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ABSTRACT 

Hall, Leung & Li have recently proposed a new model for studying operations scheduling in the presence of 

multitasking – Once a primary job is being processed, the worker gets interruptions from the waiting jobs and needs to 

switch from the primary job to process for each of the interrupting jobs part of them. Afterward, the worker switches 

back to process the rest of the primary job. In this paper, we follow their model by introducing two new conditions: (i) 

the switching costs are job-dependent and symmetric, and (ii) the late jobs are not allowed to interrupt. Complexities of 

six scheduling problems are investigated. They include the makespan, the total weighted completion time (TWCT), the 

maximum weighted tardiness (MWT) and the maximum weighted lateness (MWL), the total number of late jobs (TNLJ) 

and the total weighted number of late jobs (TWNLJ) problems. We show that the makespan, TWCT, MWT and MWL 

problems are polynomial-time solvable. Under mild conditions on the switching cost function and the interruption 

function, the total completion time problem can be solved by the shortest processing time first rule. For our late job 

problems, we show that the TNLJ problem is NP-hard and the TWNLJ is strongly NP-hard. For certain special cases, 

these problems are polynomial time solvable. Findings in the areas of psychology and management have indicated that 

multitasking could hamper the mental health and the productivity of a worker. If multitasking is unavoidable, the 

algorithms presented in this paper could help the human worker to schedule their jobs so as to minimize the effect. 
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1. INTRODUCTION 

 

Given a set of jobs, suppose the jobs have been schedule. 

Without multitasking, a worker will process the jobs in 

sequential manner. A waiting job will not be processed 

unless all the jobs scheduled before it have complete. IN 

reality, we worker usually will receive request from the 

client of a waiting job to handle in advance part of the 

job. The worker has then to stop the current job and 

switch to the waiting job. While multitasking behavior 

can be found in many industries, it has not been studied 

under the context of scheduling. Recently, Hall, Leung 

and Li have introduced the ideas of switching cost and 

interruption function in the scheduling problems in the 

presence of multitasking. Switching cost determines the 

amount of time a worker required in job switching. 

Interruption function determines the amount of the job a 

worker has to process for the waiting job during an 

interruption. For constant switching cost, they have 

found that the total weight completion time and the 

maximum lateness problem can be solved by 

polynomial time algorithms. The total (weighted) 

number of late job problem is (strongly) NP hard. Their 

late job problems are defined in a way the same as in the 

classical scheduling theory – All the jobs have to 

complete. 

 

In this paper, we extend the analysis by introducing two 

new conditions.  

 The switching costs are not constant. They are 

job-dependent and symmetric. That is, the cost of 

switching from job A to job B is equal to the cost of 

switching from job B to job A. 

 For the (weighted) number of late job problem, the 

late jobs are discarded and they do not have to 

process. 

As the late jobs are discarded and will not interrupt the 

on-time jobs, the (weighted) number on on-time jobs 

will definitely be increased. With the above conditions, 

six scheduling problems corresponding to six different 

criteria will be investigated in this paper. They include 

the makespan, the total weighted completion time 

(TWCT), the maximum weighted tardiness (MWT), the 

maximum weighted lateness (MWL), the total number 

of late jobs (TNLJ) and the total weighted number of 

late jobs (TWNLJ) problems. For the late job problems, 

while we do not specify, the late jobs are discarded. 

 

While multitasking is a new topic in the area of 

scheduling, it has been researched in the areas of 

psychology, management, information systems, and 

behavior economics for several decades. Thus, in 

Section 2, some of the key research results in these 

areas will be reviewed and their limitations in solving 

job scheduling problems are highlighted. Formulations 

of the scheduling problems in the presence of 

multitasking will be presented in Section 3. In particular, 

the model of multitasking, the ideas of interruption 



 

functions, symmetric switching costs and models of the 

late jobs problems are elucidated. Complexities of six 

scheduling problems in the presence of multitasking are 

analyzed in Section 4. For some problems, polynomial 

time algorithms are developed. The conclusion is 

presented in Section 5. 

 

2. RESEARCH WORKS IN MULTITASKING 

 

In our daily lives, multitasking can be found in many 

places. On the road, some people drive a car and at the 

same time talk over the cell phone. At school, some 

students open multiple browsers at the same time and 

search information concurrently for different 

assignments (Spink, Ozmutlu & Ozmutlu 2002, 

Ozmutlu, Ozmutlu & Spink 2003, Spink 2004, Spink, 

Park, Jansen & Pedersen 2006). In a recruiting firm, 

recruiters need to handle candidate search for one 

project and at the same time answer enquiries (in the 

form of emails or phone calls) from their clients for 

another project (Aral, Brynjolfsson & Van Alstyne 

2007). In an Italian court, judges are assigned new cases 

in every morning, and at the same time they need to 

process cases which are already in the pipe (Coviello, 

Ichino & Persico 2010). Pilots have to read multiple 

sources of data over the panel and at the same time 

listen over his headset the enquiries and instructions 

from the air traffic control tower to ensure that the plane 

can safely take off and land (Loukopoulos, Dismukes & 

Barshi 2009). Air traffic controllers have to gather 

multiple sources of information, including radar signals, 

weather reports and the information from the pilots, and 

co-ordinate the taking off and landing of the planes 

(Loukopoulos, Dismukes & Barshi 2009). In a busy 

hospital emergency department, each physician needs to 

handle multiple patients concurrently in a shift (KC 

2013). 

 

2.1 Laboratory & Field Studies 

 

Researchers have found that there are many reasons 

why people multitask. The very first reason is due to the 

job nature, like plane control and air traffic control. The 

second reason is due to interruptions, from clients, 

colleagues, friends and family members. These 

interruptions are usually not predictable. Some of them 

are unavoidable and need immediate attention. It is 

especially true for senior managers (Mintzberg 1973, 

Jett & George 2003). The third reason is due to 

personality trait. People with high levels of impulsivity 

and sensation seeking often engage in multitasking 

(Sanbonmatsu, Strayer, Medeiros-Ward & Watson 2013). 

As multitasking behavior can be found in almost 

everywhere, one important question is aroused. Is 

multitasking good or bad? In this regard, researchers 

from management, psychology and information systems 

have long been studying the effect of multitasking on 

the productivity of human worker in office works, on 

the mental health of a person and the design of 

computer-human interface. 

 

While some studies (Lee & Taatgen 2002, Taatgen & 

Lee 2003) have found that multitasking can help to 

improve the skills of a worker in handling multiple tasks, 

the actual benefit of multitasking has yet to be 

discovered. Some scholars suggested that multitasking 

is not recommended (Rosen 2008). Multitasking incurs 

a cost of job switching (Rogers & Monsell 1995, 

Rubinstein, & Evan 2001, Monsell 2003) which 

includes response delay (Meuter & Allport 1999) and 

resumption lag (Trafton, Altmann, Brock & Mintz 2003). 

(A good summary regarding switching costs in 

multitasking can be found in (APA 2006).) The delay 

and lag are job dependent (Gillie & Broadbent 1989). In 

a field study, it is found that the average resumption lag 

could be as long as 25 minutes (Mark, Gonzalez & 

Harris 2005, p.326). Rehearsal could reduce the 

response delay or resumption lag. But still, they can 

hardly be eliminated (Gillie & Broadbent 1989, Trafton, 

Altmann, Brock & Mintz 2003).  

 

Multitasking could cause problem in learning (Foerde, 

Knowlton & Poldrack 2006) and lead to attention deficit 

trait (ADT) (Hallowell 2005). A person with ADT has a 

normal brain but his behavior is similar to a person with 

attention deficit disorder, problem in paying attention. 

In some laboratory experiments (Watson & Strayer 2010, 

Sanbonmatsu, Strayer, Medeiros-Ward & Watson 2013), 

it is found that the performance of a subject in 

multitasking environment drops as compared with 

working in sequential processing environment. Only 

very few subjects are able to perform equally well in 

both multitasking and sequential processing 

environments (Watson & Strayer 2010). Nevertheless, 

subjects who perceived they are good at multitasking 

usually underperform in both environments, as 

compared with the subjects who perceived they are not 

good at multitasking (Sanbonmatsu, Strayer, 

Medeiros-Ward & Watson 2013). These results indicate 

that multitasking should be avoided. 

 

By analyzing the historical data of an executive 

recruitment firm, Aral, Brynjolfsson & Van Alstyne 

(2007) found that increasing multitasking could increase 

productivity. Beyond an optimum amount, increasing 

multitasking would reduce the project completion rates. 

Similar findings have also been observed in the judges 

in an Italian court (Coviello, Ichino & Persico 2010) and 

the physicians in emergence department (KC 2013). 

These studies indicate that increasing number of tasks 

would increase productivity (like job completion rate) if 

a worker is under-loaded. However, productivity and 

even the job quality could be declined if a worker is 

over-loaded.  

 

2.2. Behavioral Economics Studies 

 

Allocating effort to handle multiple jobs has long been a 

research problem in behavioral economics. The problem 

is solved by two different approaches. The first 



 

approach is to model the problem as a Markov decision 

problem. A worker has to work on multiple jobs in 

infinite horizon. In each time slot, the worker can only 

devote his effort on one job. If a job is allocated with 

effort, its quality level will be either incremented or 

staying the same. If a job has not been allocated with 

effort, its quality level will be either decremented or 

staying the same. The problem is to determine in each 

time slot which job the effort should be allocated so that 

all the quality levels can be optimized. Radner & 

Rothschild (1975), amongst the first research group, 

worked on this problem. Instead of determining the 

optimal effort allocation rule, they analyzed how the 

quality level changes under different rules of effort 

allocation (see (Radner & Rothschild 1975, p.360)). 

 

The second approach of multitasking studies in 

behavioral economics is from a seminal work by 

Holmstrom & Milgram (1991). The effort allocation 

problem is modeled as a principal-agent problem (Itoh 

1994, Prasad 2009). A worker (i.e. an agent) has to work 

on multiple jobs in a period of time and the worker has 

his own cost function to measure the effort he puts. The 

payment to the worker is determined by his output 

quality. The higher the quality, the more payment will 

be got. The utility of the worker is thus determined by 

the payment he gets minus the cost on his effort. The 

manager (i.e. the principal) has his profit function which 

is determined by the output of the worker. As a manager, 

he has to design the effort the worker will put on the 

jobs. So that both the profit is maximized as well as the 

expected utility of the worker is optimized (see 

(Holmstrom & Milgram 1991, Section 2)). Once the 

effort has been determined, the worker will work on the 

jobs in accordance with the determined effort. 

 

While some other models were proposed and analyzed 

after the works by (Radner & Rothschild 1975) and 

(Holmstrom & Milgram 1991), none of them considered 

switching cost in their models. To handle multiple jobs, 

Rothschild (1974) considered that the incremental 

change of a job’s quality level will be higher if a job 

gets more consecutive steps of effort. In other words, 

the incremental change of a job’s quality will be higher 

if it has fewer interruptions. Seshadri & Shapira (2001) 

considered the situation that a worker has to handle one 

long-term primary job and many short-term secondary 

jobs. Similar to the problem setting in (Radner & 

Rothschild 1975), the worker in each time slot can only 

devote his effort on one job. If a job is allocated with 

effort, its quality level will be either incremented or 

staying the same. If a job has not been allocated with 

effort, its quality level will be either decremented or 

staying the same. But more than that, Seshadri & 

Shapira (2001) assumed that the primary job will get an 

immediate decrement of the quality level if it is 

interrupted by a short-term secondary job. Even in some 

recent papers like (Corts 2007, Prasad 2009, 

Matsushima, Miyazaki & Yagi 2010) which follow the 

principle-agent approach, switching cost has neither 

been considered.  

 

To attain a theoretical basis for their findings from the 

Italian courts, Coviello, Ichino & Persico (2014) 

developed a stochastic model for single-worker 

environment. In their model, it is assumed that (i) all the 

jobs are of the same type and same size, (ii) the worker 

could randomly pick any number of jobs in the queue, 

and (iii) in any moment of time the worker allocates 

effort equally to all the incomplete jobs. Then, they 

(Coviello, Ichino & Persico 2014, Proposition 1) show 

that the job completion rate increases as the pick-up rate 

increases until the pick-up rate has reached a certain 

value. After that value, the productivity decreases as the 

pick-up rate increases. While Coviello, Ichino & Persico 

(2014) did introduce switching cost in their model, they 

assumed it zero in their analysis. Clearly, if the 

switching cost is non-zero, their theory will collapse. 

 

Therefore, (i) allocation of effort to handle multiple jobs 

with inclusion of switching cost, (ii) modeling the effect 

of interruption and (iii) scheduling jobs in the presence 

of multitasking have yet to be investigated in behavioral 

economics. 

 

3. SCHEDULING WITH MULTITASKING 

 

In classical scheduling theory (Pinedo 1995), 

human multitasking behavior has also not been 

considered. Until recently, Hall, Leung & Li (2014) 

proposed a new scheduling model, in which 

interruption function and switching cost are 

introduced to capture the multitasking behavior.  

 

3.1 Hall-Leung-Li Model 

 

Given a set of jobs, a job Ji is characterized by a 

5-tuple (pi, di, wi, gi(.), fij(.)), where pi, di, and wi, 

denote the processing time, due date and weight of 

Ji as in classical models. The function gi(.) is the 

interruption function and the function fij(.) is the 

cost of switching from Ji to Jj. A schedule is 

denoted by ).J,,J,J(S
n 

21
  By 

convention,
i

J is scheduled before
1i

J . A job
i

J is 

called primary in a time period when it is scheduled 

to be processed in that period. When
i

J becomes 

a primary job, all the jobs scheduled before have 

complete. The execution of a primary job 
i

J will 



 

be interrupted by job
j

J )i(g
j units of time. To 

represent the remaining processing time of 

i
J after each interruption, we use )k(p

i
to denote 

the remaining processing time of
i

J after k 

interruptions. Thus, we can have that ,p)(p
ii  0  
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Thus, )k(p
i

in (1) are 

positive for .ik 1  

 

The interruption function gi(.) can be a constant 

function, a function of the remaining processing 

time )k(pi or a function k. For illustration, here are 

a few examples for gi(.). Let n = 5, pi = 10 

and .D 10   
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For constant switching cost, Hall, Leung & Li (2014) 

investigate four different scheduling criteria, 

including (i) total weighted completion time (TWCT), 

(ii) maximum lateness (ML), (iii) total number of 

late jobs (TNLJ) and (iv) total weighted number of 

late jobs (TNWLJ), under the following conditions.  

 All the switching costs are constant. 

 All jobs have to be processed. 

 While a primary job is being processed, all 

waiting jobs will interrupt.  

 

In this regard, the completion time of 
i

J is given 

by 
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Here fij is constant. They showed that the TWCT 

problem and ML problem are polynomial-time 

solvable. The TNLJ problem is NP-hard. The 

TNWLJ problem is strongly NP-hard. If the 

interruption function is defined as that 

,'Dp)'p(g iii  for ,D 10  the TNLJ problem can 

be solved by an ))nlog(n(  algorithm and the 

TNWLJ problem can be solved by a dynamic 

programming algorithm. 

 

3.2 Our Model 

 

In our model, the switching costs are job-dependent and 

symmetric, i.e. fij = fji. It is in line with the findings in 

(Gillie & Broadbent 1989, Trafton, Altmann, Brock & 

Mintz 2003). For the late job problems, the late jobs are 

discarded. 

 

For the makespan and the total weighted completion 

time problems, the criteria are defined as follows: 

Makespan =  .cmax i
i

            (4) 

TWCT = .cw
n

i
ii

1

              (5) 

The maximum weighted tardiness and maximum 

weighted lateness are defined as follows: 

MWT = )}},dc(w,{max{max iii
i

0      (6) 

MWL = }.dc{max ii
i

                (7) 

As the late jobs will be discarded, our definitions of the 

late job problems are slightly different from the 

convention late job problems. Instead of minimizing the 

total (weighted) number of late jobs, we define an 

optimal schedule as the one that maximizes the total 

(weighted) number of on-time jobs. Without introducing 

new notations, we use the convention notation Ui to 

indicate if Ji is late. The criteria are given by 

TNLJ = 


n

i
iU

1

                 (8) 

TWNLJ = .Uw
n

i
ii

1

               (9) 

 

3.3 Scheduling Problems 

 

Follow Hall, Leung & Li (2014), we use ‘mt’ in the 

 field to denote ‘multitasking’. For our late job 

problems, we add ‘DLJ’ in the  field to synonymize 

discarding late jobs. The problems to be investigated are 

stated as following. 

 

Problem: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, wi, gi(p’i), fij, for all i,j = 1,2,…,n, find a 



 

feasible schedule )J,,J,(JS
n21 πππ  such that 

the criterion z(S) is minimum. 

 

Here z(S) corresponds to any one of the criteria as 

defined in (4)-(9). Using the Graham notation, the 

problems are denoted in the following. 

(P1) Makespan:  .cmaxff,mt i
i

jiij 1  

(P2) TWCT: .cwff,mt
n

i
iijiij 




1

1  

(P3) MWT: )}}.dc(,{max{maxff,mt ii
i

jiij  01  

(P4) MWL: }.dc{maxff,mt ii
i

jiij 1  

(P5) TNLJ: .U|DLJ,ff,mt|
n

i
ijiij 




1

1  

(P6) TWNLJ: .Uw|DLJ,ff,mt|
n

i
iijiij 




1

1  

Without special notice, we use ci to denote the 

completion time of the Ji in the optimal schedule. 

Unless we want to specify the completion times of the Ji 

in two different schedules S and S’, we use ci(S) and 

ci(S’) respectively. 

 

Remark on discarding late jobs: To explain the reason 

why we propose to discard late jobs, let us have a 

simple example. Suppose we have four jobs. Their 

processing times are 2, 3, 4 and 10. Their due dates are 

4, 6, 9 and 15. Assume that there is no switching cost. 

Every time a waiting job interrupts a primary job, the 

amount of interruption time is 1. If all the jobs have to 

be processed, the optimal schedules are {2, 3, 1, 4}, {2, 

4, 1, 3} or {3, 4, 1, 2}. In either case, only the first two 

jobs in the schedule are on-time. If we can discard late 

job, the optimal schedule is {1, 2, 3} and job 4 is 

discarded. The number of on-time jobs is 3. Clearly, 

more jobs can be scheduled on-time if the late jobs can 

be discarded.  

 

4. MAIN RESULTS 

 

Even with our new conditions on the switching cost and 

the way of handling late jobs, it can be shown that the 

first four problems P1 to P4 are easy problems. While 

the last two problems P5 and P6 are hard problems. 

 

Due to page limit, we only outline the proofs. 

Readers are referred to (Sum, Leung & Ho 2014) for 

detail steps. 
 

4.1 Makespan 

 

For the makespan problem, one can readily show that 

the makespan is simply the completion time of the last 

job in the schedule. By (3), we can get that 
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           (10) 

Obviously, it is a constant value. As fij = fji, 

interchanging the sequences of any two jobs does not 

change the value of makespan. We can state without 

proof the following theorem. 

 

Theorem 1: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, wi, gi(p’i), fij=fji, for all i,j = 1,2,…,n, the 

makespan is given by (10), a constant irrespective 

to the actual schedule. 

 

By definition, fii = 0, the makespan (10) can be written 

as follows: 

.fpc
n

i

n

j
ij

n

j
jn

 
  1 11 2

1
  

Clearly, it is not depended on the actual schedule. If 

there is no switching cost, the makespan equals to the 

total processing time.  

 

4.2 Total Weighted Completion Time 

 

Recall from (1) that )k(gi is the amount of job iJ to be 

processed during its kth interruption and )k(pi is the 

remaining processing time after the kth interruption. The 

total weighted completion time problem can be solved 

by the following algorithm. 

 

Algorithm TWCT 

Step 1: Initialize {}.S,J'S   

Step 2: For l from n to 2, 

       

    .S||JS,J'\S'S
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f)l(g)l(p
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minargJ
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 1  

Step 3: .S||'SS   

 

In Step 2-3, the operator B||A means concatenating set 

A in front of set B. Note that the for-loop in Step 2 is in 

backward manner. It can be shown that the above 

algorithm can find an optimal schedule in O(n2) running 

time.  

 

Theorem 2: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, wi, gi(p’i), fij=fji, for all i,j = 1,2,…,n, the 

total weighted completion time problem can be 

solved in O(n2) running time. 

 

Outline of the Proof: The proof is accomplished by 

contradiction. The selection criterion in Step 2 implies 

that the schedule obtained by the Algorithm TWCT 

satisfies the following inequality for any pair of 

neighbor jobs. That is to say, for ,n,,,l 32  
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)f)l(g()l(p

w

)f)l(g()l(p
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Suppose an optimal schedule, say 'S , in which one pair 

of neighbor jobs
1l'

J and
l'

J do not fulfill this 

inequality. We can show that the total weighted 

completion time of 'S  can be reduced by 

interchanging jobs 
1l'

J and
l'

J . So, it contradicts to 

the hypothesis that 'S is an optimal. 

Q.E.D. 
 

Suppose ,ww n 11    )p,p(p,pf jijiij   is an 

increasing function of ip and ,p j such that 

.),(),x,y()y,x(,)y,x(
x

0000 



  (11) 

Here are a few examples for the switching function. 

)),xy(log(,)xy(),yx(,, aaa  0  

where a is an positive integer. The interruption function 

),p()p(gi  such that  

0000 



)(,)x(,)x(

x
       (12) 

for .x 0 Here are a few examples for the interruption 

function. 

),xlog(DDx,Dx,xD, a/a 10 1  

where a is a positive integer. Under such setting, the 

problem can be solved by the shortest processing time 

first (SPTF) rule. The optimal schedule is identical to 

the one without multitasking.  

 

Theorem 3: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, wi=1, gi(p’i), fij=fji, for all i,j = 1,2,…,n, 

and the switching functions and the interruption 

functions fulfill (11) and (12), the total completion 

time problem can be solved by SPTF rule in O(n 

log(n)) running time. 

 

Outline of the Proof: If all the weights are equal, the 

selection criterion in Step 2 can be rewritten as follows: 

  .f)l(g)l(pmaxargJ
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ijji
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Condition (12) implies that the remaining processing 

times )k(p)k(p ji   for ,n,,,k 121    if .pp ji   

Condition (11) implies that )p,p()p,p( ji    if 

.pp ji  As a result, the job to be assigned as 
l

J must 

be the one with the largest processing time in the 

unscheduled job set. The optimal schedule for this 

special case is thus the same as the one obtained by 

SPTF rule. 

Q.E.D. 

 

Theorem 3 is an important theorem. For other 

scheduling problems, the optimal schedule obtained in 

the presence of multitasking, say ,S MUL  is usually 

different from that obtained in the absence of 

multitasking, say .S NM  Thus, comparing the 

performances between ,S MUL and NMS has to rely on 

computer simulations (Hall, Leung, Li 2014). Only for 

the total completion time problem with the conditions 

(11) and (12), NMMUL SS  . Then the effect of 

multitasking on the total completion time can then be 

analyzed mathematically. 

 

4.3 Maximum Weighted Tardiness 

 

To solve the MWT problem, the idea can be outline as 

following. Recall that the tardiness function for the job 

Ji is defined as follows: 

  }.dx,max{)x(T ii  0           (13) 

In accordance with Theorem 1, we can get the 

completion time of the last job by (10). Let the value be 

.cmax  Job
n

J is thus assigned as the last job if the 

following condition is satisfied. 

)}.c(Tw{minargJ maxii
JJi

n


  

Once the last job has been determined, the completion 

time of the second last job can be calculated by  

).n(pcc
nmax 1   

Similarly, job
1n

J is thus assigned as the last job if the 

following condition is satisfied. 

)},c(Tw{minargJ ii
'SJi

n



1  

where }.J{\S'S
n

  So, the maximum weighted 

tardiness problem can be solved by the following 

algorithm.  

 

Algorithm MWT 

Step 1: Initialize .cc{},S,J'S max  

Step 2: For l from n to 2, 
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Step 3: .S||'SS   

 

It can be shown that the above algorithm can find an 

optimal schedule in O(n2) running time. So, we can state 

without proof the following theorem. 

 

Theorem 4: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, wi, gi(p’i), fij=fji, for all i,j = 1,2,…,n, the 



 

maximum weighted tardiness problem can be 

solved in O(n2) running time. 

 

Two points should be noted from the above results. First, 

Algorithm MWT is applied to any arbitrary definitions 

of )k(gi as long as it has fulfilled the mild conditions 

mentioned in Section 3.1. Second, if all the weights are 

of equal value, say ,www n 121   the job with 

the minimum tardiness )c(T maxi is the one with the 

latest due date. Once the last job has been determined, 

the completion time of the second last job, say c, can 

readily be computed. Then, the unscheduled job with 

the minimum tardiness must be the one with the 

second latest due date. Repeating the steps for the 

completion of the third last job and so on, the optimal 

schedule for this special case is essentially the same 

as the schedule obtained by earliest due date (EDD) 

rule. 

 
Theorem 5: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, wi=1, gi(p’i), fij=fji, for all i,j = 1,2,…,n, 

the maximum weighted tardiness problem can be 

solved by EDD rule in O(n log(n)) running time. 

  

4.4 Maximum Weighted Lateness 

 

To solve the MWL problem, the idea is the same as in 

Algorithm MWT. Replacing the tardiness function 

)x(Ti  in (13) and in Step 2 by ),x(Li  where 

  }.dxmax{)x(L ii           (14) 

Accordingly, the maximum weighted lateness problem 

can be solved by the following algorithm.  

 

Algorithm MWL 

Step 1: Initialize .cc{},S,J'S max  

Step 2: For l from n to 2, 

      

    .S||JS,J'\S'S
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Step 3: .S||'SS   

 

Similarly, we state without proof the following theorem. 

 

Theorem 6: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, wi, gi(p’i), fij=fji, for all i,j = 1,2,…,n, the 

maximum weighted lateness problem can be 

solved in O(n2) running time. 

 

Similar to the MWT problem, we can apply EDD rule to 

obtain the optimal schedule for the MWL problem if all 

the weights are equal. 

 

Theorem 7: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, wi=1, gi(p’i), fij=fji, for all i,j = 1,2,…,n, 

the maximum weighted lateness problem can be 

solved by EDD rule in O(n log(n)) running time. 

 

4.5 Total Number of Late Jobs 

 

Recall that the late jobs are discarded in our late jobs 

problems. For the TNLJ problem, it can be shown that 

the problem is NP-hard. 

  

Theorem 8: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, gi(p’i), fij=fji, for all i,j = 1,2,…,n, the 

total number late jobs problem with late jobs being 

discard is NP-hard. 

 

Outline of Proof: The proof is by reduction from the 

Partition problem. Furthermore, we consider a special 

case that .fij 0  If this special case is NP-hard, the 

general case must be NP-hard. 

 

Given a set A of 2q integers, the problem asks if there 

exists a subset 'A such that q|'A|  and 

.aa 'A\Ai i'Ai i     

 

The corresponding instance of our late job problem can 

be constructed as that. Let n = 3q and 

./)a(B Ai i 2   The processing times, due dates and 

interruption functions of the jobs are given by 
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for .q,,,k 1321   Here N  is an arbitrary large 

positive integer to ensure that 0)k(pi .  

 

If part: Jobs q,q J,J 312  are the enforcement jobs. As 

their due dates are earlier than the other jobs, they must 

be scheduled first. If there is a solution for the partition 

problem, it can be easily shown that there exists a subset  

'A , in which the corresponding jobs are scheduled after 

the enforcement jobs. The completion times of the last 

enforcement job and the last job in the schedule will 

meet their due dates. 

 

Only If part: On the other hand, if there is an optimal 

schedule for the late job problem, there exists a subset 



 

'J  of jobs such that the completion times of the last 

enforcement job and the last job in the schedule must 

fulfill the following inequalities. 

.B)q(q)Ba(q
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1
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The first inequality implies that .Ba'Ji i   The second 

inequality implies that .Ba'Ji i   Hence, 

.Ba'Ji i   So that, we can assign 'J'A  . Clearly, all 

the sum of the elements in 'A must be equal to B. 

 

As partition is NP-hard (Garey & Johnson 1979), the 

problem  i ijiij U|DLJ,ff,mt|1 must be NP-hard. 

Q.E.D. 

 

It should be noted that Hall, Leung & Li (2014) have 

showed that the problem 

 i iijiiiii U|f,'Dp)'p(g,d,p,mt| 1  

can be solved by an ))nlog(n(O  algorithm. However, 

we have found that their algorithm is not applicable to 

our late job problem even if there is no switching cost. 

The complexity of the following problem is still an open 

problem. 

 .U|DLJ,f,'Dp)'p(g,d,p,mt| i iijiiiii  01  

 

For iii 'Dp)'p(g  , all the jobs have the same due date d, 

and there is no switching cost, the problem can be 

solved by the following polynomial time algorithm. 

Here we use ‘SC1’ referring to ‘special case 1’. 

 

Algorithm TNLJ-SC1 

Step 1: Sort the jobs by their processing times s.t. 

      
1


ii

pp  , .n,,i 11    

      Set .l,c{},S max 00   

Step 2: While )dc( max  , 

        

}.J{||SS

,pcc

,ll

l

lmaxmax









 1

 

Step 3: If )dc( max  , }.J{\SS
l

  

 

 

Theorem 9: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di=d, gi(p’i)=Dp’i, fij=fji, for all i,j = 1,2,…,n, 

the total number late jobs problem with late jobs 

being discard is polynomial time solvable. 

 

We have also identified two special cases which are 

solvable in ))nlog(n(O 2 runtime. 

.U|DLJ,f,'Dp)'p(g,d,pp,mt| i iijiiiii  01  

.U|DLJ,f,g,d,np,mt| i iijiii  011  

For the first case, all jobs have the same processing time, 

their due dates are different and there is no switching 

cost. For the second case, the jobs have different 

processing times and different due dates. The 

interruption functions of all the jobs are the same 

constant, say 1)k(gi for n,,i 1  and there is no 

switching cost.  

 

4.6 Total Weighted Number of Late Jobs 

 

For the TWNLJ problem, it can be shown that the 

problem is strongly NP-hard. 

  

Theorem 10: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, di, wi, gi(p’i), fij=fji, for all i,j = 1,2,…,n, the 

total weighted number of late jobs problem with 

late jobs being discard is strongly NP-hard. 

 

Outline of Proof: The proof is by reduction from the 

Exact Cover by 3-Sets (X3C) problems. As the 

construction of the instance is cumbersome, it is advised 

that interested readers refer to our unpublished 

manuscript (Sum, Leung & Ho 2014).  

Q.E.D. 

 

For the special case that the due dates of the jobs are the 

same, the interruption function is proportional to the 

remaining process time and there is no switching cost, 

,Uw|DLJ,f,'Dp)'p(g,dd,p,mt| i iiijiiiii  01 it 

can readily be shown that it is equivalent to the 

knapsack problem. So, we can state without proof the 

following algorithm for this special case of total 

weighted number of late jobs. 

 

Theorem 11: Given a set of jobs J = {J1, J2,…,Jn} with 

known pi, wi, di=d, gi(p’i)=Dp’i, fij=fji, for all i,j = 

1,2,…,n, the total number late jobs problem with 

late jobs being discard is NP-hard. 

 

Any pseudo-polynomial time algorithm applied to solve 

the knapsack problem can clearly be applied to solve 

this special case. 

 

5. CONCLUSIONS 

 

In this paper, we have reviewed some key research 

results in the areas of psychology, management, 

information systems and behavioral economics 

regarding the issue of multitasking. The laboratory 

studies have revealed that our brain structures are not 

designed for handling multitasking. Thus, multitasking 

could cause mental problem to human being. Besides, 

people peceived themselves good at multitasking always 

underperform as compared with people who engage in 

sequential processing. Field studies on daily works of 

the executives and the office workers have revealed that 

job inerruptions introduce costs on jobs switching and 



 

this cost could hamper the productivity of a worker. 

Some field studies have found that increasing the 

number of concurrent tasks could increase the 

productivity of a worker. Beyond a threshold, the 

productivity drops as the number of concurrent tasks 

increases. If this phenomena is a manifest of result of 

underloaded and overloaded, the benefit of multitasking 

is still unclear. However, in terms of mental health and 

productivity, multitasking should be avoided. In 

behavioral economics, reserachers have studied the 

problem of multitasking (in the topic of effort allocation) 

for half a century, switching cost has not been 

considered in their analysis and scheduling of jobs has 

not been investigated. 

 

Scheduling with multitasking is a relatively new topic in 

the area of scheduling theory. Hall, Leung & Li (2014) 

introduced the ideas of interruption function and 

switching cost to some classical single machine 

scheduling problems. Extend from their formulations, 

we introduce in this paper two new conditions. First, the 

switching costs are job-dependent and symmetric. 

Second, for the late job problems, we consider that the 

late jobs are not allowed to interrupt. The scheduling 

problems of six different criteria are then investigated, 

including the makespan problem, the TWCT problem, 

the MWT problem, the MWL problem, the TNLJ 

problem and the TWNLJ problem.  

 

We show that the makespan can be evaluated in 

advance if both the processing times of the jobs and 

their switching costs are given. The TWCT, MWT and 

MWL problems are polynomial-time solvable. If the 

interruption function and the switching cost function 

fulfill the conditions as stated in (11) and (12), the total 

completion problem (TCT) can be solved in 

))nlog(n(O  runtime. Moreover, the optimal schedule 

of the TCT problem in the presence of multitasking is 

equivalent to the optimal schedule of the TCT problem 

in the absence of multitasking. For the unweighted cases 

of MWT and MWL, i.e. the maximum tardiness 

problem and the maximum lateness problem, they can 

be solved in ))nlog(n(O  runtime. For our late jobs 

problems, we have showed that The TNLJ problem is 

NP-hard and the TWNLJ is strongly NP-hard. Under the 

special case that iii 'Dp)'p(g  , all the jobs have the 

same due dates and there is no switching cost, the TNLJ 

problem can be solved in ))nlog(n(O runtime but the 

TWNLJ is NP-hard.  

 

Nevertheless, it is still unknown on the complexity of 

our TNLJ problem under the special case that 

iii 'Dp)'p(g  , the jobs have the different processing 

times and due dates, and there is no switching cost. We 

leave this problem open for future research. 

 

The results presented in this paper can help the human 

workers to schedule their jobs so as to minimize the 

effect of multitasking. 
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