr2

b
Þ: When

the initial stimulus contains qn bit errors, a library pair can

be correctly recalled, if the number of library pairs is less

than
ð1�2qÞminðn;pÞ

2ð1þr2
b
Þ log minðn;pÞ .

For open weight fault with fault rate equal to ��, the

memory capacity is equal to
ð1��Þminðn;pÞ
2 log minðn;pÞ : Compared with

the original fault-free model, the degradation factor is only

equal to (1 - �). When the initial stimulus contains qn bit

errors, a library pair can be correctly recalled, if the

number of library pairs is less than
ð1��Þð1�2qÞminðn;pÞ

2 log minðn;pÞ :

4 Simulation

4.1 Memory capacity

The memory capacity of BAMs under multiplicative

weight noise and open weight fault will be experimentally

investigated. We consider that n = p = 512. For each m,

we randomly generate 1,000 sets of library pairs. The

Kosko’s rule is then used to encode the matrices.

For the multiplicative weight noise, we add the multi-

plicative weight noise to the matrices. The variances r2
b of

weight noise are set to 0, 0.2, 0.4. Figure 1 shows the per-

centage of a library pair being successfully stored. From our

analysis, i.e., (20), for n = p = 512, a BAM can store up to

41, 34, and 29 pairs for r2
b equal to 0, 0.2, and 0.4,

respectively. From Fig. 1, all the corresponding successful

rates are very high. Also, there are sharply decreasing

changes in successful rate for fm [ 41; r2
b ¼ 0g;

fm [ 34; r2
b ¼ 0:2g; and fm [ 29; r2

b ¼ 0:4g: To sum up,

the simulation result is consistent with our analysis (20).

For the open weight fault, we add the random weight

fault to the connection weight. The fault rates � are set to

0.1, 0.2, 0.3. Figure 2 shows the percentage of a library

pair being successfully stored. From our analysis, i.e., (22),

for n = p = 512, a BAM can store up to 41, 32, and 28

pairs for � equal to 0, 0.2 and 0.3, respectively. From

Fig. 2, all the corresponding successful rates are very high.

Also, there are a sharply decreasing changes in successful
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Fig. 1 Successful rate of a library pair being a fixed point under

multiplicative weight noise. For each value of m, we generate 1,000

sets of library pairs
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rate for {m [ 41, � = 0}, {m [ 32, � = 0.2}, and {m [
28, � = 0.3}. To sum up, the simulation result is consistent

with our analysis (22).

4.2 Error correction

We will experimentally investigate the recall performance

of faulty BAMs when the initial stimulus is a noise

version of a library pattern. The dimension is equal to

512. We considers three input error levels, q =

0.003125, 0.0625, 0.125. For each m, we randomly gen-

erate 1,000 sets of library pairs. The Kosko’s rule is then

used to encode the matrices.

For the multiplicative noise, we add the multiplicative

weight noise to the matrices. For each library pair, we

generate ten noise versions. We then feed the noise ver-

sions as initial stimulus input and check whether the desire

library can be recalled or not. Figure 3 shows the suc-

cessful recall rate. From our analysis, i.e., (28), for the

dimension n = p = 512 and weight noise level r2
b ¼ 0:2; a

BAM can store up to 32, 30, and 25 pairs for the input error

level q equal to 0.03125, 0.0625, and 0.125, respectively.

For other weight noise levels, we obtained similar

phenomena.

For the open weight fault, we add the random weight

fault to the connection weight. The fault rates � are set to

0.1, 0.3. Figure 4 shows the successful recall rate. From

our analysis, i.e., (31), for the dimension n = p = 512 and

open weight fault rate � = 0.1, a BAM can store up to 34,

and 27 pairs for the input error level q equal to 0.03125 and

0.125, respectively. From Fig. 4, all the corresponding

successful rates are high. Also, there are sharply decreasing

changes in successful recall rates for {m [ 34, q =

0.03125}, and {m [ 27, q = 0.125}. For fault rates, we

obtained similar results.

4.3 Low precision floating point

In the digital implementation, such as FPGA, we may use

low precision floating representation to encode the inter-

connect weights. As shown in [20], the effect of precision

error is similar to the multiplicative noise. Let t is the

number of bits allotted to the mantissa. The corresponding

rounding error � on a weight w can be modeled as ~w ¼
wð1þ �Þ; where � is an independent random variable uni-

formly distributed in (- 2-t, 2-t) with variance 2�2t

3
: From

the above analysis, when BAM weights (under outer

product rule) are encoded by the low precision floating

point, the capacity is at least equal to

minðn; pÞ
2ð1þ 2�2t

3
Þ log minðn; pÞ

: ð33Þ

For instance, if we use 3 bits mantissa, the capacity

becomes

minðn; pÞ
2ð1þ 0:0052Þ log minðn; pÞ: ð34Þ

Note that even we use a floating point format with 1 bit

mantissa, degradation on the capacity is less than 8%.
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Fig. 2 Successful rate of a library pair being a fixed point under open

weight fault. For each value of m, we generate 1,000 sets of library

pairs
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(a) (b)Fig. 3 Successful recall rate

from a noise input. For each

value of m, we generate 1,000

sets of library pairs. For each

library pattern, we generate 10

noise versions. a n = p = 512,

weight noise level r2
b ¼ 0:2: b

n = p = 512, weight noise

level r2
b ¼ 0:4
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The memory capacity of BAMs under precision error will

be experimentally investigated to verify the above analysis.

We consider three cases of dimensions, n = p = 512,

n = p = 1,024, n = p = 2,048. In the simulation, we use a

floating point format with 1 bit mantissa and 4 bit exponent to

encode the BAM weights. It is because if we assign more bits

to the mantissa, the degradation becomes very small and it

cannot observe from the simulation.

Figure 5 shows the percentage of a library pair being

successfully stored. From Fig. 5, the degradation on the

recall performance due to the precision error is very small

and it agrees with our expectation.

5 Conclusion

This paper examined the statistical storage behavior of

BAM with multiplicative weight noise and open weight

fault. Compared with the original fault-free BAM, the

degradation factor in the memory capacity is equal to 1
1þr2

b
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(b)(a)Fig. 4 Successful recall rate

from a noise input. For each

value of m, we generate 1,000

sets of library pairs. For each

library pattern, we generate 10

noise versions. a n = p = 512,

open weight fault rate � = 0.1.

b n = p = 512, open weight

fault rate � = 0.3
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Fig. 5 Successful rate of a library pair being a fixed point under floating error precision error multiplicative weight noise. For each value of m,

we generate 100 sets of library pairs. a n = p = 512. b n = p = 1,024, n = p = 2,048
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when multiplicative weight noise presents. When open

weight fault presents, the degradation factor is equal to

(1 - �). Since we expect BAM has certain error correction

ability, we have investigated the capacity of BAM with

weight noise when the initial input is a noise version of a

library pattern. For multiplicative weight noise, we show

that if m\ ð1�2qÞminðn;pÞ
2ð1þr2

b
Þ log minðn;pÞ; a noise version with qn (or qp)

errors has a high chance to recall the desire library pair. For

multiplicative weight noise, we show that if

m\ð1�2qÞð1��Þminðn;pÞ
2 log minðn;pÞ ; a noise version with q n (or qp) errors

has a high chance to recall the desire library pair. Computer

simulations have been carried out to verify our analysis.

Besides, we have found that the degradation on the recall

performance is very small when the floating precision error

exists. This small degradation proves the robustness of the

outer product rule. The results presented here can be

extended to Hopfield network. By adopting the approach

set above, we can easily obtain the result in Hopfield net-

work by replacing min(n, p) with n in the above equations.
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