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On the Selection of Weight Decay Parameter for
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Abstract—The weight-decay technique is an effective approach
to handle overfitting and weight fault. For fault-free networks,
without an appropriate value of decay parameter, the trained
network is either overfitted or underfitted. However, many
existing results on the selection of decay parameter focus on
fault-free networks only. It is well known that the weight-decay
method can also suppress the effect of weight fault. For the faulty
case, using a test set to select the decay parameter is not practice
because there are huge number of possible faulty networks for a
trained network. This paper develops two mean prediction error
(MPE) formulae for predicting the performance of faulty radial
basis function (RBF) networks. Two fault models, multiplicative
weight noise and open weight fault, are considered. Our MPE
formulae involve the training error and trained weights only.
Besides, in our method, we do not need to generate a huge
number of faulty networks to measure the test error for the
fault situation. The MPE formulae allow us to select appropriate
values of decay parameter for faulty networks. Our experiments
showed that, although there are small differences between the
true test errors (from the test set) and the MPE values, the MPE
formulae can accurately locate the appropriate value of the decay
parameter for minimizing the true test error of faulty networks.

Index Terms—Faulty network, generalization error, mean pre-
diction error, regularization, weight decay.

I. Introduction

THe weight-decay method [13], [23], [27], [28], [31] is an
effective approach to improve the generalization ability

and fault tolerance of neural networks. In weight-decay, a
weight-decay term is added into the objective function. With
the weight-decay term, the magnitude of the trained weights
are constrained to be small. Hence, the network output func-
tion is smooth and so the generalization ability is improved.
Besides, when magnitude of the trained weights is small, the
effect of weight faults can be suppressed.
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From the theoretical study, the generalization error contains
the bias and variance terms. Large weights usually cause
an excessive variance term [18]. With an appropriate decay
parameter, the weight magnitudes are limited and then the
variance term can be controlled. However, when the weight-
decay effect is too large, the trained network will have an ex-
cessive bias term. Therefore, the performance of weight-decay
crucially depends on the selection of the decay parameter.

One approach to select an appropriate decay parameter is
to use a test set. We train a number of networks with different
decay parameters and then select the best trained network
based on the test set. However, in many real situations, data are
very scarce. Also, the process to investigate the performance of
the trained networks based on test sets is very time-consuming.
Another approach is final prediction error (FPE) [31]. We
train a number of networks with different decay parameters
and then select the best trained network based on a so-called
prediction error formula that is a function of training error
and trained weights. Although there are a lot of theoretical
results [13], [18], [23], [31], [32], [35], [39], [43] related to
the generalization ability, many of them focus on fault-free
networks only.

For the fault tolerance, we are interested in, how well a
trained network performs when node or weight failure appears.
In the past, it was commonly assumed that neural networks
have a built-in ability against node or weight failure. When
some weights are deviated from their trained values, or some
hidden nodes of a trained network are out of work, the
degradation in the performance of the trained network should
not be so large. In fact, many neural network pioneers [1], [6],
[11], [34], [37], [38], [42] have investigated the property of
network fault and proposed a number of methods to improve
the fault tolerance.

In neural networks, if special methods are not taken during
training, the fault situation could lead to a drastic performance
degradation. Hence, obtaining a neural network with fault
tolerance is of paramount importance. In the implementation
of a neural network, network faults take place unavoidably,
mainly occurring in two kinds of forms, multiplicative weight
noise [6], [38], [42] and open weight fault [16], [26], [37],
[47], [48].

Fig. 1 illustrates the effect of multiplicative weight noise
on a trained radial basis function (RBF) network that has
50 nodes. The network is trained to learn the Hermite func-
tion [35]. Fig. 1(a) shows the network output of an RBF
network trained by the least square method. Clearly, the trained
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Fig. 1. Illustration example of the effect of multiplicative weight noise.
(a) Least square method. (b) Weight decay method.

network fits well to the Hermite function when there is no
weight noise. However, when the multiplicative weight noise
(its variance equals 0.01) is presented, the output is greatly
distorted. To solve the problem, we can use the weight-
decay method. Fig. 1(b) shows the network output of an RBF
networks trained by the weight-decay method. Clearly, the
weight-decay method can greatly suppress the distortion.

Several algorithms for handling the two fault models have
been developed [5]–[7], [14], [16], [26], [37], [40], [47],
[48]. Some of these methods include injecting random node
fault [40] or injecting weight noise [15], [34]. However, the
training speed is quite slow. The replication technique [2],
[21], [37], [44] in which hidden nodes are replicated from
a trained network, is an effective method to improve the
fault tolerance but this approach needs to use additional
sources. In [12], the equicontinuous properties of sigmoidal
feedforward networks were analyzed. The result show that the
generally used arbitrary weight sigmoidal networks will lead
to nonequicontinuous properties and then the fault tolerance
of trained network becomes very poor. Besides, the fault-
tolerance behavior of the networks is analyzed and error
bounds for the induced errors are established based on the
equicontinuous concept. However, there was no experimental
result in [12] to support the analysis and the analysis focuses
on the training error only.

Nevertheless, most of the mentioned results focused on the
training error only. For instance, a regularizer approach [26]
was proposed for handling open weight fault but the objec-
tive is to minimize the training set error over all possible
faulty networks. Although they can be modified to handle the
generalization error based on subset selection or test set, the
modifications are not practice because there are huge number
of possible faulty networks.

In particular, the weight-decay technique [5], [7], [10], [14]
was proposed to handle these two fault models. Since the
output of a trained network is very sensitive to large weights,
the weight-decay technique can limit the weight magnitude
and then improves the fault tolerance. To optimize the gen-
eralization ability under the fault situation, we need to train
a number of trained networks with difference weight-decay
parameters. Afterwards, for each trained network, we generate
a huge number of faulty networks to study the generalization
ability by feeding the test set to those faulty networks. Clearly,
this test set-based method is computationally intensive.

To the best of our knowledge, the theoretical result of
the generalization error on the weight-decay trained networks
under the fault situation has not yet been explored. Hence,
it will be useful to develop mean prediction error (MPE)
formulae for the fault situation. Based on these formulae,
we can perform the parameter selection for the weight-decay
approach.

This paper develops two MPE formulae for RBF networks
under the fault situation. One is used for handling multiplica-
tive weight noise. Another one is used for handling open
weight fault. Our experiments showed that, although there are
small differences between the true test errors (from the test set
and generated faulty networks) and MPE values, the two MPE
formulae can accurately locate the appropriate value of decay
parameter for minimizing the true test error of faulty networks.
To improve the searching method on the decay parameter, we
also discuss the way to estimate the gradients of MPE (with
respect to the decay parameter).

In Section II, the background knowledge about weight-
decay for RBF networks is presented. Then, the effect of
fault situations on the trained RBF networks is analyzed in
Section III. The derivation of the MPE error formulae is
presented in Section IV. Section V discusses the way to
estimate the gradients of MPE and presents the searching
method on the decay parameter. In Section VI, we present
the simulation results. Section VII concludes our results.

II. Background

The training dataset is denoted as: Dt ={
(xj, yj) : xj ∈ �K, yj ∈ �, j = 1, . . . , N.

}
, where xj and yj

are the input and output samples of an unknown system,
respectively. It is generated by a stochastic system [3], [13],
given by

yj = f (xj) + ej (1)

where f (·) is the unknown mapping, and ej is the zero-mean
Gaussian noise with variance equal to Se.

We would like to approximate the mapping f (·) by an RBF
network [36], [41], given by

f (x) ≈ f̂ (x, w) =
M∑

j=1

wjφj(x) (2)

where w = [w1, . . . , wM]T is the weight vector, and φj(·) is

the jth basis function, given by φj(x) = exp(−‖x−cj‖2

�
). Vectors

cj’s are the RBF centers. The parameter � (> 0) controls the
width of basis functions. In the vector-matrix form, (2) can be
written as

f̂ (x, w) = �T (x) w (3)

where �(x) = [φ1(x), . . . , φM(x)]T . We use the RBF model
to approximate the unknown system f (·) (an incomplete
modeling approach [24]) because we do not know the ex-
act mathematical model of the unknown system. This will
introduce a small non-computable error term in the estimation
of the test error. In general, the learning task is to find a
weight vector that minimizes the following mean square error
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J (w) = 1
N

∑N
j=1(yj − �T (xj) w)2. On the other hand, the

objective function of weight-decay is given by

J (w, λ) =
1

N

N∑

j=1

(yj − �T (xj) w)2 + λwT w (4)

where λ is the decay parameter. Given a fixed λ, the optimal
weight vector w is given by

w =
(
Hφ + λI

)−1 1

N

N∑

j=1

�(xj)yj (5)

where I is the identity matrix, and Hφ = 1
N

∑N
j=1 �(xj)�T (xj).

III. Faulty Network

Network faults can appear in many different forms, such
as weight noise and weight fault. The multiplicative weight
noise results from the finite precision representation of trained
weights in the implementation [9]. For example, to imple-
ment a neural network in digital circuits, such as FPGA,
the trained weights are usually obtained first by a high-
precision computer. Then, the trained weights are encoded
in digital implementation [22]. From [29], the rounding error
is proportional to the magnitude of the weights. The loss of
precision in the encoding process in the FPGA can be modeled
as the multiplicative noise.

Distinguishing from the multiplicative weight noise, in open
weight fault some RBF nodes are disconnected to the output
layer. For example, in VLSI implementation, some physical
faults, such as defects in silicon, open circuits in metals, and
holes in oxides used in transistors [8], may appear. Those
implementation defects cause the weights to be failed.

This section first introduces two fault models: multiplicative
weight noise and open weight fault. Afterwards, we derive the
mean training error (MTE) expressions for the two models.

A. Multiplicative Weight Noise

In multiplicative weight noise, each implemented weight
deviates from its nominal value by a random percent, i.e.,
w̃i,b = wi + bi wi ∀ i = 1, 2, . . . , M . The matrix-vector form
of the weight noise model is given by

w̃b = w + w ⊗ b (6)

where w̃b = [w̃1,b, . . . , w̃M,b]T , b = [b1, . . . , bM], ⊗ is the
element-wise multiplication operator, and bi’s are identical
independent mean zero random variables with variance Sb.
The density function of bi’s are symmetric. In the matrix-
vector form, the output of a faulty network is given by

f̂ (x, w̃b) = �T (x) w̃b . (7)

Then, the training error of an implementation w̃b is given by

E(Dt)b =
1

N

N∑

j=1

(
yj − �T (xj) w̃b

)2

=
1

N

N∑

j=1

⎡

⎣

(

yj −
M∑

i=1

φi(xj)wi

)2

− 2

(
M∑

i=1

φi(xj)biwi

) (

yj −
M∑

i=1

φi(xj)wi

)

+
M∑

i=1

M∑

i′=1

φi(xj)φi′ (xj)bibi′wiwi′

]

. (8)

Since bi’s are zero mean i.i.d. random variables with symmet-
ric density, the expectation on E(D)b is

Ē(Dt)b = 〈E(Dt)b〉b

=

〈
1

N

N∑

j=1

⎡

⎣

(

yj −
M∑

i=1

φi(xj)wi

)2

+
M∑

i=1

M∑

i′=1

φi(xj)φi′ (xj)bibi′wiwi′

]〉

b

= E(Dt) + SbwT Gw (9)

where 〈·〉 is the expectation operator, 〈·〉b means taking over all
possible b’s, and G = diag(Hφ). In (9), E(Dt) = 1

N

∑N
j=1(yj −

∑M
i=1 φi(xj) wi)2 is the training error of a fault-free network,

and the second term of the right side is the error created by
weight noise.

B. Open Weight Fault

In open weight fault, the implementation of a weight is
given by w̃i,β = βiwi , ∀ i = 1, . . . , M , where the
faulty factor βi that describes whether the ith weight operates
properly or not. The ith weight is out of work when βi = 0;
otherwise, the ith weight operates properly. In vector-matrix
notation, the open weight fault model can be rewritten as

w̃β = β ⊗ w (10)

where w̃β = [w̃1,β, . . . , w̃M,β]T , and β = [β1, . . . , βM]T . We
assume that the faulty factors βi’s are identical independent
binary random variables with Prob(βi = 0) = p and Prob(βi =
1) = 1 − p. Hence, we have

〈βi〉 = 〈β2
i 〉 = 1 − p, and 〈βiβi′ 〉 = (1 − p)2 ∀ i 
= i′. (11)

Given a fault vector, the training error is given by

E(Dt)β =
1

N

N∑

j=1

[

y2
j − 2yj

M∑

i=1

βiwiφi(xj)

+
M∑

i=1

M∑

i′=1

βiβi′wiwi′φi(xj)φi′ (xj)

]

. (12)
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From (11), the expectation on E(Dt)β over all possible fault
patterns is given by

Ē(Dt)β = 〈E(Dt)β〉β = (1 − p)E(Dt) +
p

N

N∑

j=1

y2
j

+(p2 − p)wT
(
Hφ − G

)
w. (13)

Similar to (9), in (13) the first term on the right-hand side is
related to the training error of a fault-free network while the
second and third terms are related to the error created by the
open weight fault.

IV. Mean Prediction Error for Faulty Networks

For the faulty case, we are interested in estimating the MPE
of the faulty network from the training error of a fault-free
network.

A. Multiplicative Weight Noise

Let Dt = {(xj, yj)}Nj=1 and Df = {(x′
j, y

′
j)}N ′

j=1, be the training
set and the test set, respectively. With weight noise, the MTE
Ē(Dt)b and the MPE Ē(Df )b are given by

Ē(Dt)b =
〈(

y − �T (x)w̃b
)2

〉

Dt ,b

=
〈
y2

〉
Dt

−2
〈
y�T (x)w

〉
Dt

+wT
(
Hφ + SbG

)
w (14)

and

Ē(Df )b=〈y′2〉Df
−2〈y′�T (x′)w〉Df

+wT (H′
φ+SbG′)w (15)

respectively, where H′
φ = 1

N ′
∑N ′

j=1 �(x′
j)�T (x′

j), G′ =
diag

{
H′

φ

}
.

Following the same technique as in [27] and [33], we
assume that there is an optimal wo such that

yj = �T (xj)wo + ej and y′
j = �T (x′

j)wo + e′
j (16)

where ej’s and e′
j’s are independent zero-mean Gaussian

random variables with variance equal to Se. Note that w
is obtained entirely by Dt , which is independent of Df .
Therefore, we have

〈
y′φT (x′)w

〉
Df

=

(
1

N ′

N ′∑

k=1

y′
kφ

T (x′
k)

)

w . (17)

The second term in Ē(Df )b in (15) can thus be given by

−2(
1

N ′

N ′∑

j=1

y′
j�

T (x′
j))(Hφ + λI)−1(

1

N

N∑

j=1

yj�(xj)). (18)

Furthermore, since e′
j’s and ej’s are independent, the terms

in (18) can be simplified to

1

N ′

N ′∑

j=1

y′
j�

T (x′
j) =

1

N ′

N ′∑

j=1

(
(�T (x′

j)wo + e′
j) · �T (x′

j)
)

= wT
o H′

φ (19)

1

N

N∑

j=1

yj�(xj) =
1

N

N∑

j=1

(
(�T (xj)wo + ej) · �(xj)

)

= Hφwo . (20)

From (19) and (20), the second term −2
〈
y′�T (x′)w

〉
Df

in
(15) becomes

2wT
o H′

φ

(
Hφ + λI

)−1
Hφwo. (21)

In a similar method, the second term −2
〈
y�T (x)w

〉
Dt

in (14)
is given by (see Appendix A)

−2

(
Se

N
Tr{Hφ(Hφ+λI)−1}+wT

o Hφ(Hφ+λI)−1Hφwo

)
(22)

where Tr{·} denotes the trace operation, and Se is the variance
of the measured noise. As a result, the MPE of a faulty network
can be in terms of the MTE of the faulty network, given by

Ē(Df )b = Ē(Dt)b +
〈
y

′2
〉

Df

− 〈
y2

〉
Dt

+ 2
Se

N
Tr

{
Hφ(Hφ + λI)−1

}

+ wT
(
(H′

φ − Hφ) + Sb(G′ − G)
)

w

− 2wT
o (H′

φ − Hφ)
(
Hφ + λI

)−1
Hφwo . (23)

Since there is no way to know the exact H′
φ and G′, we assume

that H′
φ = Hφ, and G′ ≈ G. This assumption is used for

developing the MPE formulae for faulty networks only. With
this assumption, our MPE results can still be used for selecting
appropriate value of decay parameter to minimize the test error
of faulty networks. Hence, the MPE can be expressed as

Ē(Df )b ≈ Ē(Dt)b + 2
Se

N
Tr

{
Hφ

(
Hφ + λI

)−1
}

. (24)

From (9), the MPE of a faulty network with weight noise can
be in terms of the MTE of the fault-free network, given by

Ē(Df )b = E(Dt) + 2
Se

N
Tr

{
Hφ

(
Hφ + λI

)−1
}

+SbwT Gw (25)

where the term E(Dt) is the training error of the trained fault-
free network. Besides, Hφ and G can be obtained from the
training set while the weight noise Sb is assumed to be known.
The only unknown variable is the variance of the measurement
noise Se but it can be estimated from the Fedorov’s method
[17] or Moody’s method [32], given by

Se ≈ 1

N − M

N∑

j=1

⎛

⎝yj − �T (xj) H−1
φ

1

N

N∑

j=1

�(xj)yj

⎞

⎠

2

.

(26)
From (25), we can directly estimate the generalization ability
based on the training error of a fault-free network, the trained
weights, and the training set.

B. Open Weight Fault

Following the similar method used in weight noise, the MPE
Ē(Df )β of a faulty network with open weight fault can be also
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in terms of the training error of a fault-free network. Firstly,
the MTE Ē(Dt)β and the MPE Ē(Df )β can be expressed as

Ē(Dt)β =
〈(

y − �T (x)w̃β

)2
〉

Dt ,β

=
〈
y2

〉
Dt

− 2 (1 − p)
〈
y�T (x)w

〉
Dt

+ (1 − p)wT
(
(1 − p)Hφ + pG

)
w (27)

Ē(Df )β =
〈
y′2〉

Df
− 2 (1 − p)

〈
y′�T (x′)w

〉
Df

+ (1 − p)wT
(
(1 − p)H′

φ + pG′) w. (28)

According to the similar derivations of (16) and (20), the
second term −2 (1 − p)

〈
y′�T (x′)w

〉
Df

in (28) is

−2(1 − p)wT
o H′

φ

(
Hφ + λI

)−1
Hφwo (29)

and the second term −2(1 − p)
〈
y�T (x)w

〉
Dt

in (27) is

−2(1 − p)
(

wT
o Hφ

(
Hφ + λI

)−1
Hφwo

+
Se

N
Tr

{(
Hφ + λI

)−1
Hφ

})
. (30)

Therefore, the MPE can be estimated by

Ē(Df )β ≈ Ē(Dt)β + 2
Se

N
Tr

{
(1 − p)Hφ(Hφ + λI)−1

}
. (31)

From (13), we can obtain

Ē(Df )β = (1 − p ) E(Dt) +
1

N

N∑

j=1

p y2
j

+ 2
Se

N
Tr

{
(1 − p ) Hφ

(
Hφ + λI

)−1
}

+ (p2 − p ) wT
(
Hφ−G

)
w. (32)

From (32), we can directly estimate the generalization ability
based on the training error of fault-free network, the trained
weights, and the training set.

C. Complexity of MPE Formulae

When we use the test set method (test set and generating a
number of faulty networks) to measure the generalization error,
the complexity is O(M × N ′ × L) where M is the number of
RBF nodes, N ′ is the size of the test set, L is the number
of faulty networks, and L >> M and N ′ > M. Note that in
some situations, data are very scarce and we may not have a
test set.

In our MPE formulae, the complexity of the direct calcula-
tion is O(M × N + M3), where N is the size of the training
set, and N > M. Since the matrix Hφ is fixed for all λ and
it can be per-diagonalized, the term Tr{Hφ

(
Hφ + λI

)−1} can
be computed in an efficient way, given by Se

N

∑M
i

di

di+λ
, where

di is the eigenvalue of Hφ. Hence, the complexity is equal to
O(M×N+M2) only.1 Since the number M of nodes is usually
less than the number N of training samples, the complexity is
equal to O(M × N).

1Although the computational cost of Tr
{

Hφ

(
Hφ + λI

)−1
}

is reduced to
O(M), the matrix G, in (29) and (36), becomes non-diagonal in the eigen
domain of Hφ . Hence, the complexity is equal to O(M × N + M2).

V. Selection of Weight Decay Parameter

The two MPE formulae, (25) and (32), can help us to
perform the model selection of faulty RBF networks, without
using the test set and generating faulty networks. For a fixed
architecture,2 we should minimize the generalization error with
respect to λ. Since the MPE values, Ē(Df )b and Ē(Df )β, must
be evaluated with the weight vector and the weight vector is
also a function of λ, there is no a simple exact close form
expression for the optimal value of λ.

In general, for the classical fault-free case, there are two
approaches [19], [20], [39], [43] to search an optimal value
of λ. The first approach [39], [43] is to try several values
of λ. For each value of λ, we construct an RBF network
based on the training set and then use a formula to predict
the generalization error. Since a large range of λ produces the
similar MPE value, taking logarithm on λ can help us to reduce
the computational load. In the second approach [19], [20], we
estimate the gradient of the prediction error with respect to
λ. Based on the approximated gradient, we can search the
appropriate value of λ.

In this paper, we follow the second approach. We will
discuss a systemic way to estimate the gradient for faulty
cases. We will derive two expressions to estimate the gradients
of MPEs for faulty networks. One is of the multiplicative
weight noise case. Another is of the open node fault case. One
should notice that the result in [19] and [20] is for handling the
fault-free case only. Here, we investigate the MPEs for faulty
networks. Besides, the mathematical derivation of the gradient
of MPEs in our apporach is different from the derivation in
[19] and [20].

A. Multiplicative Weight Noise: Gradient of MPE With Re-
spect to λ

The test error under multiplicative weight noise is given by

Ē(Df )b = J1 + J2 + J3 + J4 (33)

where J1 =
〈
y′2〉

Df
, J2 = −2

〈
y′�T (x′)w

〉
Df

, J3 = wT H′
φw,

and J4 = wT G′
φw. Our task is to evaluate ∂Ē(Df )b

∂λ
. Since J1 is

not a function of λ or w, ∂J1
∂λ

= 0.
From (21)

J2 = −2wT
o H′

φ

(
Hφ + λI

)−1
Hφ wo . (34)

Similar to Section IV, we assume that H′
φ ≈ Hφ and G′

φ ≈ Gφ.
Now, J2 becomes

J2 = −2wT
o Hφ

(
Hφ + λI

)−1
Hφ wo . (35)

Although J2 now is a function of λ, in the current form of
J2 the gradient with respect to λ is not analytic computable.
Since Hφ is positive or semi-positive definite, we can consider
the SVD decomposition on Hφ [24]

Hφ = PDPT (36)

2The number of nodes and the RBF width parameter � are fixed.
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where P is an orthonormal matrix, PPT = I, and D is a diag-
onal matrix whose elements {d1, . . . , dM} are the eigenvalues
of Hφ. Define

w̌o = PT wo . (37)

From (36) and (37), J2 = −2
∑M

i=1
w̌2

oid
2
i

di+λ
. So, we have

∂J2

∂λ
= 2

M∑

i=1

w̌2
oid

2
i

(di + λ)2
. (38)

Similarly, we have

J3 = wT
o Hφ

(
Hφ + λI

)−1
Hφ

(
Hφ + λI

)−1
Hφ wo

+
Se

N
Tr

(
Hφ

(
Hφ + λI

)−1
Hφ

(
Hφ + λI

)−1
)

. (39)

From (36) and (37), J3 =
∑M

i=1

(
w̌2

oid
3
i

(di+λ)2 + Se

N

d2
i

(di+λ)2

)
. The

gradient of J3 is given by

∂J3

∂λ
= −2

M∑

i=1

(
w̌2

oid
3
i

(di + λ)3
+

Se

N

d2
i

(di + λ)3

)
. (40)

Similarly, for J4, we have

J4 = wT
o Hφ

(
Hφ + λI

)−1
G

(
Hφ + λI

)−1
Hφ wo

+
Se

N
Tr

(
Hφ

(
Hφ + λI

)−1
G

(
Hφ + λI

)−1
)

. (41)

In (41), we can diagonalize Hφ but we will introduce a non-
diagonal matrix PT GP. Hence, we need an approximation on
G. Recall that G = diag(Hφ) and gii = 〈φ2

i (x)〉Df
. If the RBF

centers are distributed according to the input patterns, we can
approximate G by G ≈ ḡI, where ḡ = 1

M

∑M
i=1〈φ2

i (x)〉Df
.

Although this approximation may not always strictly hold,
our simulation results (in the next section) show that with
this approximation we still can locate a good value of λ to
minimize the generalization error of faulty networks. With the
approximation, the gradient of J4 is

∂J4

∂λ
= −2

M∑

i=1

(
w̌2

oid
2
i ḡ

(di + λ)3
+

Se

N

diḡ

(di + λ)3

)
. (42)

To sum up, the gradient is given by

∂Ē(Df )b

∂λ
= 2

M∑

i=1

(
w̌2

oid
2
i

(di + λ)2
− w̌2

oid
3
i + w̌2

oid
2
i ḡ

(di + λ)3

− Se

N

d2
i + diḡ

(di + λ)3

)
. (43)

B. Open Weight Fault: Gradient of MPE With Respect to λ

Following the method used in the weight noise case, the
gradient of MPE open fault is given by

∂Ē(Df )β
∂λ

= 2(1 − p)
M∑

i=1

(
w̌2

oid
2
i

(di + λ)2

− (1 − p)w̌2
oid

3
i + pw̌2

oid
2
i ḡ

(di + λ)3

−Se

N

(1 − p)d2
i + pdiḡ

(di + λ)3

)
. (44)

Fig. 2. MPE value and the true test error for the sinc function example. The
vertical solid line indicates the optimized λ based on MPE formula with our
searching method.

C. Searching λ

We can develop a gradient-based searching method to
minimize the MPE value based on (43) and (44). We do
not know wo, as well as w̌o, in advance. Hence, during the
estimation, we put the current estimate of weight vector w,
as well as w̌ = PT w, in (43) and (44). Our searching method
is based on the famous bold-driver technique [4], [45].3 The
updating λ is given by

λnew = λ − η
∂MPE

∂λ
. (45)

where η is an adjustable learning rate. The parameter η is
varied according to whether or not an update on λ improves the
MPE value. There are two rules for adjusting the parameter,
given as follows.

1) If an update on λ, based on (45), produces a network
with its MPE value, based on (25) or (32), above the
previous MPE value, the change to the λ is rejected and
η is multiplied by a factor ε less than one.

2) If an update on λ decreases the MPE value, the changes
to λ is accepted and η is multiplied with a factor γ

greater than 1.
In our experiments, the initial value of λ is set to 0.1, the
initial value of η is set to 0.01, and ε = 1.04 and γ = 0.7.

D. Complexity

We can reduce the searching complexity by per-
diagonalizing Hφ. Afterwards, we perform the searching of
λ in the eigen domain of Hφ. It is well known that there are
many O(M3) methods to diagonalize Hφ. The computational
cost to prepare other pre-computations, such as transforming
G and

∑N
j=1 �(xj)yj into the eigen domain, is O(M2 +M×N).

With the above pre-computation, the complexity within a
searching iteration can be greatly reduced. Given a new λ, the

3This bold-driver method is originally used for training multilayered per-
ceptrons and is used in MathLab Toolbox. In fact, it can adopted to search
parameters in many optimization problems.
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TABLE I

Efficiency of Using the MPE for the Sinc Function Example

Our MPE Result Test Set Method
Searched λ True Optimal True

(MPE Value) Test Error λ Range Test Error
Sb = 0.001 0.003593 0.01130 0.003548 to 0.01130
weight noise (0.01110) 0.004467
Sb = 0.01 0.004037 0.01168 0.003981 to 0.01167
weight noise (0.01158) 0.004467
Sb = 0.1 0.007500 0.01528 0.007079 to 0.01528
weight noise (0.01613) 0.007943
p = 0.02 0.003282 0.01224 0.003162 to 0.01224
open fault (0.01228) 0.004467
p = 0.1 0.002857 0.01648 0.002818 to 0.01648
open fault (0.01773) 0.003162

Our method can accurately locate the appropriate value of λ for minimizing
the true test error of faulty networks.

Fig. 3. MPE value and the true test error for the NAR time series prediction.
The vertical solid line indicates the optimized λ based on MPE formula with
our searching method.

complexity to get a new weight vector in the eigen domain
is O(M). Based on this eigen domain weight vector, the
complexity to get the gradient is O(M). The complexity to
get the MPE value is O(N × M + M2). Since the number N

of training samples should be greater than the number M of
RBF nodes, the overall complexity is O(N × M).

VI. Simulations

In this section, our theoretical results are experimentally
verified by some examples: the sinc function [13], nonlinear
autoregressive time series (NAR) [13], Mackey Glass chaotic
time series (MGTS) [30], and Abalone life prediction [43].

A. Selection on Weight Decay Parameter

This section demonstrates how the MPE formulae, (25) and
(32), and the method in Section V can help us to select an
appropriate value of λ. The value of the decay parameter is
selected based on our searching method presented in Section V.

As a comparison, for each setting, we train a number of
networks under different λ values. The weight-decay parame-
ter changes from 0.00001 to 1 in the logarithm scale. For each

TABLE II

Efficiency of Using the MPE for the NAR Time Series Prediction

Our MPE Result Test Set Method
Searched λ True Optimal True

(MPE Value) Test Error λ Range Test Error
Sb = 0.001 0.0001553 0.01349 0.0001259 to 0.01349
weight noise (0.01382) 0.0001585
Sb = 0.01 0.001733 0.02018 0.001585 to 0.02018
weight noise (0.02065) 0.001778
Sb = 0.1 0.01595 0.04177 0.01585 to 0.04177
weight noise (0.04314) 0.01778
p = 0.02 0.002765 0.02402 0.003162 to 0.02388
open fault (0.02483) 0.003348
p = 0.1 0.09449 0.04817 0.01122 to 0.04805
open fault (0.04909) 0.01259

MPE can accurately locate the appropriate value of λ for minimizing the
true test error of faulty networks.

trained RBF network, we randomly generate 10 000 faulty
networks for each fault level. Afterwards, we measure the
true test error based on test set and generated faulty networks.
Notice that the scope of this section is to demonstrate the
effectiveness of our MPE formulae and searching method.
We will discuss further applications of our MPE results for
selecting other settings in RBF networks in Sections VI-B–
VI-D.

For the weight noise case, we try three values, {Sb =
0.001, 0.01, 0.1}. The case of Sb = 0.001 represents the nearly-
fault-free situation. The other two values represent a middle
fault level and a high-fault level, respectively. For the open
weight fault case, we try two values, {p = 0.02, 0.1}. These
two values represent a middle fault level and a high-fault level,
respectively. For other fault levels, we also obtain consistent
results.

1) Regression: The sinc function is a common benchmark
example. The output is generated by y = sinc(x)+e, where the
noise term e is a mean zero Gaussian noise with variance σ2

e =
0.01. A training dataset (100 samples) is generated. The input
data x are uniformly taken in from −5 to 5. Besides, a test set,
containing 1000 samples, is generated. In our experiment, the
network model has 37 nodes. There are 37 centers selected
as {−5, −4.75, . . . , 4.75, 5} because the input x is uniformly
taken in from −5 to 5. In addition, the parameter � is set to
0.1. The above setting on the number of RBF nodes and the
parameter � produces satisfactory performance.4

The simulation results are presented in Fig. 2 and Table I.
Our searching results are indicated by vertical lines in the
figure. From the figure and table, although there are small
differences between the true test error and MPE value, the
two curves are quite similar in shape. Our MPE results can
help us to select an appropriate value of λ for minimizing the
true test error of faulty networks.

For example, for the weight noise case with Sb = 0.1,
based on the test set method, the optimal value of λ is around
0.007079 − 0.007943. In this range of λ, the true test error

4Of course, we can further optimize the setting based on our theoretical
MPE results of faulty networks. We will use some examples to illustrate this
further optimization in Sections VI-B and VI-C.
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Fig. 4. MPE value and the true test error for the chaotic time series
prediction. The vertical solid line indicates the optimized λ based on MPE
formula with our searching method.

is around 0.01528. With our MPE formula and searching
method on λ, the searched λ is around 0.007500, and the
corresponding true test error is also around 0.01528. For the
node fault cases, we also obtain the consistent result.

2) Nonlinear Autoregression Time Series Prediction: This
part considers the following NAR time series, given by

y(i) =
(
0.8 − 0.5 exp(−y2(i − 1))

)
y(i − 1)

− (
0.3 + 0.9 exp(−y2(i − 1))

)
y(i − 2)

+ 0.1 sin(πy(i − 1)) + e(i) (46)

where e(i) is a mean zero Gaussian random variable that drives
the series. Its variance is equal to 0.01. One thousand samples
were generated given y(0) = y(−1) = 0. The first 500 data
points were used for training and the other 500 samples were
used for testing. Our RBF model is used to predict y(t) based
on the past observations, y(t − 1) and y(t − 2). The prediction
is given by

ŷ(t) = f̂ (x(t), w) =
M∑

j=1

wjφj(x(t)) (47)

where x(t) = [y(t − 1), y(t − 2)]T . For this 2-D input case,
the Chen’s LROLS method [13] is applied to select important
RBF centers (basis functions) from the training samples. The
number of selected RBF nodes is 21. In addition, the parameter
�, i.e., the width of RBFs, is set to 0.81. This setting on
the number of RBF nodes and the parameter � produces
satisfactory performance.

The results from our MPE method and the true test error
(from the test set and faulty networks) are depicted in Fig. 3
and Table II. Similar to the previous example, the figure and
table show that the MPE formulae and our searching method
can locate the an appropriate value of λ for minimizing the true
test error of faulty networks. Although there some differences
between the two ranges of λ, the difference between the
corresponding two true test errors is very small. In this case,

TABLE III

Efficiency of Using the MPE for the Chaotic Time Series

Prediction

Our MPE Result Test Set Method
Searched λ True Optimal True

(MPE Value) Test Error λ Range Test Error
Sb = 0.001 0.0002919 0.01350 0.0002239 to 0.01349
weight noise (0.01229) 0.0002512
Sb = 0.01 0.002013 0.01719 0.001585 to 0.01716
weight noise (0.01578) 0.001778
Sb = 0.1 0.02520 0.03288 0.01585 to 0.03242
weight noise (0.02946) 0.01778
p = 0.02 0.003991 0.02061 0.002512 to 0.02049
open fault (0.01870) 0.002818
p = 0.1 0.01735 0.04461 0.01122 to 0.04429
open fault (0.03750) 0.01259

Our can accurately locate the appropriate value of λ for minimizing the true
test error of faulty networks

Fig. 5. MPE value and the true test error for the Abalone dataset. The
vertical solid line indicates the optimized λ based on MPE formula with our
searching method.

the degradation of using MPE to achieve an optimal true test
error is very small.

For the node fault case, with p = 0.1, based on the test set
method, the optimal value of λ is around 0.01122−0.01259. In
this range of λ the true test error is around 0.04805. With our
MPE result, the optimal value of λ is around 0.009449, and
the corresponding true test error is 0.04817. The degradation
of using MPE to achieve an optimal true test error is less than
0.24%.

3) Chaotic Time Series Prediction: The general form of
Mackey Glass chaotic equation is expressed as

y(t) =
ay(t − τ)

b + yh(t − τ)
− cy(t) + e(t) (48)

where the parameters, a, b, c, h, and τ, are set to a = 0.2,
b = 1, c = 0.9, and h = 10, respectively. The parameter e(i) is
a mean zero Gaussian random variable that drives the series.
Its variance is 0.01. One thousand samples were generated.
The first 500 data points, were used for training and the other
500 samples were used for testing.
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TABLE IV

Efficiency of Using the MPE for the Abalone Data Set

Our MPE Result Test Set Method
Searched λ True Optimal True

(MPE Value) Test Error λ Range Test Error
Sb = 0.001 0.0003479 5.1044 0.0003548 to 5.1033
weight noise (5.7140) 0.0003981
Sb = 0.01 0.002524 6.2914 0.003548 to 6.2583
weight noise (6.9674) 0.003981
Sb = 0.1 0.02460 7.7808 0.02511 to 7.7805
weight noise (8.640) 0.02818
p = 0.02 0.004813 6.6324 0.005623 to 6.6180
open fault (7.4144) 0.006310
p = 0.1 0.01589 8.8081 0.01778 to 8.8022
open fault (8.8081) 0.01995

MPE can accurately locate the appropriate value of λ for minimizing the true
test error of faulty networks.

Our RBF model is used to predict y(t) based on the past
observations, {y(t − 4), y(t − 3), y(t − 2), y(t − 1)}. For this
4-D input case, the Chen’s LROLS method is also applied to
select important RBF centers (basis functions). The number
of selected RBF nodes is 20. In addition, The parameter � is
set to 0.81.

The results from our MPE method and the true test error
(from the test set and faulty networks) are depicted in Fig. 4
and Table III. Similar to the previous examples, the figure
and table show that the MPE formulae can locate the an
appropriate value of λ for minimizing the true test error of
faulty networks.

We take a close look on how the decay parameter affects
the test error for a nearly fault-free case. For the weight noise
case with Sb = 0.001, this situation is similar to the fault-free
case. From our MPE results, we should use a very small λ,
such as λ = 0.00029 and the test error is around 0.0135. Now,
if we do not use any regularization, the test error is greater
than 0.02.

Besides, we also take a close look on how the fault level
affects the optimized value of decay parameter. For the weight
noise case with Sb = 0.001, the optimal value of λ is around
0.00029. When we increase the fault level to Sb = 0.1, the
optimal value of λ should be around 0.02. From the figure, if
we choose an incorrect value of λ, the degradation on the
performance is very large. For the weight noise case with
Sb = 0.1, based on our method, when λ is correctly set,
the test set error is around 0.033. Now, if we use a small
value of λ (saying less than 0.0001), the test error will become
very large (around 0.125). This example demonstrates that the
fault situation could lead to a very poor performance when
the weight-decay is not correctly used.

4) Abalone Dataset: To further verify our theoretic results,
a multidimensional real dataset called the Abalone dataset
is employed. The dataset is used to predict the age of
Abalone, which includes nine physical measurements, i.e., sex,
length, diameter, height, whole weight, shucked weight, vis-
cera weight, shell weight, and rings. The age of Abalone can
be determined by cutting the shell through the cone, staining it,
and counting the number of rings through a microscope. It can

Fig. 6. Test error with optimized λ vs. RBF width �. We randomly choose
50 data point from the training set as the RBF node centers. Twenty difference
values of λ from 0.1 to 10 in the logarithm scale are considered.

Fig. 7. Test error vs. number of nodes. Comparison between a fixed small
λ and optimized λ. (a) Fixed very small λ. (b) Optimized λ.

be seen that the whole process is boring and time-consuming.
The number of rings is the value to be predicted as either a
continuous value or a classification problem. Abalone dataset
has 4177 samples with nine variables. In our simulation, the
second to eighth variables are taken as the input vector x
and the ninth variable is taken as the output value y. The
formal two thousand samples are used for training, and the
remaining samples are used for measuring the predict error.
In addition, for the selection of important RBFs, the Chen’s
LROLS method is employed to select the most important 20
important RBFs. Notice that the dynamic range of the output
in this example is from 1 to 29. Hence, the magnitude of the
test error (square error) is greater than that of the previous
three examples.

The results from MPE (obtained from training error of a
fault-free network) and the true test error (from the test set)
are depicted in Fig. 5 and Table IV. Similar to the previous
examples, the figure and table show that the MPE formulae
can locate an appropriate value of λ for minimizing the true
test error of faulty networks.

5) Remark: Difference Between MPE Value and True Test
Error: From Figs. 2–5, although there are small differences
between the true test errors and MPE values, the two curves,
obtained from the true test errors and MPE vales, are quite
similar in shape.
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In the classical results on generalization errors [1], [31],
[32] for the fault-free case, there are also some differences
between the true test error and the estimated test error. In our
MPE results for the fault case, the differences come from the
approximation and assumptions in the analysis. In the practical
situation, there is no way to know the test set H′ and G′.
Hence, we use the training set H and G instead.

In the neural network community, we assume that the
data are generated by yj = f (xj) + ej , where f (·) is the
unknown system mapping, and ej is the zero-mean Gaussian
measurement noise with variance equal to Se. In practical
situations, we cannot know the variance Se and we need to
use some methods for its estimation.

The neural network approach is an incomplete modeling
approach because we do not known the exact mathematical
model of the unknown system. In the sinc, NAR, and MGST
examples, the training and test data are not generated based
on the RBF model. Also, in the Abalone example, there is no
exact mathematical model to describe it. We use an RBF model
to approximate the unknown system and use the model to
analyze the generalization error. Of course, this will introduce
a small non-computable error term in the analysis of the
generalization error.

B. Selection on the RBF Width

The MPE formulae allows us not only to predict the
performance of a trained network but also to select the model
from various settings. In RBF networks, one turning parameter
is the RBF width �. In this section, we illustrate how our
MPE results can help us to select an appropriate value of
�. Following the classical approaches in the selection of
parameters for fault–free networks [31], [32], [39], [43], [46],
we try different values of �. Afterwards, we use the MPE
formulae to estimate the test error of faulty networks.

To illustrate the idea, the MGTS example mentioned in
the previous section is used. We randomly choose 50 data
points from the training set as the RBF node centers and
20 difference values of σ from 0.1 to 10 in the logarithm
scale. For each value of �, we use our searching method
to optimize the decay parameter λ, and then use the MPE
formulae to estimate the test error of faulty networks. The
results are depicted in Fig. 6. Since the decay parameters are
optimized, for different values of � the variation on the test
errors is not very large. Also, over a wide range of �, the test
errors of faulty networks are quite similar. Although there are
small differences between the true test errors and MPE values,
both methods can locate the similar range of optimal �. Thus,
the simulation confirms the applicability of our MPE results
for the selection of RBF width. For other faulty levels and
examples, we obtained similar results (not shown here).

C. Selection on the Number of RBF Nodes

In the RBF approach, another turning parameter is the
number of nodes used. In this section, we illustrate how our
MPE method can help us to select an appropriate number
of nodes. Once again, following the classical approaches in
the selection of parameters for fault-free networks [31], [32],

Fig. 8. Test error vs. number of nodes for the NAR and Abalone examples.
The parameter λ is individually optimized for each case of number of nodes.

[39], [43], we train a number of RBF networks with different
number of nodes. To illustrate the idea, the NAR and Abalone
examples mentioned in the previous section are used. Other
settings are similar to the Section VI-A.

In Fig. 7(a), we show the situation when the decay pa-
rameter is fixed to a small value. The two curves, generated
by the test set and MPE methods, have similar shapes. This
result confirms the applicability of the MPE formulae and
our searching method for the selecting number of nodes. In
Fig. 7(a), the networks are nearly not regularized. Hence,
we observe that the two curves are in “V” shape. When the
network size is too small, the trained network may not be
able to solve the problem well. On the other hand, when the
network size is too large, the trained network usually has a
poor generalization ability. From the figure, even if the decay
parameter is not optimized, our MPE formulae can be used for
estimating the test error and selecting the number of nodes.

When an optimized value of λ is used for each case of
number of nodes, the curves of the test errors are in L shape, as
shown in Fig. 7(b). It is because the networks are regularized
and the number of effective free parameters is restricted.
From Fig. 7(b), for this weight noise level, around 20 nodes
are sufficient to handle the NAR problem because further
increasing the number of nodes does not greatly improve the
performance. Fig. 8 shows more results on the test errors with
optimized λ’s for the NAR example and Abalone examples.
From the figure, the two curves, generated from the test set
method with faulty networks and our MPE methods, are quite
similar in shape. For the NAR example, with Sb = 0.01 and
p = 0.02, around 20–30 nodes are sufficient to handle the NAR
problem because further increasing the number of nodes does
not greatly improve the performance. For the Abalone exam-
ple, although there are some differences between the estimated
MPE values and the measured test errors, the two curves,
generated from the test set method with faulty networks and
our MPE methods, are quite similar in shape. Hence, we can
use the MPE curves to select the number of nodes.
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Fig. 9. Test error vs. number of nodes for the OBD-MPE approach.

Fig. 10. MPE value and the true test error for the sinc function example and
the Abalone example for the single weight fault case. The vertical solid line
indicates the optimized λ based on our searching method and MPE formulae.

TABLE V

Performance of Various Approaches for the Single Weight

Case

Weight-Decay Pseudo-Inverse Fault Regularizer
Test Error 0.01252 0.01651 0.013565
(sinc)
Mean of |wi|′s 0.1111 0.1943 0.135
(sinc)
Test Error 7.1783 10403 7.3045
(Abalone)
Mean of |wi|′s 1.7925 139.37 2.6538
(Abalone)

D. Pruning on a Trained RBF Network

In Section VI-C, we train a number of RBF networks with
different number of nodes. Afterwards, we can select a suitable
model based on our MPE results. However, the drawback is
that we need to construct several RBF networks.

In this section, we will demonstrate another approach to
construct an RBF network based on the idea of optimal brain
damage (OBD) [25] and our MPE results. In this OBD-MPE
approach, we first train a large RBF network with the weight-
decay method. The optimal decay parameter is selected from
our approach. Afterwards, we use the OBD concept to rank
RBF nodes. Lastly, we one by one delete unimportant RBF
nodes from the ranking list and use our MPE result to estimate
the test errors of the pruned networks. Based on the estimated
test errors, we can select an appropriate network from those
pruned networks.

To illustrate the idea, the NAR example is considered. The
RBF network contains 50 RBF nodes. Other settings are the
same as those in Section VI-A. Fig. 9 shows the result for
the cases of multiplicative weight noise (with Sb = 0.01) and

Fig. 11. Weight magnitude of the trained networks.

open weight fault (with p = 0.02).5 The figure shows how the
test errors increases as the number of nodes decreases. The
shape of the two curves (the MPE and test set methods) are
similar.

For the weight noise case with Sb = 0.01, there is a signifi-
cant increase in the test error when the number of nodes in the
pruned network is less than 23. That means, from the OBD-
MPE approach, we can use 23 nodes to solve this problem
and the test error is around 0.026. In Section VI-C (Fig. 8),
when we use around 23 nodes, the test error is around 0.019.
For the open fault case with p = 0.02, there is a significant
increase in the test error when the number of nodes in the
pruned network is less than 33. That means, from the OBD-
MPE approach, we can use 33 nodes to solve this problem
and the test error is around 0.027. In Section VI-C (Fig. 8),
when we use around 33 nodes, the test error is around 0.02.

In term of test error, the Section VI-C method is better. It
is because the weight vector of the OBD-MPE approach is
initially optimized with respect to all initial nodes. Deleting
some unimportant nodes will lead to the situation that the
unpruned weights will not best fit for the unpruned nodes. On
the other hand, in the method in Section VI-C, for each case
of number of RBF nodes, the weight vector is optimized but
multiple networks with different number of nodes are trained.
In the OBD-MPE approach, we need to train one network only.
To sum up, the pros and cons of the OBD-MPE approach are,

5For other fault levels, not shown in the paper, we also obtain the similar
consistent result.
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that it does not need to train multiple networks with different
number of nodes but the test error is not optimized.

E. Performance on the Single Weight Fault Case

For the open weight fault, our analysis can handle multi-
weight fault. One special case of the open weight fault is the
single weight fault, where one and only one of M weights is
opened. To illustrate the performance on the single weight fault
case, we consider the sinc function example and the Abalone
example. In the single weight fault case, the fault rate p is set
to 1

M
. The sinc function example and Abalone example use

37 and 20 RBF nodes, respectively. The simulation results are
presented in Fig. 10. Our searching results are indicated by
vertical lines in the figure. From the figure, our MPE result
can help us to select an appropriate value of λ for minimizing
the true test error for the single node fault case.

To further investigate the performance, we compare the
weight-decay approach with the fault regularizer approach [26]
and the pseudo inverse approach (with λ = 0). The perfor-
mance and the magnitude of those approaches are summarized
in Table V and Fig. 11. From the table and figure, the
performance of the pseudo inverse approach is much poorer
than that of our MPE weight-decay approach and the fault
regularizer approach because the weight magnitude of the
pseudo inverse approach is greater than that of the other two
approaches. For the fault regularizer approach, its performance
is poorer than that of our MPE weight-decay approach. It is
because the fault regularizer approach [26] is to optimize the
training error while the weight-decay approach with our MPE
weight-decay approach is to optimize the test error.

VII. Conclusion

In this paper, the error analysis on the two faulty RBF
networks was presented. The MPE formulae with weight-
decay for weight noise and node fault were developed. Also,
a searching method for decay parameter was developed. Sim-
ulation results show that our MPE results can help us to select
an appropriate value of decay parameter for minimizing the
true test error of faulty networks. We also used a number of
examples to demonstrate how to extend our MPE results of
faulty networks for selecting RBF settings. Since the general-
ization error plays an important role in neural networks, it is
interesting to further explore other applications or theoretical
issues of the MPE result for faulty networks. Although our
discussion focused on RBF networks, one can follow our
derivation to handle multilayer networks with other activations,
such as sigmoid and hyperbolic tangent. Of course, in such an
extended case, we should use some linearizable techniques to
linearize the network function of a multilayer network.

Appendix A

Let ϒ =
〈
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Since Hφ = 1
N
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As ei’s are independent
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