
EXTENDED KALMAN FILTER BASED PRUNING ALGORITHMSAND SEVERAL ASPECTS OF NEURAL NETWORK LEARNING
ByJohn Pui-Fai SUM

Co-supervised ByProfessor Wing-Kay KANProfessor Gilbert H. YOUNG
A Dissertationsubmitted in partial fulfillment of the requirementsfor the Degree of Doctor of PhilosophyDivision of Computer Science & EngineeringThe Chinese University of Hong HongJuly 1998

AcknowledgementI would like to express my gratitude to Professor Wing-kay Kan and Professor GilbertH. Young for their supervision and advice. Furthermore, I also want to thank PerofessorLai-wan Chan, Professor Chun-hung Cheng, Professor Kin-hong Wong and Professor PeterTam for their valuable comments on the earlier version of this dissertation. In particular, Iam indebted to Professor Peter Tam and Dr. Chi-sing Leung for their valuable suggestion. Iwould also like to thank Mr. Philip Leetch for his help in the �nal statges of this dissertation.Finally, I would like to thank my family, my girlfriend Venus Poon and my friend RickyWong for their encouragement toward the completion of this research.

ii

AbstractIn recent years, more and more researchers have been aware of the e�ectiveness of using theextended Kalman �lter (EKF) in neural network learning since some information such as theKalman gain and error covariance matrix can be obtained during the progress of training. Itwould be interesting to inquire if there is any possibility of using an EKF method togetherwith pruning in order to speed up the learning process, as well as to determine the sizeof a trained network. In this dissertation, certain extended Kalman �lter based pruningalgorithms for feedforward neural network (FNN) and recurrent neural network (RNN) areproposed and several aspects of neural network learning are presented.For FNN, a weight importance measure linking up prediction error sensitivity and theby-products obtained from EKF training is derived. Comparison results demonstrate thatthe proposed measure can better approximate the prediction error sensitivity than usingthe forgetting recursive least square (FRLS) based pruning measure. Another weight im-portance measure that links up the a posteriori probability sensitivity and by-productsobtained from EKF training is also derived. An adaptive pruning procedure designed forFNN in a non-stationary environment is also presented. Simulation results illustrate thatthe proposed measure together with the pruning procedure is able to identify redundantweights and remove them. As a result, the computation cost for EKF-based training canalso be reduced.Using a similar idea, a weight importance measure linking up the a posteriori probabilitysensitivity and by-products obtained from EKF training is derived for RNN. Application ofsuch a pruning algorithm together with the EKF-based training in system identi�cation andtime series prediction are presented. The computational cost required for EKF-based prun-ing is also analyzed. Several alternative pruning procedures are proposed to compare withEKF-based pruning procedure. Comparative analysis in accordance with computationalcomplexity, network size and generalization ability are presented. No simple conclusioncan be drawn from the comparative results. However, these results provide a guideline forpractitioners once they want to apply RNN in system modeling.Several new results with regard to neural network learning are also presented in thisdissertation. To provide a support for the use of recurrent neural network in system model-ing, the approximate realizability of an Elman recurrent neural network is proved. It is alsoproved that FRLS training can have an e�ect identical to weight decay. This provides moreevidence showing the advantages of using FRLS in training a neural network. Another the-oretical result is the proof of the equivalence between a NARX model and recurrent neuralnetwork. Finally, a parallel implementation methodology for FRLS training and pruningon a SIMD machine is presented. iii

Contents1 Introduction 11.1 Introduction : 11.2 Overview of the Dissertation : 21.3 Organization of the Dissertation : 6I Neural Network Learning 82 Neural Network Learning 92.1 System Modeling : 92.2 Architecture : 122.3 Objectives function for neural networks learning : : : : : : : : : : : : : : : 152.3.1 Basic objective : 152.3.2 Smoothing objective : 162.3.3 Complexity objective : 172.4 Approximation Property : 182.4.1 Universal Approximation of FNN : 182.4.2 Approximate Realization Property of RNN : : : : : : : : : : : : : : 182.5 Summary : 193 Techniques for Neural Learning 213.1 Training Neural Network : 213.2 Gradient Descent Approach : 223.3 Forgetting least squares : 243.4 Extended Kalman �lter based training : 253.5 Pruning Neural Network : 283.6 Optimal Brain Damage : 283.7 Optimal Brain Surgeon : 293.8 FRLS based Pruning : 303.9 Procedure : 313.10 Summary : 314 Limitation of Existing Techniques 324.1 Gradient descent and FRLS in RNN training : : : : : : : : : : : : : : : : : 324.2 Error sensitivity based pruning for RNN : 34iv

4.3 Error sensitivity based pruning in non-stationary environments : : : : : : : 344.4 Summary of the techniques for neural network learning : : : : : : : : : : : : 384.5 Summary : 39II Pruning Algorithms for FNN 415 EKF based On-Line Pruning for FNN 425.1 Use of matrix P in the evaluation of weight saliency : : : : : : : : : : : : : 425.1.1 Single pruned weight : 445.1.2 Multiple pruned weights : 455.2 Testing on the approximation : 455.3 Relation to optimal brain damage : 495.4 Summary : 526 EKF based Pruning for FNN in a Non-stationary Environment 536.1 Non-stationary environments : 536.2 Training neural network under time-varying environment : : : : : : : : : : 546.3 Adaptive Bayesian pruning : 576.3.1 EKF and recursive Bayesian learning : : : : : : : : : : : : : : : : : : 576.3.2 Importance measure for pruning a single weight : : : : : : : : : : : : 576.3.3 Importance measure for pruning multiple weights : : : : : : : : : : : 576.4 Illustrative examples : 586.4.1 Simple function : 586.4.2 Moving Gaussian function : 596.5 Summary and Discussion : 59III Pruning Algorithms for RNN 657 EKF based Pruning for RNN 667.1 Background on extended Kalman �lter : 667.2 EKF based training : 677.3 Pruning scheme : 697.4 Evaluation of the validation error. : 727.5 Simulation results : 737.5.1 Simple linear time series : 747.5.2 Non-linear system identi�cation : 747.5.3 Exchange rate prediction : 777.6 The Saliency Ranking : 787.6.1 Non-linear system identi�cation : 787.6.2 Linear system identi�cation : 837.7 Summary and Discussion : 83v

8 Alternative Pruning Methods for RNN 858.1 EKF-based Pruning for RNN : 858.2 High computational cost in building ranking list for the EKF-based pruningmethod : 878.3 Alternative methods for RNN pruning : 898.3.1 Single level pruning procedure : Algorithm 1 and 2 : : : : : : : : : : 908.3.2 Multilevel procedure : Algorithm 3 and 4 : : : : : : : : : : : : : : : 918.4 Complexity of the alternative pruning procedures : : : : : : : : : : : : : : : 928.5 Experimental comparison on generalization and network size : : : : : : : : 948.5.1 Algorithm 1 : 978.5.2 Algorithm 2 : 978.5.3 Algorithm 3 : 978.5.4 Algorithm 4 : 1048.6 Analysis : 1048.7 Summary : 108IV Several Aspects of Neural Network Learning 1099 Approximate Realization Property of RNN 1109.1 Recent Results : 1109.1.1 Multilayer perceptron : 1119.1.2 Recurrent neural networks : 1119.2 Realization property of Elman Model : 1129.3 Summary : 11610 Regularizability of FRLS 11710.1 Preliminary : 11810.2 The Main Result : 11910.3 FRLS and weight decay : 12010.4 Derivation of the Expected Mean Training Error : : : : : : : : : : : : : : : 12010.5 Derivation of the Expected Mean Prediction Error : : : : : : : : : : : : : : 12210.6 Derivation of Equation for MPE and MTE : : : : : : : : : : : : : : : : : : 12210.7 Comparison with recursive least square : 12310.8 Summary : 12411 Equivalence of NARX and RNN 12511.1 Model Equivalence : 12711.1.1 tanh neuron : 12811.1.2 Piece-wise linear neuron : 12911.2 Implications of the equivalence property : 13011.2.1 On training : 13011.2.2 On pruning : 13211.2.3 On stability analysis of NARX model : : : : : : : : : : : : : : : : : 13211.3 Summary : 135vi

12 Parallel Implementation of Training and Pruning Algorithms for FNN 13612.1 Review of FRLS training and pruning : 13712.1.1 Training : 13712.1.2 Pruning : 13812.2 Mapping FRLS training onto n parallel processors : : : : : : : : : : : : : : 13812.3 Implementation of FRLS based pruning in parallel processors : : : : : : : : 14112.4 Speed up : 14412.5 Summary : 144V Conclusion 14613 Conclusion 14713.1 Revisit of the contributions of the dissertation : : : : : : : : : : : : : : : : : 14713.1.1 EKF-based pruning : 14713.1.2 Several aspects of neural nework learning : : : : : : : : : : : : : : : 14813.1.3 Review on the limitation in existing learning techniques : : : : : : : 14813.2 Future work : 149A Extended Kalman �lter 152A.1 Kalman �lter : 152A.2 Kalman �lter for linear system identi�cation : : : : : : : : : : : : : : : : : : 153A.3 Extended Kalman �lter : 154Bibliography 155

vii

Chapter 1Introduction1.1 IntroductionGood generalization ability and fast training speed are two basic criteria used for evaluat-ing the performance of the learning methods in neural networks. In recent years, more andmore researchers have become aware of the e�ectiveness of using the recursive least squaresmethod1 (RLS) [4, 65] and extended Kalman �lter (EKF) [2, 99] in neural network learn-ing. Kollias & Anastassiou [48] �rst applied the recursive least squares method in trainingmulti-layered perceptron. Billings, Chen, Cowan, Grant and their co-workers applied therecursive least squares method in training the NARX model2 and radial basis function net-work [6, 7, 10, 11, 14]. Puskorius & Feldkamp extended the idea to recurrent neural networktraining [90]. Gorinevsky [28] provided the persistence of excitation condition for using therecursive least squares method in neural network training.Along the same line of research, Matthews & Moschytz [73] Iiguni et al. [37], Singhal &Wu [97], and Shan et al. [95] independently applied an extended Kalman �lter in training amulti-layered perceptron and showed that its performance was superior to using a conven-tional backpropagation training method. Ruck et al. [93] gave a comparative analysis ofthe use of the extended Kalman �lter and backpropagation in training. To further speed upthe training rates, Puskorius & Feldkamp proposed a decoupled method for the extendedKalman �lter [89]. More recently, Wan & Nelson proposed a dual Kalman �ltering methodfor feedforward neural network training [121]. Using the same idea, Williams [123] andSuykens [113] independently formulated the training of a recurrent neural network as astate estimation problem and applied the extended Kalman �lter for training. The EKFapproach is an online mode training in which the weights are updated immediately afterthe presentation of a training pattern. This training method is useful because they do notrequire the storage of the entire input output history.One concern in neural networks is how to �nd the optimal size neural network for a givenproblem. If the network is too small, it may not be feasible to train it to solve the givenproblem. On the other hand, if it is too large, over�tting will usually occur [74] and the1RLS is a special case of the forgetting recursive least squares (FRLS) method. In neural networkresearch, there are generally no clear cut between these two. In this dissertation, these two terms are usedinterchangeable.2NARX is a short form for the so-called nonlinear auto-regressive with exogenous input model.1

Chapter 1 Introductionresources will be wasted. An approach to determine the size is the so-called pruning [91].Various methods have previously been proposed for neural network pruning [91], such asoptimal brain damage [55] and optimal brain surgeon [31]. In such methods, a large networkis trained �rst and some unimportant weights are removed later. The importance of a weightis de�ned by how much the training error increases when it is removed. The estimationof all the error sensitivities is based on the Hessian matrix of the training error [55]. Thetime complexity to get such a Hessian matrix is of the order O(Nn2�), where n� and N arethe total number of weights and the number of training patterns respectively. Although wecan get the importance of a weight with a O(Nn�) method [86] without requiring the exactcalculation of the Hessian matrix, we still need O(Nn2�) times to get the importance of eachweight. It should be noticed that to avoid over�tting, the number of training patterns isusually much greater than the total number of weights, i.e. N � n� . Also in the on-linesituation, the Hessian matrix is usually unavailable since the training patterns are not heldafter training. Adapting from the idea of system identi�cation theory, Leung et al. [56, 57]has introduced RLS-based on-line pruning algorithms for feedforward neural networks inorder to reduce the computational overhead due to the computation of the Hessian matrix.As the EKF approach is a well-known fast training method [33] and some informationsuch as the Kalman gain and error covariance matrix can be obtained during the progress oftraining, it would be interesting to inquire if there is any possibility of using an EKF methodtogether with pruning in order to speed up the learning process, as well as to determine thesize of a trained network.1.2 Overview of the DissertationIn this dissertation, certain extended Kalman �lter based pruning algorithms for feedforwardneural networks (FNN) and recurrent neural networs (RNN) are proposeds and severalaspects of neural network learning are presented. Extensive simulation results are presentedto verify the validity of the algorithms. The major contributions made by this dissertationare briey introduced in the following paragraphs.EKF-Based Pruning AlgorithmsEKF-based on-line pruning for FNNTo implementan on-line EKF-based pruning algorithm that resembles the RLS-based prun-ing, one major problem is that the objective function of using the EKF approach is di�erentfrom using the RLS. The objective of the RLS method is minimizing the sum squares errorwhile the EKF is maximizing the a posteriori probability [2]. From that point, using anerror sensitivity approach for pruning will no longer be e�ective since we still have to waituntil the training �nishes, and evaluate the Hessian matrix by using a O(Nn2�) method toget the importance of each weight.In order to obviate such a limitation, it is necessary to de�ne an alternative weightimportance measure which can (1) make use of the by-product obtained from EKF-basedtraining and (2) hopefully be related to some meaningful objective functions. Consideringthese two points, two novel weight importance measures are de�ned in this dissertation for2

Chapter 1 Introductionthe feedforward neural network. The �rst measure is de�ned in accordance with the meanprediction error. The second one is de�ned in accordance with the a posteriori probability.Both of them can be evaluated by using the covariance matrix and the estimated weightvector obtained via the EKF method. The advantages of using such importance measuresare (1) pruning can be made adaptive and (2) pruning a time varying model can be ac-complished. Extensive simulation results are reported in order to justify the viability of twoproposed measures compared with other measures.Details of this contribution are presented in Chapters 5 and 6. Part of the results havealso appeared in the following papers.John Sum, Chi-sing Leung, Lai-wan Chan, Wing-kay Kan and Gilbert H. Young, Onthe Kalman �ltering method in neural network training and pruning, accepted forpublication in IEEE Transactions on Neural Networks.John Sum, Chi-sing Leung, Lai-wan Chan, Wing-kay Kan and Gilbert H. Young, An adap-tive Bayesian pruning for neural network in non-stationary environment, to appear inNeural Computation.More background of this contribution can be found in the following papers.Chi-sing Leung, Pui-fai Sum, Ah-chung Tsoi and Lai-wan Chan, Several aspects of pruningmethods in recursive least square algorithms for neural networks, Theoretical Aspectsof Neural Computation : A Multidisciplinary Perspective, K. Wong et al. (eds.)Springer-Verlag, p.71-80, 1997.C.S.Leung, K.W.Wong, John Sum, and L.W.Chan, On-line training and pruning for RLSalgorithms, Electronics Letters, Vol.32, No.23, 2152-2153, 1996.EKF-based pruning algorithm for RNNPruning a recurrent neural network based on the idea of error sensitivity is generally a dif-�cult task. One problem is that conventional training methods such as real-time-recurrent-learning (RTRL) [124] are time consuming. When the allowable time for training is notvery long, the quality of the trained neural network will be poor. Hence, using RTRL inconjunction with an error sensitivity measure will not be e�ective. Another problem isthat the initial conditions of all the hidden units are usually not known and so are usuallyassumed to be all zeros. Therefore, the Hessian matrix evaluated su�ers from the sameassumption.In order to avoid these two problems, one approach is to use an EKF method in trainingthe RNN since an EKF can on-line estimate the hidden units' activities and at the same timethe EKF is an e�ective training method for RNN [123]. As the training is rather e�ective,a new weight importance measure is proposed in this dissertation for RNN pruning whichcan make use of the information obtained after training, the weight vector and its errorcovariance matrix. Since the objective of extended Kalman �ltering is to maximize the aposteriori probability, not to minimize training error, the use of error sensitivity will not beappropriate to prune the network. Therefore the sensitivity of the a posteriori probabilityas a measure of the importance of the weight is proposed and several pruning procedures3

Chapter 1 Introductionare devised for recurrent neural networks. Furthermore, extensive simulation results arepresented in this dissertation to justify the viability of the proposed measure. Details of thiscontribution are presented in Chapters 7 and 8.Several Aspects of Neural Network LearningApproximate realization property of RNNRecurrent neural networks have been proposed for about a decade [94] and then manydi�erent recurrent neural network models have been proposed. Regarding the universalapproximation property of some multi-layered feedforward neural networks [21, 24, 35],this dissertation proves that the Jordan model [33] and the recurrent radial basis functionnetwork [33] are able to realize any discrete-time nonlinear state-space system with arbitraryaccuracy. Besides, using the result derived by Funahashi [24], this dissertation also provesthat a fully connected recurrent neural network with sigmoidal or RBF hidden unit is ableto realize any discrete-time nonlinear state-space systems.Details of this contribution are presented in Chapter 9 and part of the results alsoappeared in the following paper.John Sum, Lai-wan Chan., On the approximation property of recurrent neural network,to appear in Proceedings of World Multiconference on Systemics, Cybernetics andInformatics, 1997.Regularization property of FRLSDue to its fast convergence rate and its adaptive behavior, the forgetting recursive leastsquare (FRLS) method has recently been applied widely to the training of feedforwardneural networks. As in many applications such as system identi�cation and time seriesprediction, a batch of training data usually cannot be obtained in advance. Therefore,conventional batch mode training techniques such as backpropagation, Newton method andother nonlinear programming techniques, cannot be easily applied. Thus, the FRLS methodor other adaptive training methods become inevitable. With the increasing popularity ofusing FRLS in neural network learning [12] [15] [48] [56] [57] [95] and pruning[56] [57], thisdissertation investigates the regularization ability of using FRLS in training. Regularizationis a method that aims at reducing the model complexity [42] and preventing the trainingproblem from being ill-conditioned [114], [53], [67], [74], [75], [76] and [79]. Many articlesthat focus on the design of a regularizer [128], the use of regularization [42] [67] and the e�ectof regularization in model complexity [75] [76] [79] can be found in the literature. In theconventional batch mode training approach, regularization is usually realized by adding anextra term or a penalty term such as weight decay term [74] and Tikhonov regularizer [8, 42]to the training error function. Using the FRLS method, the training error function is a kindof weighted sum square error function. This dissertation shows that this objective functionfor FRLS is similar to that of adding a weight decay penalty term. Hence, based on this�nding, an elegant on-line training method which accomplishes the same e�ect as weightdecay can be realized by using FRLS.Details of this contribution are presented in Chapter 10 and part of the results alsoappeared in the following paper. 4

Chapter 1 IntroductionJohn Sum, Wing-kay Kan and Gilbert H. Young, On the regularization of forgetting re-cursive least square, submitted to IEEE Transactions on Neural Networks.Equivalence of NARX and RNNOwing to their structural di�erences, the NARX model and RNN are basically studied in-dependently. Only a few papers have presented results on their similarities [19, 84]. Oluro-timi [84] has recently shown that every RNN can be transformed into a NARX model andthus he has derived an algorithm for RNN training with feedforward complexity. Inspiredby Olurotimi's work, this dissertation will show that every RNN can be transformed into a�rst order NARX model and vice versa if the condition that the neuron transfer functionis a hyperbolic tangent. Besides, every NARX model of order larger than one can be trans-formed to a RNN if the neuron transfer function is piece-wise linear. According to theseresults, there are three advantages from which we can bene�t. (i) If the output dimensionof a NARX model is larger than the number of its hidden unit, the training of a NARXmodel can be speeded up by an indirect method, i.e. the NARX model is transformed into aRNN and is trained. Once the training �nishes, the RNN is transformed back to an NARXmodel. On the other hand, (ii) if the output dimension of a RNN model is smaller than thenumber of its hidden units, the training of a RNN can be speeded up by using this similarmethod. (iii) There is a simpler way to accomplish RNN pruning, i.e. the correspondingNARX model is pruned instead of the RNN. After pruning, the NARX model is transformedback to the equivalent RNN.Details of this contribution are presented in Chapter 11 and a part of the results hasappeared in the following paper.John P.F. Sum, Wing-kay Kan and Gilbert H. Young, A note on the equivalence of NARXand RNN, accepted for publication in Neural Computing and ApplicationsParallel Implementation of Training and Pruning Algorithms for FNNIn recent years, most of the implementations of ANN are accomplished by using generalpurpose, serial computers. This approach though exible is often too slow. Besides, anoptimal network size is always hard to determine in advance. One usually starts with alarge network which consists of a large number of hidden units. After the training is �nished,redundant weights are removed [55]. In order to speed up the training process, intensiveresearch on the mapping of ANN onto parallel computing architectures [36, 17], such asmesh structure [63], array structure [52, 18, 38, 44, 129], ring structure [1, 77] and hypercubestructure [51, 72] have been carried out. These methods solely apply a backpropagationapproach to training the neural network. FRLS is an alternative method which has beenapplied to train feedforward neural networks in recent years [28, 48]. Experimental resultshave demonstrated that the time complexity of using the FRLS approach is usually muchsmaller than using backpropagation even though the one-step computation complexity in aFRLS method is higher than backprogation, (see [33] for detail.). Although there are severaladvantages in using FRLS to train a neural network, implementation of such an algorithm ina SIMD machine is scarce. This dissertation proposes a methodology for the implementationof both FRLS-based training and pruning on a SIMD machine. The mapping of the training5

Chapter 1 Introductionalgorithm is indeed a direct extension of the algorithm presented in [89] and [95]. Forpruning, an algorithm is suggested to facilitate the SIMD architecture. An analysis of thetime complexity of using such a parallel architecture is given.Details of this contribution are presented in Chapter 12 and part of the results alsoappeared in the following papers.John Sum, Gilbert H. Young and Wing-kay Kan, Toward a design of recursive least squarebased training and pruning using SIMD machine, to be presented in 10th InternationalConference on Parallel and Distributed Computing and Systems, Las Vegas, Nevada.Wing-kay Kan, John Sum and Gilbert H. Young, Parallel extended Kalman �lter approachfor neural network learning and data cleaning, to be presented International Sympo-sium on Operations Research nd its Applications (ISORA'98) August 20-22, 1998,Kumming, China.1.3 Organization of the DissertationAll the above contributions will be elucidated in this dissertation. For clarity, the subse-quent chapters will be organized into �ve parts. Part I consists of three chapters providingthe prerequisites for understanding the results presented in the dissertation. Chapter 2 re-views the general principles of neural network learning. Two major factors governing neurallearning | architecture and learning objective | will be described. The approximationproperty of neural networks will be presented. Existing techniques in neural network train-ing and pruning will be summarized in Chapter 3. A discussion of their limitations and themotivation for using an extended Kalman �lter for pruning will be presented in Chapter 4.The main results are presented in Parts II to IV. Part II comprises of two chapterswhich present the use of an extended Kalman �lter in pruning feedforward neural networks.In Chapter 5, a weight importance measure linking up prediction error sensitivity and theby-products obtained from EKF training is derived. Comparison results with FRLS-basedpruning are also reported in this chapter. Another weight importance measure that linksup a posteriori probability sensitivity and the by-products obtained from EKF training isderived in Chapter 6. Applications of such a probability sensitivity measure in pruning afeedforward neural network in a non-stationary environment are also presented.Part III consists of two chapters which present the use of the extended Kalman �lter inpruning recurrent neural networks. Chapter 7 starts by presenting an EKF-based pruningalgorithm for a recurrent neural network. Then the application of such a pruning algorithmtogether with EKF-based training in system identi�cation, and time series prediction arereported. A comparative analysis of an EKF based pruning procedure and random rank-ing pruning procedure is also given in this chapter. The computational costs required forEKF-based pruning are analyzed in Chapter 8. In this chapter, several alternative pruningprocedures are proposed and compared with the EKF-based pruning procedures. Compara-tive analysis in accordance with computational complexity, network size and generalizationability is reported.Part IV consists of three chapters that present new analytical and implementation resultsrelated to neural learning. Chapter 9 presents a proof showing that the Elman recurrentneural network can approximately realize any discrete time non-linear state-space system.6

Chapter 1 IntroductionThis proof provides another support for the use of recurrent neural networks in systemmodeling. Chapter 10 shows that FRLS training can have an e�ect identical to weight decay.This result provides further evidence showing the advantages of using FRLS in training aneural network. Another theoretical result is the proof of the equivalence between a NARXmodel and a recurrent neural network which is presented in Chapter 11. The last chapterof Part IV, Chapter 12 presents a methodology for the implementation of FRLS trainingand pruning onto a SIMD machine.Part V consists of only one chapter, Chapter 13, which will summarize the researchresults of this dissertation and some possible future work.In order to make the dissertation self-contained, the essential concepts of extendedKalman �ltering such as its objective of estimation and its recursive Bayesian behavior, willbriey be introduced in the Appendix.

7

Part INeural Network Learning

8

Chapter 2Neural Network LearningThis chapter and the next two chapters will review the very basic principle of neural networklearning. Essentially, this principle resembles that of system modeling. That is to say, givena set of measured data, one tries to �nd out a good model which can describe the data asneatly as possible. Four factors determine the process of learning. They are, (1) neuralnetwork architecture, (2) basic objective, (3) smoothing objective and (4) neural networkcomplexity. These four factors will be elucidated in this chapter. For a more detailed surveyof neural network learning, one can refer to [32, 33, 34, 60, 92, 94], and the references therein.2.1 System ModelingIn system identi�cation, one might be given a set of input-output data fxi; yigNi=1 arising byan unknown process, see Figure 2.1 for example, and asked to �nd a mathematical modelfor such an unknown process. As the true model is not known in advance, one has toassume a model for it, a feedforward neural network (FNN) for instance. A mathematicalrepresentation of FNN is given byyk = nXi=1 ci tanh (aixk + bi) ; (2.1)where ai, bi and ci are the input weight, bias and output weight respectively for the ithhidden unit. The non-linear function tanh is de�ned as follows :tanh(s) = exp(s)� exp(�s)exp(s) + exp(�s) :Let � = (a1; a2; : : : ; an; b1; b2; : : : ; bn; c1; c2; : : : ; cn)T ;a representation of the set of data can be obtained by solving the following optimizationproblem. �̂ = argmin� (1N NXk=1(yk � ŷ(xk; �))2) :9

Chapter 2 Neural Network Learning(a) Input
0 200 400 600 800 1000

−1

−0.5

0

0.5

1

Time (t)

S
ys

te
m

 In
pu

t

(b) Output
0 200 400 600 800 1000

−6

−4

−2

0

2

4

6

S
ys

te
m

 O
ut

pu
t

Time (t)Figure 2.1: A set of input-output data arising by an unknown process.10

Chapter 2 Neural Network Learning
0 200 400 600 800

1.3

1.4

1.5

1.6

1.7

1.8

E
xc

ha
ng

e
R

at
e

Figure 2.2: Foreign exchange rate of USD/DEM vs working day.Since the true model is unknown, one can also assume that the underlying model is de�nedas follows : yk = nXi=1 ci tanh ai0xk + mXt=1 aityk�t + bi! : (2.2)It is the so-called NARX model. Let ~ai = (ai0; ai1; ai2; : : : ; aim)T and� = (~a1;~a2; : : : ;~an; b1; b2; : : : ; bn; c1; c2; : : : ; cn)T ;another representation of the set of data can be given by�̂ = argmin� (1N NXk=1(yk � ŷ(xk; �))2) :In time series modeling, one may be given a set of time series data, fyigNi=1, which hasarisen by an unknown environment. A foreign exchange rate is an example of such timeseries data. In a stock market, foreign exchange rate is an index which indicates the relationbetween two currencies. Figure 2.2 displays the change of the exchange rate between USDand DEM. One might be asked to �nd a model for predicting this change. As a matterof fact, there is so far no good model for these exchange rate data. We can assume afeedforward neural network,yk = nXi=1 ci tanh mXt=1 aityk�t + bi! ; (2.3)or a recurrent neural network" x1(t)x2(t) # = " �(a11x1(t� 1) + a12x2(t � 1) + e1)�(a21x1(t� 1) + a22x2(t � 1) + e2) # ;11

Chapter 2 Neural Network Learningy(t) = " c1x(t)c2x(t) # ;for the exchange rate data. Here the non-linear function � is de�ned as follows :�(s) = exp(s)� exp(�s)exp(s) + exp(�s) :This model is a two-hidden-unit recurrent neural network. Let � be the parametric vectorcontaining all the model parameters, the representation can be obtained by solving the sameproblem as the case in system identi�cation, i.e.�̂ = argmin� (1N NXk=1(yk � ŷk(�))2) :Obviously, there are many options in the choice of architecture in the use of neuralnetworks for system modeling. For simplicity, only FNN and RNN will be presented as theresults presented in this dissertation are developed for these two models.2.2 ArchitectureIn neural network learning, the very �rst step is to select an appropriate architecture.Generally, there are two basic architectures for use, the feedforward neural network and therecurrent neural network.A feedforward neural network model is a non-linear model de�ned as follows :y(x) = 26664 Pni=1 c1i�(aTi x+ bi)Pni=1 c2i�(aTi x+ bi)� � �Pni=1 cli�(aTi x + bi) 37775 ; (2.4)where y 2 Rl, x 2 Rm, ai 2 Rm, cji; bi 2 R for all i = 1; � � � ; n and j = 1; � � � ; l. Com-mon choices of the non-linear scalar function �(s) are sigmoidal, 11+exp(�s) and hyperbolictangent, exp(s)�exp(�s)exp(s)+exp(�s) . Figure 2.3 shows a simple feedforward neural network with l = 1,m = 2 and n = 2. In compact form,y(x) = C tanh(Ax+ b) (2.5)where A = 26664 a11 a12 � � � a1ma21 a22 � � � a2m� � � � � � � � � � � �an1 an2 � � � anm 37775 ;b = [b1 b2 � � � bn]T ;C = 26664 c11 c12 � � � c1nc21 c22 � � � c2n� � � � � � � � � � � �cl1 cl2 � � � cln 37775 :12

Chapter 2 Neural Network Learning
1

x

c11 c12

b1

b2

a22

a12a11 a21

y

Figure 2.3: A feedforward neural network model.A recurrent neural network model is a non-linear model which is de�ned as follows :x(t) = 26664 x1(t)x2(t)� � �xn(t) 37775 = 26664 �(aT1 x(t� 1) + bT1 u(t) + e1)�(aT2 x(t� 1) + bT2 u(t) + e2)� � ��(aTnx(t� 1) + bTnu(t) + en) 37775 ; (2.6)y(t) = 26664 cT1 x(t)cT2 x(t)� � �cTl x(t) 37775 ; (2.7)where y(t) 2 Rl, x(t) 2 Rn, u(t) 2 Rm, ai 2 Rn, bi 2 Rm, ei 2 R for all i = 1; 2; � � � ; n andcj 2 Rn for all j = 1; 2; � � � ; l. The non-linear scalar function �(s) can be de�ned as either11+exp(�s) or �(s) = exp(s)�exp(�s)exp(s)+exp(�s) . Figure 2.4 shows a simple recurrent neural network withl = 1, m = 2 and n = 2.Similarly, Equation (2.6) and (2.7) can also be rewritten in compact form as follows :x(t) = �(Ax(t� 1) +Bu(t) + e) (2.8)y(t) = Cx(t); (2.9)where A = 26664 a11 a12 � � � a1na21 a22 � � � a2n� � � � � � � � � � � �an1 an2 � � � ann 37775 ;13

Chapter 2 Neural Network Learning
1

y

u

c11 c12a21

a12

b12

b22

b21b11e2

e1

a11 a22

Figure 2.4: A recurrent neural network model.B = 26664 b11 b12 � � � b1mb21 b22 � � � b2m� � � � � � � � � � � �bn1 bn2 � � � bnm 37775 ;C = 26664 c11 c12 � � � c1nc21 c22 � � � c2n� � � � � � � � � � � �cl1 cl2 � � � cln 37775 ;e = [e1 e2 � � � en]T :For clarity, notations used for FNN and RNN are depicted in Table 2.1.FNN RNNx Network input Hidden units' activityy Network output Network outputu | Network inputf y = f(x; �) x(t+ 1) = f(x(t); �; u(t+ 1))h | y(t) = h(x(t); �)Table 2.1: Summary of the notations used for FNN and RNN.14

Chapter 2 Neural Network Learning2.3 Objectives function for neural networks learningTo apply the learned weight models in time series prediction and system identi�cation, atraining objective has to be de�ned to measure the performance of how good the predictionis or how accurate the identi�cation is.In general, we cannot know every detail about the system. The only information is abatch of input-output data obtained from observations or measurements collected from thesystem. Hence, the purpose of training can be stated conceptually in the following way :Statement of problem : Given a set of real-valued input/output data pair, f(u(i); y(i)); i=1; 2; : : : :tg collected from an unknown system, devise an estimator to mimic the unknownenvironment as "precisely" as possible.Let � and ŷ(ij�) be the estimator parameter vector and the output of the estimatorgiven input x(i), one possible de�nition of "precision" of the estimator can be consideredas the sum squares error,Pti=1 kŷ(ij�)� y(i)k2. One type of optimal estimator, denoted by�̂ is thus de�ned as the one minimizing least sum square error:�̂ = argmin� f tXi=1 kŷ(ij�)� y(i)k2g: (2.10)It is well-known that the least squares method is sensitive to outliers and bias [43], so otherobjective functions have been proposed for obtaining a "good" estimator. According to thetheory of neural network learning, these objective functions can be summarized into threetypes of objective: (i) basic, (ii) validation and (iii) complexity.2.3.1 Basic objectiveLeast square errorThe least square error is one of the basic objectives for estimation. [49] [66]. Once a set ofi/o pairs, f(x(i); y(i)) : i = 1; : : : ; tg, is given, the basic criterion is to minimize the meansquares error. We use E1(�) to denote this objective.E1(�) = t�1 tXi=1 kŷ(ij�)� y(i)k2: (2.11)Maximum likelihoodAn alternative basic objective function is derived from the principle of likelihood [65]. Sup-pose that the system is noise corrupted:y(i) = ŷ(ij�) + �; (2.12)where � is a Gaussian noise. Then, given the system parameter �, and input x(i), theposterior probability of y = y(i) is given as normal distribution as well:p(y(i)j�) = ((2�)nj�j)�1=2 exp��12(y(i)� ŷ(ij�))T��1(y(i)� ŷ(ij�))� ; (2.13)15

Chapter 2 Neural Network Learningwhere � is the covariance matrix of the estimator and j�j is its determinant, n is thedimension of vector y(i). The likelihood with which the output fy(i)gti=1 will be generatedby the system � will be given by the multiplication of the factor p(y(i)j�) from i = 1 toi = t. Hence, the log-likelihood function is written as follows, ignoring the scalar constantfor simplicity:E2(�) = �12 f(2�)nj�jg � tXi=1�12(y(i)� ŷ(ij�))T��1(y(i)� ŷ(ij�))� : (2.14)Note that E2(�) = E1(�) if � is an identity matrix.2.3.2 Smoothing objectiveIt was noticed that the senses of 'precision' in the least square method or maximum likeli-hood are dependent on the training input-output set, fx(i); y(i)gti=1. Suppose we pick upfx(i); y(i)gt�1i=1 to train a neural network and use sum squares error as objective, an estima-tor �̂ can be obtained. Once �̂ is validated by fx(t); y(t)g, it is obvious that (y(t)� ŷ(t))2might not be equal to (t� 1)�1Pt�1i=1(ŷ(ij�)� y(i))2.It is then relevant to ask how 'good' the estimator will be if it is applied to other setsof data. This raises three equivalent problems: (1) smoothing problem [118, 46, 47, 29],(2) regularization1 problem [114, 27] and (3) generalization problem [74, 76], which havebeen discussed actively in recent years.One simple solution to this problem in time series prediction is proposed by Whittakerin 1923 [47] who suggests that the solution fy(i)gti=1 should balance a tradeo� between thegoodness of �t to the data and the goodness of �t to a smoothness criterion:miny(ij�)(tXi=1[y(i)� y(ij�)]2 + �2 tXi=1[@k� y(ij�)]2) : (2.15)The �rst term is the in�delity of the data measure while the second term is the in�delityto the smoothness constraint. Compare this equation with E1(�) and E2(�), it is readilyshown that Whittaker's objective can be extended as follows:E3(�) = E(�) + �2 tXi=1 k@k� y(ij�)k2; (2.16)where E(�) is either E1 or E2. Common choices of k are either one [114] or two [29]. Aswe generalize the above equation asE(�) + �� S1(�); (2.17)1It should be noted that there is another interpretation of regularization in the area of system identi�cation(see chapter 6 of [65]). In system identi�cation, one may require to compute the solution x in a matrixequation, say Ax = b. If matrix A is non-singular, it is well known that a unique solution exists. However,as the matrix A is near singular, the solution of x is di�cult to compute even if we know that A is non-singular. In such a case, some particular technique, such as the Levenbeg-Marquardt method, is applied.Such a technique applied to solve these ill-posed problems is called regularization.16

Chapter 2 Neural Network Learningconvention weight decay methods can also be treated as a regularizer2. There are twocommon weight decay methods: (1) keeping the weight values as small as possible and(2) keeping the weight values close to a prede�ned scalar value �0. The �rst weight de-cay method is indeed equivalent to the Tikhonov stabilizer [114]. Table 2.2 summarizesfour common regularizers, where �j is the jth element of the vector �. Gustafsson andHjalmarsson recently proposed one special type of regularizer for linear estimation, a sta-ble regularizer [30]. The purpose of this regularizer is to ensure that the stability of theestimator can be guaranteed. Regularizer De�nitionWhittaker Pti=1 k@k� y(ij�)k2Tikhonov R k@k� y(uj�)k2duRissanen k�k2Rumelhart Ppj=1 (�j)2(�0)2+(�j)2Table 2.2: Summary of common regularizers.2.3.3 Complexity objectiveIn accordance with Parsimonious principle [65], there should be a trade-o� between model�t and model complexity. That is to say, it the unknown system can be modeled by morethan one model, the simplest one should be preferable. To measure the complexity of amodel, many criteria have been proposed in the last three decades.Table 2.3 summarizes some model selection criteria which are commonly applied insystem identi�cation [30, 66] and neural network time series prediction [74]. Here, theAkaike FPE and GCV are not stated in their initial form. Originally, FPE and GCV arede�ned as 1+p=N1�p=NE1(�) and E1(�)(1�p=N)�2. where p = dim(�) and N is the total numberof training data. Taking logarithm to both, the Akaike FPE and GCV can be rewritten inthe form depicted in Table 2.3.It should be noted that criteria of Table 2.3 are basically derived for the linear sys-tems. Therefore, they suggest only a guideline for non-linear systems. Besides, no matterwhich criteria are used for measuring model complexity, model selection is a very di�cultproblem in particular when the size of a neural network is large3. Selecting a good neuralnetwork model will rely on heuristic techniques such as network growing [33] and networkpruning [91]. In this dissertation, we concentrate on network pruning.2It should be noted that there are several terminologies for ��S1(�). Two commonly used terminologiesare smoothing regularizer and regularizer.3It should be noted that the model selection problem is essentially NP-Complete even for a linear model.Thus, the selection of the best neural network structure will at least be NP-Complete.17

Chapter 2 Neural Network Learning2.4 Approximation PropertyIn the application of neural networks in solving problems, one basic assumption is thatthe applied model is able to realize any non-linear system. This section will briey statesome essential theorems which have been proven in recent years. These theorems lay thenecessary conditions for neural network. These theorems will be revisited in a later chapter.2.4.1 Universal Approximation of FNNThe following theorems will state that, for any given state space non-linear system, feed-forward neural networks are able to model such behavior as accurately as possible.Theorem 1 (Funahashi Theorem[24]) Let K be a subset of Rn and f : K ! Rm be acontinuous mapping. Then for an arbitrary � > 0, there exists a multi-layered perceptronwith a �nite number of hidden nodes such thatmaxx2K kf(x)�W1�(W2x+ �)k < � (2.18)holds, where � : Rn ! Rn is a sigmoid mapping. The matrix W1;W2 corresponds to thehidden to output connection matrix and input to hidden connection matrix. 222This theorem is the so-called universal approximation property for multilayer perceptron.It should be remarked that some other researchers have also obtained the same result, usinga di�erent approach [21] [35].2.4.2 Approximate Realization Property of RNNFor recurrent neural network, we need a similar theorem showing its approximate realiz-ability. A review of the earlier theorems regarding the approximate realization property ofRNN will be presented in detail in Chapter 9.Theorem 2 Let D be a open subset of S, and f : S � Rn ! Rn be a continuous vector-valued function which de�nes the following non-autonomous non-linear systemx(k+ 1) = f(x(k); u(k)); (2.19)y(k) = Cx(k): (2.20)Then, for an arbitrary number � > 0 and an integer 0 < I < +1, there exist an integer Nand a recurrent neural network of the formx(k + 1) = �(Ax(k) + Bu(k)); (2.21)y(k) = Dx(k); (2.22)where x 2 RN and y 2 Rn, with an appropriate initial state x(0) such thatmax0�k�I kz(k)� y(k)k < �: (2.23)(Proof) See Chapter 9. 18

Chapter 2 Neural Network Learning2.5 SummaryIn summary, this chapter has briey reviewed some fundamental concepts on neural networklearning. Two neural network architectures are presented and three objectives for neurallearning are described. The approximate realization property of a recurrent neural networkis also presented. In the next chapter, several techniques for neural learning will be reviewed.

19

Chapter 2 Neural Network Learning
Criteria De�nitionAkaike FPE logE(�) + log(1 + pN)� log(1� pN)Akaike AIC logE(�) + 2pNAkaike BIC, MDL logE(�) + p logNNGCV logE(�)� 2 log(1� pN)Corrected AIC logE(�) + 2pN + 2 (p+1)(p+2)N�p�2� criterion logE(�) + p log logNNTable 2.3: Common criteria for model selection. FPE stands for �nal prediction error. GCVstands for generalized cross validation. AIC stands Akaike information criteria. BIC standsfor Bayesian information criteria. MDL stands for minimum description length. E(�) is thetraining error.

20

Chapter 3Techniques for Neural LearningIn the last chapter, the general principle of neural learning has been introduced. Once anneural network architecture has been selected and the number of hidden units has beende�ned, the problem of neural learning will be equivalent to an optimization problem. Thecost function is de�ned as a combination of the basic objective and the smoothing objective,and the goal of learning is simply to search for the minima of this cost function. In neuralnetwork literature, it is called training. Many existing numerical methods [69], such asgradient descent and Newton's method, can be applied. Where the complexity objective istaken into account, the problem will become complicated. One approach for solving thisdi�cult problem is to incorporate a pruning procedure in conjunction with training. In thischapter, several techniques for solving these problems in neural learning will be presented.3.1 Training Neural NetworkRecall the objective of neural learning : Given a set of real-valued input/output data pairs,f(x(i); y(i)); i= 1; 2; : : : :tg collected from an unknown system, devise an estimator to mimicthe unknown environment as "precisely" as possible. and one common objective to measurethe "precision" is the mean squares error,E1(�) = 1N NXi=1 kŷ(ij�)� y(i)k2: (3.1)Another common objective is J(�) = E1(�) + S(�), where S(�) is a regularizer. Someexemplar regularizers, denoted by S(�), are listed as follows.Regularizer De�nitionWhittaker PNi=1 k@k� y(ij�)k2Tikhonov R k@k� y(uj�)k2duWeight decay k�k2Here, parameter N in Whittaker's regularizer denotes the total number of training data.Note that there are many other de�nitions for S(�). Please refer to the last chapter or [33]for detail. 21

Chapter 3 Techniques for Neural LearningConsidering J(�), which is given byJ(�) = E1(�) + S(�);is the cost function for learning, the training problem will be equivalent to a non-linearprogramming problem. Hence, training a neural network can be accomplished by applyingtechniques in numerical method.3.2 Gradient Descent ApproachBatch mode FNN trainingThe gradient descent method is the simplest training method, which is de�ned as follows :�(k + 1) = �(k) + � @J(�)@� �����=�(k) ; (3.2)where � is the step size. If S(�) = �2�k�k2, the updating equation can be rewritten asfollows : �(k + 1) = (1� �)�(k) + �N NXt=1 @ŷ(t; �)@� e(t); (3.3)where e(t) = y(t) � ŷ(t; �) and ŷ is the output of the neural network. This is the batchmode training equation as all N training data are required.On-line mode FNN trainingIn case the set of training data is not known in advance or the number of training data istoo large, on-line gradient descent will be needed. The update equation for � can be writtenas follows. �(t + 1) = �(t) + �t @J(�)@� �����=�(t) (3.4)for J(�) = E1(�) and �t satis�es the following conditions :1Xt=1 �t =1; 1Xt=1 �2t <1:If S(�) = �2�k�k2, the updating equation can be rewritten as follows :�(t+ 1) = (1� �)�(t) + �t @ŷ(t; �)@� �����=�(t) e(t); (3.5)where e(t) = y(t)� ŷ(t; �) and ŷ is the output of the neural network.This type of on-line method is also called the stochastic gradient descent method [65]and it has been discussed extensively in the area of signal processing and system modeling.The most well-known online training method is the back-propagation algorithm (BPA) [94].22

Chapter 3 Techniques for Neural LearningBatch mode RNN trainingThe idea of training a RNN is essentially the same as training a FNN. Without loss ofgenerality, a RNN can be written as a non-linear state-space model.x(t; �) = g(u(t); x(t� 1; �); �);ŷ(t; �) = h(x(t; �));where f and g are any non-linear vector function. Suppose J(�) = E1(�), the batch modeupdating equation can readily be obtained as follows :@ŷ@� = @h(t)@� + @h(t)@x(t) @x(t)@� (3.6)and @x(t)@� is obtained recursively via the following equation :@x(t)@� = @g(t)@� + @g(t)@x(t� 1) @x(t� 1)@� (3.7)The updating equation for � is given by�(k + 1) = �(k) + �N NXt=1 @ŷ(t; �)@� e(t); (3.8)where e(t) = y(t) � ŷ(t; �) and ŷ is the output of the neural network. The factor @ŷ@� isobtained by Equations (3.6) and (3.7). In case,J(�) = E1(�) + �2�k�k2;�(k + 1) = (1� �)�(k) + �N NXt=1 @ŷ(t; �)@� e(t);On-line mode RNN trainingThe idea of on-line training RNN is also similar to on-line training a feedforward neuralnetwork, �(t+ 1) = �(t) + �t @J(�)@� �����=�(t) ; (3.9)where �t satis�es the following conditions :1Xt=1 �t =1; 1Xt=1 �2t <1:If S(�) = �2�k�k2, the updating equation can be rewritten as follows :�(t+ 1) = (1� �)�(t) + �t @ŷ(t; �)@� �����=�(t) e(t); (3.10)where e(t) is the output error. Back-Propagation Through Time (BPTT) [33] and Real-Time Recurrent Learning (RTRL) [33] are two well-known gradient descent training meth-ods for recurrent neural networks. 23

Chapter 3 Techniques for Neural Learning3.3 Forgetting least squaresOn-line FNN trainingLet y = f(x; �) be the transfer function of a single layer feedforward neural network wherey 2 R is the output, x 2 Rm is the input and � 2 Rn is its parameter vector. Givena set of training data fx(i); y(i)gN�=1, let �̂(0) be the initial parametric vector, P (0) =��1In(m+2)�n(m+2), and the training of a feedforward neural network can be accomplishedby the following recursive equations [48], [56], [57], [95]:P (t) = (I � L(t)H(t))P (t� 1)1� � (3.11)�̂(t) = �̂(t� 1) + L(t)[y(xt)� ŷ(xt)]; (3.12)where L(t) = P (t � 1)H(t)HT (t)P (t� 1)H(t) + (1� �)H(t) = @f@� �����=�̂(t�1)and � is the forgetting factor in between zero and one.In the theory of system identi�cation [43], the objective of the above recursive algorithmis to minimize the cost function J(�(t)), whereJ(�(t)) = tXk=1wk(y(xk)� f(xk; �(t)))2 + �k�(t)k2; (3.13)where wk = (1� �)t�k.� Note that 1 � wi > wj � 0, for all 1 � i < j � t. These weighting factors bettercapture the e�ect of the most recent training data. For k = t, the weighting on(y(xk) � f(xk; �(t))) is one. When k = t � 1, the weighting on (y(xk) � f(xk; �(t)))is (1 � �). This factor is smaller than one. As a result, the factor wk serves as aweighting factor which counts the e�ect of the most recent training data more thanthe earlier ones.� It should also be noted that an index t is associated with the parametric vector �.This indicates that the best estimate of � at time t might not be the same as the bestestimate at time t+ 1.� Once � = 0, this algorithm will reduce to the standard recursive least squares method.Since the model f is non-linear, FRLS can only be treated as a heuristic algorithmsearching for the minimum J(�). Fortunately, experimental studies always demonstrate thatFRLS can give a good solution in neural network training and it converges much faster thanthe backpropagation approach. Theoretically, it is proved that FRLS has a regularizatione�ect identical to that of weight decay. The proof will be presented in Chapter 10.24

Chapter 3 Techniques for Neural LearningOn-line RNN trainingPuskorius & Feldkamp have recently extended the idea of FRLS to RNN training [90]. Theformulation is actually a combination of gradient descent and FRLS. Suppose that RNN isde�ned as follows x(t; �) = g(u(t); x(t� 1; �); �);ŷ(t; �) = h(x(t; �));where f and g are any non-linear vector function, andJ(�(t)) = tXk=1wk(y(k)� h(x(k); �(t)))2+ �k�(t)k2;where wk = (1� �)t�k.Minimizing J(�) via FRLS setting,P (t) = (I � L(t)H(t))P (t� 1)1� ��̂(t) = �̂(t� 1) + L(t)[y(xt)� ŷ(xt)];where L(t) = P (t � 1)H(t)HT (t)P (t� 1)H(t) + (1� �)H(t) = @h@� �����=�̂(t�1)and � is the forgetting factor in between zero and one. As h(x(t; �)) is a function of � andx(t), and x(t) is a function of � and x(t� 1), the computation of H(t) will be given byH(t) = @ŷ@� = @h(t)@� + @h(t)@x(t) @x(t)@� :Here @x(t)@� can be obtained recursively via the following equation :@x(t)@� = @g(t)@� + @g(t)@x(t� 1) @x(t� 1)@� (3.14)Since this setting does not concern the initial condition of the hidden layer, applicationof FRLS in RNN training will su�er from the initial hidden value problem. A detailedexplanation of this e�ect will be presented in Chapter 4.3.4 Extended Kalman �lter based trainingOn-line FNN trainingLet y = f(x; �) be the transfer function of a single layer feedforward neural network wherey 2 R is the output, x 2 Rm is the input and � 2 Rn is its parameter vector. Given a25

Chapter 3 Techniques for Neural Learningset of training data fx(i); y(i)gN�=1, the training of a neural network can be formulated as a�ltering problem [2, 97] assuming that the data are generated by the following noisy signalmodel : �(t) = �(t � 1) + v(t) (3.15)y(t) = f(x(t); �(t)) + �(t) (3.16)where v(t) and �(t) are zero mean Gaussian noise with variance Q(t) and R(t). A goodestimation of the system parameter � can thus be obtained via the extended Kalman �ltermethod [37, 95, 90, 121] :S(t) = HT (t)[P (t� 1) +Q(t)]H(t) +R(t) (3.17)L(t) = [P (t� 1) +Q(t)]H(t)S�1(t) (3.18)P (t) = (In�n � L(t)H(t))P (t� 1) (3.19)�̂(t) = �̂(t� 1) + L(t)(y(t)� f(x(t); �̂(t� 1))) (3.20)where H(t) = @f@� j�=�̂(t�1). For simplicity, we rewrite Equation (3.19) in the following form.P�1(t) = [P (t� 1) + Q(t)]�1 +H(t)R�1HT (t): (3.21)The EKF approach is an online mode training in that the weights are updated immedi-ately after the presentation of a training pattern. The training methods are useful in thatthey do not require the storage of the entire input output history. With EKF algorithms,the learning speed is improved and the number of tuning parameters is reduced. Further-more, EKF is able to track the time-varying parameter. This makes it particular useful inmodeling a time-varying system.On-line RNN TrainingTo train a recurrent neural network, we assume that the training data set is generated bya stochastic signal model as follows [123]:x(t+ 1) = g(Ax(t) +Bu(t) +D) + v(t); (3.22)y(t+ 1) = Cx(t+ 1) + w(t); (3.23)where v(t) and w(t) are zero mean Gaussian noise. If the parameters (A;B;C;D) areknown, we can use the extended Kalman �lter to predict the y(t+ 1).If the parameters are not known, we need to estimate them. In EKF [123], traininga recurrent network is treated as a non-linear estimation problem, where the parametersfA;B;C;Dg and x(t) are the unknown states being estimated. Hence, the state equationsare : x(t+ 1) = g(A(t)x(t) + B(t)u(t) +D(t)) + v(t); (3.24)�(t + 1) = �(t) + e(t); (3.25)y(t) = C(t)x(t) + w(t): (3.26)26

Chapter 3 Techniques for Neural LearningLet � be the collection of the state fA;B;C;Dg. Put x(t) and �(t) as a single state vector,the state equations become :" x(t+ 1)�(t+ 1) # = g1(x(t); u(t); �(t)) + " v(t)e(t) # (3.27)y(t) = f1(x(t); �(t)) + w(t); (3.28)where g1(x(t); u(t); �(t)) = " g(A(t)x(t) + B(t)u(t) +D(t))�(t) # (3.29)f1(x(t); �(t)) = C(t)x(t): (3.30)The simultaneous estimation of x(t) and parametric vector �(t) can be obtained recursivelyvia the following recursive equations :x(tjt � 1) = g(x̂(t� 1jt� 1); u(t); �̂(t� 1)) (3.31)P (tjt � 1) = F (t � 1)P (t� 1jt� 1)FT (t � 1) +Q(t� 1) (3.32)" x̂(tjt)�̂(t) # = " x̂(tjt � 1)�̂(t� 1) #+ L(t) y�(t)�HT (t) " x̂(tjt � 1)�̂(t� 1) #! (3.33)P (tjt) = P (tjt � 1)� L(t)HT (t)P (tjt � 1); (3.34)where F (t + 1) = " @xg(x̂(tjt); u(t+ 1); �̂(t)) @�g(x̂(tjt); u(t+ 1); �̂(t))0n��n In��n� # ; (3.35)HT (t) = [@Tx y(t) @T� y(t)] (3.36)L(t) = P (tjt � 1)H(t)[HT(t)P (tjt� 1)H(t) + R(t)]�1 (3.37)The initial P�1(0j0) is set to be zero matrix and �̂(0) is a small random vector. Given thedata set fu(t); y�(t)gNt=1 and iterating the above equations N times, the parametric vector�̂(N) will then be assigned as the network parameters.Since the actual values of Q(t) and R(t) are not known in advance, they can be estimatedrecursively, as in Iiguni et al. (1992) :R(t) = (1� �R)R(t� 1) + �R(y�(t)� y(tjt� 1))2 (3.38)Q(t) = (1� �Q)Q(t� 1) + �QL(t)L(t)T (y�(t)� y(tjt� 1))2; (3.39)where �R and �Q are two small positive values.27

Chapter 3 Techniques for Neural Learning3.5 Pruning Neural NetworkAs mentioned in the last chapter, pruning is a technique facilitating model selection. Clas-sically, searching for the best model was achieved by trial-and-error. That is to say, if theperformance of a ten hidden units neural network is not good enough, try �fteen hiddenunits. If the performance is still not satisfactory, try twenty units and so on. Obviously,this approach will require a large amount of computational resources and time. Pruningalgorithms work by training a large size neural network and then redundant weights areremoved. A survey of pruning algorithms can be found in [91]. The essential idea of pruningis to remove those weights which are not important. In convention, one important measureis de�ned by LeCun et al. [55], namely optimal brain damage.In this dissertation, we only focus on pruning algorithms.The essential idea of conventional pruning algorithms is to remove those weights whichare not sensitive to the network performance once they are pruned away. Two well knownalgorithms are optimal brain damage (OBD) [55] and optimal brain surgeon (OBS) [31].3.6 Optimal Brain DamageIn OBD, the weight importance measure is de�ned in terms of error sensitivity. Let E1(�̂)be the training error, where �̂ is the parametric vector containing all the weight values.Mathematically, `pruning the ith weight' means setting the value of this weight, �̂i to zero.Let �̂ be [�̂1; : : : ; �̂n�]T and �̂i be [�̂1; : : : ; �̂i�1; 0; �̂i+1; : : : ; �̂n�]T , `pruning the ith weight'means setting �̂ =) �̂ni:Therefore, the error sensitivity of the ith parameter will be given byS(�̂i) = E1(�̂ni)� E1(�̂);where E1 is the mean squares training error. Suppose �̂i � 0, expanding E1(�̂ni)) locallyin Taylor series about �̂ and ignoring higher order terms, E1(�̂ni) can be approximated asfollows : E1(�̂ni � E1(�̂) + @E1(�̂)@�i �i + 12 �̂i2 @2E1(�̂)@�2 !ii : (3.40)Since @E1(�̂)@�i = 0 once training is �nished, the important measure for the ith weight, denotedby S(�̂i), can be approximated byS(�̂i) � 12 �̂i2 @2E1(�̂)@�2 !ii ; (3.41)where (A)ii is the ith diagonal element of the matrix A and �̂ = [�̂1; : : : ; �̂n�]T . n� is thetotal number of weights in the network. Then, the importance of weights can be ranked inaccordance with the magnitude of their S(�̂i). The one at the bottom of the ranking list isof least importance and is removed �rst.Several remarks have to be made about in using such an OBD pruning algorithm inselecting the best neural network model. 28

Chapter 3 Techniques for Neural Learning1. As the Taylor expansion of E1(�̂ni) assumes that �̂i � 0, the approximation of theerror sensitivity will not be accurate for large values of �̂i.2. Once a weight has to be pruned away, it is necessary to re-train the network since�̂ = argmin� fE1(�)g 6=) �̂ni = argmin�ni nE1(�ni)o :3. If we let �̂retrainni be the minima of E1(�) after re-training,E1(�̂ni) < E1(�̂nj) 6=) E1(�̂retrainni) < E1(�̂retrainnj):4. As the solution �̂ depends on the training method being employed and the objec-tive function being minimized, the error sensitivity measure is training method andobjective function dependent.5. Since a pruning procedure can only be carried out if the training is �nished, a poortraining method will delay the pruning process.3.7 Optimal Brain SurgeonIn order to alleviate the problem aroused from the second and third remarks, Hassibi & Stork[31] proposed an alternative importance measure, namely optimal brain surgeon (OBS). Thebasic idea of OBS is the same as OBD except that it includes the concept of re-training.Suppose the surface of the error function E1(�) is locally quadratic around �, the errorsensitivity of the ith parameter is de�ned as follows :S(�̂retraini) = E1(�̂retrainni)�E1(�̂): (3.42)The parametric vector �̂retraini is obtained by solving the following constraint optimizationproblem : Minimize E1(�)Subject to �i = 0:Applying the technique of Lagrange multiplier, the above problem can be solved byminimizing the following function.J(�) = E(�̂) + 12 �� � �̂i�T @2E1(�̂)@�2 �� � �̂i�+ ~�T�; (3.43)where ~� is the Lagrange multiplier vector. With certain mathematical manipulation,S(�̂retraini) � 12 �̂2i�@2E1(�̂)@�2 �1�ii : (3.44)where (A�1)ii is the ith diagonal element of the inverse of matrix A.29

Chapter 3 Techniques for Neural Learning3.8 FRLS based PruningAs indicated in the list of remarks about OBD, the actual e�ectiveness of a pruning al-gorithm relies pretty much on the training method being used. When backpropagation isapplied to train a neural network, the total time taken for pruning will be very long as thetraining process takes a long time to �nish. The forgetting recursive least squares method isa well-known fast on-line training method [48, 6, 90], the estimation of such an importancemeasure can thus be obtained e�ectively.Recall that the matrix P (t) in FRLS is calculated recursively by the following equations.P (t) = (I � L(t)H(t))P (t� 1)1� �L(t) = P (t � 1)H(t)HT (t)P (t� 1)H(t) + (1� �) ;where H(t) = @f(�̂(t� 1))@� :Applying matrix inversion lemma, it is readily seen thatP�1(t) = (1� �)P�1(t� 1) +HT (t)H(t)= (1� �)P�1(t� 1) + @f(�̂(t� 1))@� @f(�̂(t� 1))@� T :Therefore, the matrix P�1(N) can be given byP�1(N) � P�1(0) + NXt=1(1� �)N�tH(t)HT (t)� P�1(0) + 1� " 1N NXt=1H(t)HT (t)#Therefore the OBD type importance measure can be obtained by the following formula.S(�̂i) = ��̂i22 �P�1(N)� P�1(0)�ii :Applying matrix inversion lemma, the OBS type importance measure can be obtainedby the following formula.S(�̂retraini) = ��̂i22 1(P (N)� P (N)(P (N)� P (0))�1P (N))ii :If P�1(0) is very small, S(�̂retraini) = ��̂i22 (P (N))ii :One major advantage of using such formulae is that weight importance can be estimatedwithout waiting for the whole training process to be completed.30

Chapter 3 Techniques for Neural Learning3.9 ProcedureThe pruning procedure for both optimal brain damage and optimal brain surgeon are thesame. It is summarized as follows :Algorithm 3.1 (Pruning Procedure)1 Start with a neural network of large size.2 Train the neural network.3 Evaluate the weights' importance according to their sensitivity measures.4 De�ne the ranking as f�1; �2; � � � ; �n�g.5 k = 16 while the validation error is less than a threshold.7 Set ��k = 0.8 Evaluate the validation error9 k k + 110 end whileThe sensitivity measure can be de�ned as that in Equation (3.41) or Equation (3.44). Itshould be remarked that error sensitivity is just one type of measure. In a general setting,the sensitivity can be de�ned with respect to any cost function. For example, a cost functioncan consist of the error term and a smoothing regularizer, [126, 127].3.10 SummaryThis chapter has reviewed several essential training and pruning techniques for neural net-work learning. Besides, an on-line evaluation of a weight importance measure using FRLShas also been presented. Although these techniques have been widely applied for feed-forward neural network learning, there are limitations when they are applied to recurrentneural networks. The next chapter will describe some of these issues.
31

Chapter 4Limitation of Existing TechniquesIn the last two chapters, the basis of neural network learning, and several training andpruning techniques have been reviewed. In this chapter, we will discuss certain limitationsof these techniques and give a summary of those techniques.4.1 Gradient descent and FRLS in RNN trainingTraining a RNN using gradient descent or FRLS approach usually works �ne when thetraining set is de�ned as fui; yigNi=1 and the validation set is de�ned as fui; yigN+Ti=N+1. How-ever, in case the validation set is de�ned as fui; yigTi=1 and the training set is de�ned asfui; yigN+Ti=T+1 (or the form of the training input is di�erent from the validation input), itmight happen that the validation error would be much larger than the training error. Thisphenomenon is due to the assumption that the initial condition x(0) is zero vector. As amatter of fact, this information and even x(1), x(2) and so on, are not known in advance.The reason why gradient descent or FRLS is able to facilitate RNN training, can beexplained as follows. Without loss of generality, we only give the reason for gradient descent.Recall that a RNN is de�ned by x(t) = g(x(t� 1); �)y(t) = h(x(t); �);where � is the weight vector governing the behavior of the RNN. Using gradient descent,the weight updating can be accomplished by the following equation :�̂(k) = �̂(k � 1) + � NXt=1 @h(x̂(t); �̂(k � 1))@� e(t); (4.1)where � is the update step size andx̂(t; �̂(k � 1)) = g(x̂(t� 1); �̂(k � 1)) (4.2)e(t; �̂(k � 1)) = y(t)� ŷ(t) = y(t)� h(x̂(t); �̂(k � 1): (4.3)Considering Equation (4.2), x̂(t; �̂(k�1)) and ŷ(t; �̂(k�1)) can then be rewritten as follows :x̂(t; �̂(k � 1)) = go � � �og| {z }t times (x(0); �̂(k � 1)) (4.4)32

Chapter 4 Limitation of Existing Techniques= Gt(x(0); �̂(k � 1)) (4.5)ŷ(t; �̂(k � 1)) = h(Gt(x(0); �̂(k � 1))) = Ht(x(0); �̂(k � 1)): (4.6)Similar, the gradient of x̂(t; �̂(k � 1)) and ŷ(t; �̂(k � 1)) can be written as follows :r� x̂(t; �̂(k � 1)) = r�Gt(x(0); �̂(k � 1)) (4.7)r� ŷ(t; �̂(k � 1)) = r�Ht(x(0); �̂(k� 1)): (4.8)Suppose that � is small,Gt(x(0); �̂(k � 1)) � Gt(x(0); �̂(k � 2)) +r�Gt(x(0); �̂(k � 2))(�̂(k � 1)� �̂(k � 2))= x̂(t; �̂(k � 2)) + �r�Gt(x(0); �̂(k� 2))�NXt=1r�Ht(x(0); �̂(k � 2))e(t; �̂(k � 2)):For � is small, both �̂(k) and fx̂(t)gNt=1 are updated simultaneously,�̂(k) = �̂(k � 1) + � NXt=1r�Ht(x(0); �̂(k � 1))e(t; �̂(k � 1)); (4.9)x̂(t; �̂(k)) = x̂(t; �̂(k � 1)) + �r�Gt(x(0); �̂(k � 1))� (4.10)NXt=1r�Ht(x(0); �̂(k� 1))e(t; �̂(k � 1)); (4.11)in order to minimize 1N NXt=1 e2(t):Once training is �nished,the parametric vector �̂ and x̂(N) will be frozen. x̂(N+1), x̂(N+2)and so on will be estimated by the following recursive equation :x̂(t) = g(x̂(t� 1); �̂(N))for t > N . Since the error feedback correction for x(t) will also stop, the output error(y(t) � ŷ(t)) for all t > N will gradually increase if the trained RNN is used. In sequel,without a proper feedback mechanism for updating x9t) after training, a RNN is unable tobe applied in a long run.Besides, if the trained RNN is not applied immediately after training, the performancewill be even worse. This can be explained by the following example.Example 1 Suppose the true system is deterministic :x(t+ 1) = tanh(Ax(t)) (4.12)y(t) = Cx(t); (4.13)where x(t) 2 R3, y(t) 2 R, A = 264 0:3 0 00 0:9 30 3 0:6 375 :33

Chapter 4 Limitation of Existing TechniquesC = [0 0 1]:A recurrent neural network is applied to learn system behavior. Assuming that a RNNwith three hidden units is trained perfectly and x̂(N) is equal to the true value, the recur-rent weight matrix and the output weight vector are exactly equal to A and C respectively.Suppose that x̂(N) = x(N) = (�0:5;�0:3; 0:4):The RNN is not used immediately but t0 steps later. The system state x(N + t0) is(�0:5; 0:3;�0:4). Then we plug in the RNN to do the prediction. Figure 4.1 to Figure 4.3compare the evolution of the state values between the true system and the trained RNN.It can be easily observed that, except for x1(t), the values of the rest of the other units(and output) deviate a lot from the true system.This explains why the use of gradient descent approach in RNN training is not e�ective.This also brings out the reason why EKF based training is more e�ective compared withthese types of training methods.4.2 Error sensitivity based pruning for RNNWhen a gradient descent trained RNN is pruned, the validity of using the error sensitivityapproach for measuring the importance of a weight will not be appropriate. After a weightis pruned, the output of a pruned RNN is given byyrnn(1) = hrnn � grnn(xrnn(0); �p)yrnn(2) = hrnn � grnn � grnn(xrnn(0); �p): : :yrnn(N) = hrnn � grnn(�grnn)N�1(xrnn(0); �p)where � is the augmented vector which contains all the weight parameters of the RNN. Theaugmented vector of the pruned RNN is denoted �p where the ith element of �p will be equalto the ith element of � if the ith weight has not been pruned away and otherwise the ithelement of �p will be equal to zero. The error of such a pruned RNN is de�ned as1T TXt=1(y(t)� yrnn(t; �p))2 = 1T TXt=1(y(t; x(0))� yrnn(t; �p; xrnn(0)))2Due to the composite weight removal and initialization error e�ect, it is even harder toidentify how much the validation error is due to the weight removal and how much is dueto initialization error.4.3 Error sensitivity based pruning in non-stationary envi-ronmentsA shortcoming of using the sensitivity based pruning methods, such as OBD and OBS, isthat the error sensitivity term can only be obtained after training is �nished. Once the34

Chapter 4 Limitation of Existing Techniques(a) True System x1(t)
0 5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Recurrent Neural Network x1(t)
0 5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.1: Comparison of the value of x1(t) for the true system and the recurrent neuralnetwork. The horizontal axis corresponds to time t � 0 while the vertical axis correspondsto the value of x1(t). 35

Chapter 4 Limitation of Existing Techniques(a) True System x2(t)
0 5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Recurrent Neural Network x2(t)
0 5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.2: Comparison of the value of x2(t) for the true system and the recurrent neuralnetwork. The horizontal axis corresponds to time t � 0 while the vertical axis correspondsto the value of x2(t). 36

Chapter 4 Limitation of Existing Techniques(a) True System x3(t)
0 5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Recurrent Neural Network x3(t)
0 5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.3: Comparison of the value of x3(t) for the true system and the recurrent neuralnetwork. The horizontal axis corresponds to time t � 0 while the vertical axis correspondsto the value of x3(t). 37

Chapter 4 Limitation of Existing Techniquestraining is �nished, an extra data set has to be passed to the neural network for obtainingthe Hessian matrix. Suppose that the cost function J(�) is de�ned as the combination ofsum-squares-error and a regularization term S(�), i.e.J(�) = S(�) + 1Nv NvXx=1(y(x)� ŷ(x; �))2;the Hessian matrix @2J(�)@�2 is given by the following equation.@2J(�)@�2 = @2S(�)@�2 � 2Nv NvXx=1(y(x)� ŷ(x; �))@2ŷ(x; �)@�2 + 2Nv NvXx=1 @ŷ(x; �)@� @ŷ(x; �)@� T :In case the training method converges slowly, backpropagation for instance, re-trainingprocesses are quite time-consuming, especially when the training method converges slowly.The actual time for obtaining a good network structure may thus be quite long. If the natureof the problem is non-stationary, it will be much more di�cult to implement such a pruningmethod since training is never �nished and then the ranking of the weight importanceobtained at time t might not be equal to the weight importance obtained at other times.That is S(�̂i(t)) < S(�̂j(t))might not imply that S(�̂i(t+ 1)) < S(�̂j(t+ 1)):This will make the pruning of a neural network using the sensitivity approach in a non-stationary environment more di�cult.4.4 Summary of the techniques for neural network learningTaking these limitations into consideration, it is obvious that no single training method canoutperform all the others. Table 4.1 to Table 4.4 summarize the essential properties of �vetraining methods which are presented in Chapter 2.According to Table 4.1, the most exible training method for FNN is gradient descentsince it can be applied to both stationary and non-stationary environments with any objec-tive function but its training speed is slow.According to Table 4.2, for recurrent neural network training, the extended Kalman�lter approach is the most appropriate method since it is able to train a RNN no matterwhether x(0) is given or not given. Besides, its training speed is fast.According to Table 4.3, pruning RNN with x(0) not given is a challenging problem sincenot all training methods can be applied to train RNN if x(0) is not given.Table 4.4 summarizes the relation between di�erent training methods and their gener-alization abilities. As there is no restriction on the objective function, training a neuralnetwork using the gradient descent approach is able to improve the generalization abilityif an appropriate objective function is de�ned. Since the objective of the RLS trainingmethod is NXt=1 e2(t) + �TP�1(0)�;38

Chapter 4 Limitation of Existing TechniquesOne-stepTraining Problem Objective Training computation Trainingmethods nature function mode complexity speedGD S Any Batch Low SlowSGD S/NS Any On-line Low SlowRLS S Error On-line High FastFRLS S/NS Error On-line High FastEKF S/NS P(�jY N) On-line High FastTable 4.1: Summary of various training methods for FNN. `S' means stationary while `NS'means non-stationary. Methods x(0) given x(0) not givenGD Slow -SGD Slow -RLS Fast -FRLS Fast -EKF Fast FastTable 4.2: Comparison of the speed of di�erent training methods for RNN.RLS training might help improving the network generalization ability. The factor �TP�1(0)�is equivalent to the so-called weight decay regularizer. If the size of training data is small,we can control P�1(0) in order to improve the generalization ability. If the number oftraining data is very large, the weight decay e�ect will be lost. The generalization abilityof FRLS and EKF training methods are more di�cult to determine since it is not easy todecompose their objective functions in the form ofmean squares error + smooth regularizer:In Chapter 10, we will start from the �rst principle to show that FRLS has a similar e�ectto weight decay.4.5 SummaryThis chapter has presented several limitations on the existing techniques for neural networklearning and a summary of those existing training methods is given. From the summary, itis found that in order to prune a RNN e�ectively, an extended Kalman �lter based pruningmethod is useful. In Part II, we will derive two weight importance measures for use in FNNpruning. Both measures are in terms of �̂ and P (N). In Part III, we extend this idea to thecase of RNN. A similar measure will also be derived for measuring the weight importance.Extensive simulation results will be presented in order to con�rm the e�ectiveness of thesemeasures. 39

Chapter 4 Limitation of Existing Techniques
Methods FNN RNN RNNx(0) given x(0) not givenGD p p �SGD p p �RLS p p �FRLS p p �EKF ? ? ?Table 4.3: Relation between di�erent training methods and their pruning abilities. `p'means the method is able to facilitate pruning, `�' means the method is unable to facilitatepruning while `?' means unknown.
Methods FNN RNN RNNx(0) given x(0) not givenGD p p �SGD p p �RLS p p �FRLS ? ? �EKF ? ? ?Table 4.4: Relation between di�erent training methods and their generalization abilities.`p' means the method is able to improve generalization, `�' means the method is unableto improve generalization while `?' means unknown.40

Part IIPruning Algorithms for FNN

41

Chapter 5EKF based On-Line Pruning forFNNIn Part I, the basis of neural network learning has been presented. We have also presentedseveral limitations of existing training and pruning techniques and brought out the advan-tages of using the extended Kalman �lter approach in neural network training. In thischapter, we will present some results connecting the extended Kalman �lter and neuralnetwork pruning. Speci�cally, we would like to present how those results obtained by usingthe extended Kalman �lter training method can be applied to measure the importance ofa weight in a network and give simulated examples to illustrate this idea.5.1 Use of matrix P in the evaluation of weight saliencyIt should be noted that after training with EKF, the information that we have is that i) theparametric vector �̂ and ii) the covariance matrix P . Suppose that the weight parameterand the covariance matrix P both converge, the matrix Q(t) is a constant diagonal matrixdenoted by Q0, where Q0 = qI;and R = 1;we can readily establish the asymptotic behavior for matrix P :P�11 = [P1 +Q0]�1 +H(t)HT(t); (5.1)where H(t) = @f@� �����=�̂(t�1) ;P1 = limt!1P (t):42

Chapter 5 EKF based On-Line Pruning for FNNFurther assuming that there exists a time t0 such that for all time t > t0, all P (t) will bethe limiting matrix P1, it is possible to deduce that1N � t0 NXt=t0+1P�11 � [P1 +Q0]�1 = 1N � t0 NXt=t0+1H(t)H(t)T (5.2)When N is large, the second term on the right hand side will approach to the expectationof H(t)HT(t) which is dependent on the input x. Hence,P�11 = [P1 + Q0]�1 + E[H(t)HT(t)] (5.3)Since Q0 is positive de�nite, it is readily shown that P1 is also positive de�nite. Thus,we can decompose1 the matrix P1 byP1 = UDUT ;where D is the diagonal matrix with the eigenvalues of P1 as the elements, namely�1; �2; : : : ; �n� and the matrix U contains the corresponding eigenvectors. Under such de-composition, (5.3) can be rewritten as follows :U hD�1 � (D + qI)�1iUT = E[H(t)HT(t)]: (5.4)Here, E[x] means the expectation of x. Now let �k be the kth diagonal element of thematrix �D�1 � (D+ qI)�1�, �k = 1�k � 1�k + q = q�k(�k + q) : (5.5)Two special cases can thus be obtained :�k � (��1k if q � maxf�kgq��2k if q � minf�kg (5.6)Empirically, we have found that �ks are usually much larger than q. So in the rest of thepaper, we assume that �k � q=�2k.It should be noted that P�11 = UD�1UT ; we can then put the values of �k into Equa-tion (5.3) and get an approximated equation :P�21 � q�1E[H(t)HT(t)]: (5.7)Practically, we cannot know E[H(t)HT(t)], so we approximate it by the mean averagePtH(t)HT(t). Putting back the de�nition of H(t), we get thatE " @f@�k 2# � q(P�21)kk: (5.8)Here (A)kk denotes the kth diagonal element of a matrix A. With this, the expected changeof error, denoted by Ek, due to the setting of �k being zero,can be discussed.1Here, we assume that all the eigenvalues of the matrix P1 are distinct.43

Chapter 5 EKF based On-Line Pruning for FNN5.1.1 Single pruned weightRecall that the true function is de�ned as a non-linear regressor, y(x) = f(x; �0) + noise,with parameter �0. After training, an approximation, ŷ(x) = f(x; �̂) is obtained. Wedrop the subscript N from �̂ for simplicity. Let �̂1; : : : ; �̂n� be the elements of �̂, and �2be the variance of the output noise, the expected predicted square error (EPSE) of thisapproximated function would be given byE[(y(x)� ŷ(x))]2 = E[(f(x; �0) + noise � f(x; �̂))2] (5.9)= E[(f(x; �0)� f(x; �̂))2] + �2 (5.10)for �̂ ! �0. It should be remarked that the expectation is taken over to future data.Now consider that the kth element of �̂ is being set to zero; let ŷp(x) be the approximatedfunction and �̂p be the corresponding parametric vector, we can have the EPSE given byE[(y(x)� ŷp(x))]2 = E[(f(x; �0) + noise� f(x; �̂p))2]; (5.11)As the di�erence (y(x)� ŷp(x)) can also be decomposed as follows :y(x)� ŷp(x) = [f(x; �0) + noise� f(x; �̂)]+ [f(x; �̂)� f(x; �̂p)]: (5.12)In case that �̂ is already very close to �0, the �rst term on the right side will be a Gaussiannoise term which is independent of the second term. This implies thatE[(y(x)� ŷp(x))2] � E[(f(x; �0)� f(x; �̂))2] + �2+ E[(f(x; �̂)� f(x; �̂p))2]: (5.13)When the magnitude of �k is small, the third term on the right hand side of (5.13) can beexpanded in Taylor series and thus the expected predicted square error can be approximatedby E[(y(x)� ŷp(x))2] � E[(f(x; �0)� f(x; �̂))2] + �2 + E 24@f(x; �̂)@�k 235 �̂2k : (5.14)Comparing (5.14) with (5.10), it is observed that the last term is the expected error in-crement due to pruning the kth element of �̂. Using equation (5.8), we can now relate thematrix P1 and the parametric vector �̂ in the following manner :�Ek = E 24@f(x; �̂0)@�k 235 �̂2k � q(P�21)kk�2k : (5.15)Here, we use the notation �Ek to denote the incremental change of the expected predictionerror due to pruning the kth element, that is the expected prediction error sensitivity. Using(5.15), the weights' importance can be de�ned.44

Chapter 5 EKF based On-Line Pruning for FNN5.1.2 Multiple pruned weightsWith the use of (5.15), the weight importance can thus be ranked in accordance with their�Ek and the ranking list is denoted by f�1; �2; : : : ; �n�g, where �E�i � �E�j if i < j.If we let �̂a be a vector which �1; : : : ; �k elements being zeros and other elements beingidentical to the corresponding elements in �̂, we can estimate the incremental change ofmean prediction error by the following formula :�E[�1;�k] � q�̂Ta (P�21)�̂a: (5.16)With this equation, we can thus estimate the number of weights (and which one) shouldbe removed given that �E[�1;�k] < threshold. It is extremely useful in pruning a neuralnetwork. As mentioned in [87], one problem in e�ective pruning is to determine whichweights and how many weights should be removed simultaneously in one pruning step.Equation (5.16) sheds light on solving that problem as it is an estimation that amount oftraining error will be increased if the �st1 to �thk weights are removed.5.2 Testing on the approximationTo verify that �Ek (5.15) and �E[�1;�k] (5.16) are good estimations of the change in trainingerror, the generalized XOR problem is being solved. The function to be approximated isde�ned as follows : y(x1; x2) = sign(x1)sign(x2):A feedforward neural network with 20 hidden units is trained using the extended Kalman�lter method with P (0) = I:The value of q is set to be 10�4. 8000 training data are generated. The actual trainingerror is de�ned as follows : Etrain = 18000 8000Xt=1 (yt � ŷt)2:After training, another 100 pairs of data are passed to the network and the mean pre-diction error is de�ned as the mean squares testing error.Etest = 1100 100Xt=1(yt � ŷt)2:The importance of the weights is ranked according to the �Ek, (5.15). The actual change oferror is obtained by removing kth weight from the trained neural network and then passing100 pairs of testing data to the pruned network. We calculate this testing error by theformula : Ep(k) = 1100 100Xt=1(yt � ŷt)2:The actual change of error is thus evaluated by�Ek(actual) = Ep(k)�Etest:45

Chapter 5 EKF based On-Line Pruning for FNN
10

−6
10

−4
10

−2
10

0
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

(a) �Ek for n = 20 (b) �E[�1;�k] for n = 20Figure 5.1: The log-log plot of the estimated �E against the actual �E. The vertical axiscorresponds to the estimated �E and the horizontal axis corresponds to the actual �E.The neural network has 20 hidden units. Simulation results con�rm that �Ek and �E[�1;�k]are good estimations of the actual change of error.This error term is then compared with the estimate, �Ek, in Figure 5.1a. The x-axiscorresponds to Ep(k)� Etrain, i.e. the actual change of error while the y-axis correspondsto �Ek, the estimate.In regard to the ranking list, the accumulative error is estimated via �E[�1;�k] (5.16).Similarly, to evaluate the actual change of error, another 100 data pairs are generated.According to the ranking list, say f�1; : : : ; �n�g, the �1 up to �k weights are removed. Thenpassing the 100 data pairs to the pruned network, we calculate the actual mean square errorby the formulae : Ep[�1; �k] = 1100 100Xt=1(yt � ŷt)2:And thus the actual change of error is Ep[�1; �k]�Etest. This error term is then comparedwith the estimate, �E[�1;�k] and shown in Figure 5.1b.Figure 5.2 and 5.3 show the comparison between the estimated testing error �E[�1;�k]and the actual �E[�1;�k] against number of weights pruned for di�erent values of q. Theneural network has 20 hidden units. It is also found that the estimated �E[�1;�k] can closelyestimate the actual �E[�1;�k] for k up to 40.The same experiment has also been carried out for the FRLS training method. Theweights are ranked in accordance withS(�̂i) = ��̂i22 �P�1(N)� P�1(0)�ii :Figure 5.2 and 5.3 show the comparison between the estimated testing error �E[�1;�k] andthe actual �E[�1;�k] against number of weights pruned for di�erent values of �. It is foundthat for small � the estimated �E[�1;�k] can closely estimate the actual �E[�1;�k] for k46

Chapter 5 EKF based On-Line Pruning for FNN
0 10 20 30 40 50 60 70 80

−50

0

50

100

150

200

250

No. of pruned weight

T
es

tin
g

er
ro

r
ch

an
ge

Estimated
Actual

(a) q = 0:001
0 10 20 30 40 50 60 70 80

0

20

40

60

80

100

120

140

160

180

200

No. of pruned weight

T
es

tin
g

er
ro

r
ch

an
ge

Estimated
Actual

(b) q = 0:002Figure 5.2: Testing error change �E[�1;�k] against number of weights pruned for q equalsto 0:001 and 0:002. 47

Chapter 5 EKF based On-Line Pruning for FNN
0 10 20 30 40 50 60 70 80

−20

0

20

40

60

80

100

120

140

160

180

No. of pruned weight

T
es

tin
g

er
ro

r
ch

an
ge

Estimated
Actual

(c) q = 0:005
0 10 20 30 40 50 60 70 80

−50

0

50

100

150

200

250

300

No. of pruned weight

T
es

tin
g

er
ro

r
ch

an
ge

Estimated
Actual

(d) q = 0:010Figure 5.3: Testing error change �E[�1;�k] against number of weights pruned for q equalsto 0:005 and 0:010. 48

Chapter 5 EKF based On-Line Pruning for FNNaround 50. For large �, the estimated �E[�1;�k] can closely estimate the actual �E[�1;�k]for k around 30.Comparing these two results, we can see that the EKF-based weight importance measurecan closely approximate the actual incremental change of prediction error for k up to around0:5n�, where n� is the total number of weights.5.3 Relation to optimal brain damageIn case the system being tackled is static, the noise term v(t) = 0 for all t � 0 (Q(t) = 0),�(t) = �(t � 1) (5.17)y(t) = f(x(t); �(t)) + �(t): (5.18)The probability density function for �(t) given �(t� 1) would be a delta function :P (�(t)j�(t � 1)) = (1 if �(t) = �(t � 1)0 otherwise. (5.19)Putting this equation into the right hand side of Equation (6.11), we obtainP (y(t); x(t)j�(t))P(�(t)jY t�1)R P (y(t); x(t)j�(t))P(�(t)jY t�1)d�(t) : (5.20)Assuming that P(�(t � 1)jY t�1) is Gaussian and using Equation (5.17), it can easily seethat P(�(t)jY t�1) is a Gaussian distribution with mean �̂(t � 1) and variance P (t � 1).Linearizing Equation (5.18) locally at �̂(t), P (y(t); x(t)j�(t)) can be approximated by aGaussian distribution with mean f(x(t); �̂(t� 1)) and variance HT (t)P (t� 1)H(t)+R. LetR = 1, the a posteriori probability of �(t) given Y t would also be a Gaussian distributionwith mean and variance given by�̂(t) = �̂(t� 1) + L(t)(y(t)� f(x(t); �̂(t� 1))) (5.21)P�1(t) = P�1(t� 1) +H(t)HT (t); (5.22)where L(t) = P (t � 1)H(t)[HT(t)P (t � 1)H(t) + 1]�1 (5.23)P�1(0) = �In��n� ; 0 < �� 1 (5.24)�̂(0) = 0: (5.25)This algorithm is the standard recursive least square method [2].After N iteration, P�1(N) = P�1(0) + NXk=1H(k)HT(k)Suppose N is large and the error function E(�) is given byE(�) = 1N NXk=1(y(xk)� f(xk; �))2 (5.26)49

Chapter 5 EKF based On-Line Pruning for FNN
0 10 20 30 40 50 60 70 80

0

50

100

150

200

250

300

350

400

No. of pruned weight

T
es

tin
g

er
ro

r
ch

an
ge

Estimated
Actual

(a) � = 0:001
0 10 20 30 40 50 60 70 80

0

20

40

60

80

100

120

140

160

180

200

No. of pruned weight

T
es

tin
g

er
ro

r
ch

an
ge

Estimated
Actual

(b) � = 0:002Figure 5.4: Testing error change �E[�1;�k] against number of weights pruned for � equalsto 0:001 and 0:002. 50

Chapter 5 EKF based On-Line Pruning for FNN
0 10 20 30 40 50 60 70 80

0

50

100

150

200

250

300

350

400

No. of pruned weight

T
es

tin
g

er
ro

r
ch

an
ge

Estimated
Actual

(c) � = 0:005
0 10 20 30 40 50 60 70 80

−50

0

50

100

150

200

250

300

350

No. of pruned weight

T
es

tin
g

er
ro

r
ch

an
ge

Estimated
Actual

(d) � = 0:010Figure 5.5: Testing error change �E[�1;�k] against number of weights pruned for � equalsto 0:005 and 0:010. 51

Chapter 5 EKF based On-Line Pruning for FNNMultiplying the kth diagonal element of N�1P�1(N) with the square of the magnitude ofthe kth parameter, we can approximate the second order derivative of E(�) byrrE(�) = 1N hP�1(N)� P�1(0)i : (5.27)The weight importance measure of the kth weight will be approximated by the followingequation : E(�̂k)� E(�̂) � �̂2k (rrE(�))kk (5.28)� 1N �̂2k �P�1(N)� P�1(0)�kk (5.29)� 1N �̂2k �P�1(N)�kk (5.30)With this equation, we can thus interpret the idea of optimal brain damage [55] and optimalbrain surgeon [31] in probability sense2 :E(�̂k)� E(�̂) � � 2N lognc�10 P ��̂k(N)jY N�o ; (5.31)The weight being pruned away is the one whose posteriori distribution is very at comparedto its mean value. This also makes a link to McKay's Bayesian method [70, 71].5.4 SummaryIn summary, we have presented a method for pruning a neural network solely based onthe results obtained by Kalman �lter training such as the weight vector �̂ and the P (N)matrix. With the assumptions that (i) the training converges, (ii) �̂ is close to �0 and thesize of the training data is large enough, we have derived an elegant equation approximatingthe incremental change of mean prediction error due to pruning. Besides, the incrementalchange of mean prediction error due to the removal of multiple weights can also be estimated.Making use of these equations, it is possible to estimate how many weights and whichweights should be removed. The e�ectiveness of the proposed weight importance measureis con�rmed by extensive simulation results. Finally, the relation of EKF based pruningand other existing pruning methods have also been discussed.
2Other alternative derivations of the above relation can also be found in Larsen (1996) and Leung etal. (1996). 52

Chapter 6EKF based Pruning for FNN in aNon-stationary EnvironmentIn this chapter, we will elucidate how the extended Kalman �lter can be applied to im-plement an adaptive pruning method. In section one, three types of non-stationary envi-ronment will be described. The formulation of neural network training under time varyingenvironments as the extended Kalman �ltering problem will be reviewed in section two. Asimple example will be given to illustrate the advantage of EKF in neural network training.In section three, a formula for evaluating the importance measure will be devised and anadaptive pruning algorithm called adaptive Bayesian pruning based on sensitivity measurein terms of posteriori probability will be presented. Two sets of simulation results arepresented in section four. Finally, we conclude the paper in section �ve.6.1 Non-stationary environmentsOf course, `non-stationary environment' is a very general term. It can be used to describemany situations. (a) It can be a non-linear regressor with �xed structure but the parameters,denoted by vector �(t), are varying :y(t) = f(y(t� 1); y(t� 2); x(t); �(t)); (6.1)where x(t), y(t) and �(t) are respectively the input, the output and the model parameter ofthe system at time t. (b) It can be a switching type regressor with two di�erent structuresswapping from one to another. For example,y(t) = (a11y(t� 1) + a12y(t� 2) + b1x(t) + c1 if (2n� 1)T > t � 2nTa21y(t� 1) + a22y(t� 2) + b2x(t) + c2 if 2nT > t � (2n+ 1)T (6.2)where aij are constant for all i; j = 1; 2 and b1, b2, c1 and c2 are all constant. T is thelength of the time interval between switching and n is a positive integer. (c) Certainly, itcan also be a system with changing structure and varying parameter throughout time. For53

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environmentexample,y(t) = (a11(t)y(t� 1) + a13(t)y(t� 1)y(t� 2) + b1x(t) + c1 if (2n� 1)T > t � 2nTa21y(t� 1) + a22(t)y(t� 2) + b2(t)x(t) if 2nT > t � (2n+ 1)T(6.3)This system switches from a non-linear regressor to a linear regressor.Obviously, pruning a neural network under these conditions can be very dangerous, inparticular for system (6.2) and system (6.3). This makes the problem of pruning a neuralnetwork in a non-stationary environment a real challenge.In this chapter, we will focus on the �rst case only. That means, we assume the thestructure of the system is �xed, Equation (6.1). The only non-stationary part is the systemparameter. We further assume that this non-stationary system can be represented by afeedforward neural network with �xed but unknown structure. Our goal is to design amethod which is able to �nd the structure of this feedforward neural network.Obviously, if we have the information about the structure of the feedforward neuralnetwork, the training problem is simply a parameter tracking problem [2]. However, thisinformation is usually not available. In such a case, one approach is to train a large sizeneural network. Once the tracking is good enough, the redundant weights are identi�ed andpruned away. Eventually, better parameter tracking can be achieved and a good networkstructure can be obtained.For such an e�ective adaptive pruning method, the training method must be fast enoughto track the time varying behavior. If possible, the training method should provide infor-mation for measuring weight importance and hence pruning can be accomplished withoutmuch additional computational cost. To do so, we suggest applying the extended Kalman�lter approach as the training method. One reason is because it is a fast adaptive trainingmethod which can track the time varying parameter. The other reason is because the weightvector and the error covariance matrix can provide information for pruning (as describedlater).In the rest of this chapter, we will elucidate how the extended Kalman �lter can beapplied to implement such an adaptive pruning method. In the next section, the formulationof training a neural network under time varying environment via extended Kalman �lteringproblem will be reviewed. A simple example will be given to illustrate the advantage ofEKF in neural network training. In section three, a formula for evaluating the importancemeasure will be devised and an adaptive pruning algorithm called adaptive Bayesian pruningbased on a sensitivity measure in terms of a posteriori probability will be presented. Twosimulation results are presented in section four. Section �ve presents the similarity betweenadaptive Bayesian pruning and optimal brain damage. Finally, we conclude the paper insection six.6.2 Training neural network under time-varying environ-mentThroughout the paper, we let y(x; t) = f(x; �(t)) be the transfer function of a single layerfeedforward neural network where y 2 R is the output, x 2 Rm is the input and � 2 Rn isits parameter vector. This mapping is assumed to be a time varying model determined by54

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environmenta time varying parametric vector �(t), in contrast to the conventional feedforward networkmodel in which it is assumed that it is a constant vector. This set-up is to ensure thatthe network is able to learn in a non-stationary environment. Given a set of training datafx(i); y(i)gN�=1, the training of a neural network can be formulated as a �ltering problem.Let us assume that the data are generated by the following noisy signal model :�(k) = �(k � 1) + v(k) (6.4)y(k) = f(x(k); �(k)) + �(k) (6.5)where v(t) and �(t) are zero mean Gaussian noise with variance Q(t) and R(t). A goodestimation of the system parameter � can thus be obtained via the extended Kalman �ltermethod [37, 95, 90, 121] :S(k) = FT (k)[P (k � 1) +Q(k)]F (k) + R(k) (6.6)L(k) = [P (k � 1) + Q(k)]F (k)S�1(k) (6.7)P (k) = (In�n � L(k)F (k))P (k� 1) (6.8)�̂(k) = �̂(k � 1) + L(k)(y(k)� f(x(k); �̂(k � 1))) (6.9)where F (k) = @f@� . For simplicity, Equation (6.8) can be rewritten as thatP�1(k) = [P (k � 1) +Q(k)]�1 + F (k)R�1FT (k): (6.10)The above equation can be rewritten as follows :P�1(k) = [I + P�1(k � 1)Q(k)]�1P�1(k � 1) + F (k)R�1(k)FT (k):As P (k� 1) and Q(k) are symmetric, it can be proven that the eigenvalues of [I +P�1(k�1)Q(k)]�1 are in between zero and one for non-zero matrix Q(k). Comparing this equationto the standard recursive least square method [48, 97, 56], P�1(k) = P�1(k�1)+F (k)FT (k),EKF training can be viewed as forgetting learning equipped with an adaptive forgettingmatrix [I + P�1(k � 1)Q(k)]�1. This factor controls the amount of information (stored inP (k)) being removed and the importance of the new training data.The advantage of using EKF can be perceived from a simple example. Consider a simpletime varying function de�ned as follows :y(x) = c(t) tanh(b(t)x+ e(t));c(t) = 1 + noisec(t);b(t) = 1 + noiseb(t);e(t) = 0:2 sin(2�t20) + noisee(t):All the noise factors are independent zero mean Gaussian noise with 0.2 standard deviation.It can be seen that the function can be implemented by a single neuron neural network withthree parameters as shown in Figure 6.1a : the input-to-hidden weight and hidden-to-outputweight are constant while the threshold is a time varying parameter 0:2 sin(2�t20). At every0:01 time interval, an x is generated randomly (uniformly) from the interval [�2; 2]. Thecorresponding y(x) is evaluated and the data pair fx; y(x)g are fed to a single neuron neuralnetwork as training data. It can be seen from Figure 6.1b EKF is able to track all threeparameters and even �lter away random noise.55

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environment
0 500 1000 1500 2000 2500 3000 3500 4000

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Time varying parameter
0 500 1000 1500 2000 2500 3000 3500 4000

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Parameter tracked by EKFFigure 6.1: An example using EKF in tracking the parameters of a non-stationary mapping.(a) The time varying parameters : c(t) = 1 + noisec(t), b(t) = 1 + noiseb(t), e(t) =0:2 sin(2�t20) + noisee(t). (b) The estimated time varying parameters : ĉ(t), b̂(t) and ê(t).The horizontal axis is the time axis. 56

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environment6.3 Adaptive Bayesian pruningWhen the EKF approach is adopted as a training method, we need to decide a reasonablemeasure on the weight importance which can make use of the by-products such as P (N)and �̂(N). To do so, we must �rst look at the Bayesian nature of Kalman �ltering.6.3.1 EKF and recursive Bayesian learningConsidering the objective of EKF training, we learn from the theory of extended Kalman�ltering [2] that the EKF e�ectively evaluate the a posteriori probability P(�(t)jY t) followsa recursive Bayesian approach :P(�(t)jY t) = R P (y(t); x(t)j�(t))P (�(t)j�(t� 1))P(�(t� 1)jY t�1)d�(t � 1)R R P (y(t); x(t)j�(t))P (�(t)j�(t� 1))P(�(t� 1)jY t�1)d�(t� 1)d�(t) : (6.11)with the assumption that P(�(t)jY t) and P (y(t); x(t)j�(t)) are Gaussian distributions. Thelast assumption is accomplished by linearizing the non-linear function f(x(t); �(t�1)) locallyat �̂(t� 1). With the Bayesian interpretation and Gaussian assumption, the estimated �̂(t)and P (tjt) loosely approximate the conditional mean and its convariance.6.3.2 Importance measure for pruning a single weightSince P(�(t)jY t) is a Gaussian distribution approximating the actual a posteriori probabilitygiven the measurement data Y t, we can write down the equation explicitly :P(�(t)jY t) = c0 exp��12 ��(t)� �̂(t)�T P�1(t) ��(t)� �̂(t)�� ; (6.12)where c0 is a normalizing constant, the parameters �̂(t) and P (t) are the results obtainedvia Equation (6.6) to (6.9) at the tth time step.Let �̂k(t) be the parametric vector with all elements equal to �̂(t) except that the kthelement is zero (i.e. �̂k(t) = [�̂1(t) : : : �̂k�1(t) 0 �̂k+1(t) : : : �̂n�(t)]T),P(�̂k(t)jY t) = c0 exp��12 �̂2k �P�1(t)�kk� ; (6.13)where �P�1(t)�kk is the kth diagonal element of the inverse of P (t). Note that c0 is equalto P(�̂(t)jY t). Obviously, the smaller the value of the factor �̂2k �P�1(t)�kk , the higher aposteriori probability P(�̂k(t)jY t). Therefore, if we just want to prune one weight at a time,Equation (6.13) can be treated as a measure on the importance of the weight.6.3.3 Importance measure for pruning multiple weightsGenerally speaking, we would like to prune more than one weight at a time in order to reducethe storage and computational complexity during training. To remove a set of weights, weneed a measure for pruning multiple weights. As we already have a measure (6.13), we nowrank the weights accordingly. Let f�1; : : : ; �n�g be the ranking list and �̂[1;k] be the vector57

Chapter 6 EKF based Pruning for FNN in a Non-stationary EnvironmentStep 1. Using the recursive equations to obtain �̂(N) and P (t).Step 2. Estimate the training error Etr(t) by t�1Pti=1(y(i)� ŷ(i))2.Step 3. If Etr(t) < Etr0,1. Evaluating P�1(t) and hence �2k �P�1(t)�kk for all k from 1 to n� .2. Rearranging the index f�kg according to the ascending order of �2k �P�1(t)�kk .3. For �k from 1 to n� , evaluate P(�̂[1;k](t)jY t) as if ��1 up to ��k are removed.4. Remove ��1 up to ��k if logP(�̂[1;k](t)jY t)� log c0 < E0Figure 6.2: The adaptive pruning procedure for use in a time varying environment.with elements from �1 up to �k being zeros and the rest of the elements being identical to�̂�k+1 to �̂�n� , the importance of the weights indexed from �1 up to �k as follows :P(�̂[1;k](t)jY t) = c0 exp��12 �̂T[1;k]P�1(t)�̂[1;k]� : (6.14)Therefore, Equation (6.13) together with Equation (6.14) de�ne the essential part of theadaptive pruning procedure which is summarized in Figure 6.2.Note that Prechelt (1996, 1997) has recently proposed an adaptive pruning procedurefor feedforward neural networks based on the importance measure suggested in Finno� etal.(1993). Based on the observation that the statistics of the weight importance measurefollows (roughly) a normal distribution, a heuristic technique is proposed to decide howmany weights should be pruned away and when pruning should be started. One essentialdi�erence between Prechelt's approach and ours is that Prechelt's approach requires a val-idation set in conjunction with the importance measure to determine the set of weightsto be removed while our method does not. Besides, his algorithm is applied to stationaryclassi�cation problems.6.4 Illustrative examplesIn this section two simulated results are reported to demonstrate the e�ectiveness of theproposed pruning procedure. In the �rst experiment, we approximate the time varyingfunction de�ned in Section 2 using a feedforward neural network with two hidden unitsand use the EKF together with the proposed pruning algorithm to show the importance ofthe reduction of network redundancy. The second experiment will be on the tracking of amoving Gaussian function.6.4.1 Simple functionUsing the same example as demonstrated in Section 2, we now de�ne the initial network asa two-hidden units feedforward network. (Obviously, one neuron is redundant). Applying58

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environmentthe proposed adaptive pruning together with the extended Kalman �lter training, we canobserve the advantage of using pruning from Figure 6.3a,b. If pruning is not imposed, theredundant neuron (solid lines) can greatly a�ect the tracking ability of the neuron (dottedlines) which has the tendency to mimic the actual underlying model. On the other hand,if the pruning procedure is invoked (see Figure 6.3b) the redundant neuron (whose weightsare shown by solid lines) can be identi�ed at a early stage and hence removed at the verybeginning. So in the long run, the only neuron (whose weights are shown by dotted lines)can track perfectly the parameters. The same results are observed even though e(t) is anoisy square wave with amplitude 0:2 and period 5000, Figure 6.3c,d.6.4.2 Moving Gaussian functionIn this simulated example, we apply a feedforward neural network to approximate a non-stationary function with two inputs and one output. The function being approximated isde�ned as follows :y(x1; x2; t) = exp ��4[(x1 � 0:2 sin(0:02�t))2+ (x2 � 0:2 cos(0:02�t))2]� : (6.15)This corresponds to a Gaussian function whose center is rotating around the origin withperiod T = 100. 16� 104 data are generated at time instance t = 0:01; 0:02 and so on upto t = 1600. At each time instance, an input point (x1(t); x2(t)) is randomly (uniformly)generated from [�1; 1]� [�1; 1] and the corresponding output is evaluated by adding noiseto the output evaluated by using Equation (6.15).The threshold Etr0 is set to be 0:01 and pruning can only be carried out at every 200steps. And the small value E0 is set to be �Etr0. The initial network consists of sixteenhidden units, two input units and one output unit, in total 64 weights. The output of thetraining data is corrupted by zero mean Gaussian noise with variance 0:2. The thresholdvalue and the value of � are set to be 0:2 and 0:5 respectively. For comparison, we repeatthe experiment 5 times. The average results are depicted in Table 6.4.2.Figure 6.4 shows the training curves for the case when the pruning procedure is in-voked. Although the asymptotic training error of using the pruning procedure is largerthan no-pruning and pruning does not help much in improving the generalization, it canhelp to reduce a large amount of network redundancy, see Figure 6.5, and hence reduce aconsiderable amount of storage and computation complexity. For comparison, Figure 6.6shows the resultant shape of the Gaussian function at t = 800 when pruning is not invokedwhile Figure 6.7 shows the case when pruning is invoked.6.5 Summary and DiscussionIn this chapter, an adaptive pruning procedure for use in a non-stationary environment isdeveloped. To maintain a good tracking ability, we adopted the method of EKF in trainingthe neural network. In order not to introduce much cost in doing cross validation and theevaluation of error sensitivity, we proposed a new measure for the weight importance andhence an adaptive Bayesian pruning procedure was devised. In a noisy time varying en-vironment, we demonstrated that the proposed pruning method is able to reduce network59

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environment
0 1000 2000 3000 4000 5000 6000 7000 8000

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Without pruning (b) With adaptive pruning
0 1000 2000 3000 4000 5000 6000 7000 8000

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Without pruning (d) With adaptive pruningFigure 6.3: The change of the six weight values against time. Solid lines and dotted linescorrespond to the weight values of the two neurons. (a) pruning is not invoked when e(t) isa noisy sin, (b) pruning is invoked when the input is noisy sin, (c) pruning is not invokedwhen e(t) is square wave and (d) pruning is invoked when e(t) is square wave. Accordingto the subplots (b) and (d), it is observed that the adaptive pruning is able to remove theredundant neuron, whose weights are shown by solid lines.Average number Storage Computational� Avg. MSE of weight pruned Complexity Complexity0 0.0450 0 4096 2621440.2 0.0451 27 1369 506530.5 0.0449 28 1296 46656Table 6.1: Comparison of the average MSE, average number of weights pruned and thecomplexity between when pruning is invoked and is not invoked. The storage complexity isdetermined by the size of P (t), i.e.O(n2�), and the computational complexity is determinedby the matrix multiplication, i.e.O(n3�). 60

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environment
Prune

No Prune

0 100 200 300 400 500 600 700 800
10

−4

10
−3

10
−2

10
−1

Figure 6.4: Training error against time curves for pruning procedure being invoked and notinvoked. The vertical axis corresponds to training error while the horizontal axis correspondsto time.redundancy adaptively but still preserve the same generalization ability as the fully con-nected one. Consequently, the storage complexity and computational complexity of usingEKF in training are largely reduced. As we assume that the non-stationary environmentis a system with �xed structure, the only time varying part is the system parameter. Oncetracking of these time varying parameters is good enough, the redundant parameter can beidenti�ed and removed. The system does not reinstate the pruned weight. So, in case theactual system structure is not �xed (system (6.3) for example), certain methods would berequired to reinstate those pruned weights if they turn out to be needed later. In Part III,this pruning method will be extended to the RNN case.
61

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environment

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

Figure 6.5: The number of weights pruned against time.
62

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environment

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.6: The resultant shape of the Gaussian function at t = 800 if the proposed pruningprocedure is not invoked.
63

Chapter 6 EKF based Pruning for FNN in a Non-stationary Environment

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.7: The resultant shape of the Gaussian function at t = 800 if the proposed pruningprocedure is invoked.
64

Part IIIPruning Algorithms for RNN

65

Chapter 7EKF based Pruning for RNNTraditionally, real-time-recurrent-learning [124] or a back-propagation through time method[94] is employed in training the recurrent networks. Recently, Williams (1992) has formu-lated the RNN training as a non-linear �ltering problem and applied the extended Kalman�lter technique to �nd the weight values. Simulation results demonstrated that the speedup can increase by ten times. As the training is rather e�ective, it would be valuable tosee if we can make use of the information obtained after training, the weight values anderror covariance matrix, to prune the network. In this chapter we suggest considering thesensitivity of the a posteriori probability as a measure of the importance of the weight anddevising a pruning procedure for recurrent neural network.In the rest of the chapter, we will present a pruning procedure based on this idea. Insection one, a background to the EKF will be presented. The EKF based training methodfor a recurrent network will be elucidated in section two. Section three will describe thepruning scheme based on the probability sensitivity. A method of evaluating the validationerror will be presented in section four. Three simulated examples will then be given insection �ve for illustrating the e�ectiveness of this pruning scheme. In section six, we willdiscuss the necessity of the ranking heuristic and give two examples to show the usefulnessof such a heuristic. Finally, we present the conclusion in section seven.7.1 Background on extended Kalman �lterWithout loss of generality, we consider a non-linear signal model as follows :x(t+ 1) = f(x(t)) + v(t); (7.1)y(t) = h(x(t)) + w(t); (7.2)where f(:) and h(:) are non-linear functions of x(t). The noise process fv(t)g and fw(t)gare mutually independent zero mean Gaussian noise andEfv(t)v(t)Tg = Q(t); Efw(t)w(t)Tg = R(t):x(0) is a Gaussian random variable with mean x̂(0) and variance P0.Let Y t be the observations fy(0); y(1); : : : ; y(t)g, the estimation of the state x(t) basedon the observations Y t or Y t�1 can be accomplished by using the extended Kalman �lter.66

Chapter 7 EKF based Pruning for RNNLet x̂(tjt) and x̂(tjt � 1) be the expectation of x(t) given Y t and Y t�1 respectively, theestimation of the x(t) can be achieved by plugging in the following Kalman �lter equations :x̂(tjt) = x̂(tjt� 1) + L(t)[y(t)� h(x̂(tjt� 1))] (7.3)x̂(t+ 1jt) = f(x̂(tjt)) (7.4)L(t) = P (tjt � 1)H(t)[HT(t)P (tjt � 1)H(t) + R(t)]�1 (7.5)P (tjt) = P (tjt � 1)� L(t)HT (t)P (tjt� 1) (7.6)P (t + 1jt) = F (t)P (tjt)FT (t) +Q(t); (7.7)where F (t) = @f(x̂(tjt))@x (7.8)H(t) = @h(x̂(tjt))@x : (7.9)The initial conditions x̂(0j � 1) and P (0j � 1) are de�ned as P0 and x0 if we know that theinitial value x(0) is a Gaussian random variable with mean x0 and variance P0. In general,we may not have the information. In such a case, we can simply set x0 as a small randomnumber and P0 to be a diagonal matrix with large diagonal values.Theoretically, if f(x) and h(x) are linear functions of x, say f(x) = Ax and h(x) = Cx, itis known that the probability density function for x(t), denoted by P(x(t)jY t) is Gaussiandistribution with mean x̂(tjt) and variance P (tjt). Similarly, P(x(t)jY t�1) is Gaussiandistribution with mean x̂(tjt� 1) and variance P (tjt� 1). Hence, x̂(tjt) is the maximuma posteriori (MAP) estimation of x(t). In case f(x) or h(x) is a non-linear function,x̂(tjt) and P (tjt) will only be an approximation of the mean and variance of thea posteriori probability density function P(x(t)jY t).7.2 EKF based trainingIn this section, we will review how the training of a recurrent neural network can be ac-complished as a non-linear state estimation problem. For the formulation of EKF in RNNtraining, one can also refer to Williams (1992)1.To train a recurrent neural network, we assume that the training data set is generatedby a stochastic signal model as follows [123]:x(t+ 1) = g(Ax(t) +Bu(t) +D) + v(t); (7.10)y(t+ 1) = Cx(t+ 1) + w(t); (7.11)1We remark that at least two more approaches apart from Williams approach using extended Kalman�lter to train recurrent neural networks have been so far proposed. Puskorius and Feldkamp (1994) andSuykens et al. (1995) considered that the learning is acting on the weight vector alone. In each time step,the derivative of each of the output units with respect to the weight vector is calculated recursively througha sensitivity network. The weight vector is then updated via the recursive least square method. Wanand Nelson (1996) extended the idea of dual linear Kalman �lter to train a recurrent type neural network.The idea is to apply two Kalman �lter equations to update the weight vector and hidden unit activitysimultaneously in each time step. The main theme of this chapter is to elucidate how pruning can be usedin conjunction with Williams approach. 67

Chapter 7 EKF based Pruning for RNNwhere v(t) and w(t) are zero mean Gaussian noise. If the parameters (A;B;C;D) areknown, we can use the extended Kalman �lter to predict the y(t+ 1), see Appendix.If the parameters are not known, we need to estimate them. In EKF [123], traininga recurrent network is treated as a non-linear estimation problem, where the parametersfA;B;C;Dg and x(t) are the unknown states being estimated. Hence, the state equationsare : x(t+ 1) = g(A(t)x(t) + B(t)u(t) +D(t)) + v(t); (7.12)�(t + 1) = �(t) + e(t); (7.13)y(t) = C(t)x(t) + w(t): (7.14)Let � be the collection of the state fA;B;C;Dg. Put x(t) and �(t) as a single state vector,the state equations become :" x(t+ 1)�(t+ 1) # = g1(x(t); u(t); �(t)) + " v(t)e(t) # (7.15)y(t) = f1(x(t); �(t)) + w(t); (7.16)where g1(x(t); u(t); �(t)) = " g(A(t)x(t) + B(t)u(t) +D(t))�(t) # (7.17)f1(x(t); �(t)) = C(t)x(t): (7.18)Comparing Equations (7.15) and (7.16) with Equations (7.1) and (7.2), we can see that thesimultaneous estimation of x(t) and parametric vector �(t) can be as obtained recursivelyvia the following recursive equations :x(tjt � 1) = g(x̂(t� 1jt� 1); u(t); �̂(t� 1)) (7.19)P (tjt � 1) = F (t � 1)P (t� 1jt� 1)FT (t � 1) +Q(t� 1) (7.20)" x̂(tjt)�̂(t) # = " x̂(tjt � 1)�̂(t� 1) #+ L(t) y�(t)�HT (t) " x̂(tjt � 1)�̂(t� 1) #! (7.21)P (tjt) = P (tjt � 1)� L(t)HT (t)P (tjt � 1); (7.22)where F (t + 1) = " @xg(x̂(tjt); u(t+ 1); �̂(t)) @�g(x̂(tjt); u(t+ 1); �̂(t))0n��n In��n� # ; (7.23)HT (t) = [@Tx y(t) @T� y(t)] (7.24)L(t) = P (tjt � 1)H(t)[HT(t)P (tjt� 1)H(t) + R(t)]�1 (7.25)The initial P�1(0j0) is set to be zero matrix and �̂(0) is a small random vector. Given thedata set fu(t); y�(t)gNt=1 and iterating the above equations N times, the parametric vector�̂(N) will then be assigned as the network parameters.68

Chapter 7 EKF based Pruning for RNNSince the actual values of Q(t) and R(t) are not known in advance, they can be estimatedrecursively, as in Iiguni et al. (1992) :R(t) = (1� �R)R(t� 1) + �R(y�(t)� y(tjt� 1))2 (7.26)Q(t) = (1� �Q)Q(t� 1) + �QL(t)L(t)T (y�(t)� y(tjt� 1))2; (7.27)where �R and �Q are two small positive values.7.3 Pruning schemeAs mentioned in the previous sections, the aim of the extended Kalman �lter is to constructan approximated posteriori probability function for the hidden state (xT (N); �T (N))T giventhe training set D = fu(t); y�(t)gNt=1. The posteriori probability function is approximatedby a Gaussian density function with :Mean = " x̂(N jN)�̂(N jN) # ; Variance = P (N jN);which are obtained recursively via Equations (7.19) to (7.27) until t = N . Equivalently,this posteriori probability can be expressed as follows :P(�(N)jD) = P̂(�(N)jD) exp��12 ��(N)� �̂(N)�T P�1(N jN) ��(N)� �̂(N)�� ;(7.28)where �(N) = (xT (N) �T (N))T and �̂(N) = (xT (N jN) �T (N jN))T .P̂(�̂(N)jD) = �(2�)n�+n det(P (N jN))��1=2To remove excessive weights from the network, we start by considering the informationgiven by this posteriori probability which is readily obtained from the extended Kalman �ltertraining. In accordance with Equation (7.28), P (N jN) provides the cue about the shapeof the probability function describing �(N). And assuming the probability distribution isGaussian and decomposing P (N jN) into four block matrix :" Pxx(N jN) Px�(N jN)PTx�(N jN) P��(N jN) # ; (7.29)where Pxx(N jN) 2 Rn�n, Px�(N jN) 2 Rn�n� and P��(N jN) 2 Rn��n� , the posterioriprobability function for �(N) can be approximated by integrating Equation (7.28) withrespect to x(N) :P(�(N)jD) = Z P(x(N); �(N)jD)dx(N)= P̂�jD exp��12 ��(N)� �̂(N)�T P�1�� (N jN) ��(N)� �̂(N)�� ; (7.30)where P̂�jD = [(2�)n� det(P��(N jN))]�1=2 :69

Chapter 7 EKF based Pruning for RNN
..x

�̂ = (�1; �2)�2 �1 0:70:80:9Figure 7.1: The idea of probabilistic pruning. We use the extended Kalman �lter basedtraining method to obtain an approximated posteriori probability distribution for the net-work parametric vector �. It is a Gaussian distribution with mean �̂, where �̂ = (�1; �2),and variance P . The a posteriori probability is P(�̂jD). Suppose, �2 is set to be zero, theposteriori probability reduces to around 0:75P(�̂jD). If �1 is set to be zero, the posterioriprobability will reduce to smaller than 0:7P(�̂jD). This suggests that �2 should be rankedhigher and this should be eliminated before �1, since the posteriori probability is not thatsensitive to the change of �2 compared with �1.Let �̂k(N) be the parametric vector with all elements equal to �̂(N jN) except that thekth element is set to be zero, i.e.�̂k(N) = [�̂1(N jN) : : : �̂k�1(N jN) 0 �̂k+1(N jN) : : : �̂n�(N jN)]T :Thus the posteriori probability of �̂k(N) given D can readily be written as follows :P(�̂k(N)jD) = P̂�jD exp��12 �̂2k �P�1�� (N jN)�kk� ; (7.31)where �P�1�� (N jN)�kk is the kth diagonal element of the inverse of P��(N jN). Obviously,the smaller the value of the factor �2k �P�1�� (N jN)�kk, the higher the posteriori probabilityP(�k(N)jD). Figure 7.1 depicts the graphical interpretation of the above idea.Suppose that the posteriori probability is a Gaussian distribution with mean �̂, where�̂ = (�1; �2), and variance P . The a posteriori probability is P(�̂jD). Suppose, �2 is setto zero, the posteriori probability reduces to around 0:75P(�̂jD). If �1 is set to zero, the70

Chapter 7 EKF based Pruning for RNNposteriori probability will reduce to a value smaller than 0:7P(�̂jD). This suggests that �2should be eliminated, as the posteriori probability is not that sensitive to the change of �2compared with �1.Hence, the pruning procedure can be summarized as follows :1. Initialization.(a) Setting �̂(0) as small random vector.(b) Setting P (0j0) to be a diagonal matrix with very large value.(c) Setting x(0j � 1) to be a small random vector.2. Training(a) Using the recursive equations to obtain �̂(N).(b) Checking the before-pruning one-step prediction error, denoted by Ebp, based onthe method described in Appendix.3. Pruning(a) Decomposing the matrix P (N jN) into block matrix to get P�� .(b) Evaluating P�1�� and hence �2k �P�1�� (N jN)�kk for all k from 1 to n� .(c) Rearranging the saliency index f�kg according to the ascending order of �2k �P�1�� (N jN)�kk.(d) Set k = 1.(e) While (k � n�),i. Setting ��k to zero.ii. Checking the validation error.iii. Setting ��k back to its original value if the validation error is greater than aprede�ned threshold.iv. k = k + 1.The validation error is used for checking whether or not the weight should be removed.The pruning does not stop until all the weights have been checked. In contrast to theconventional pruning procedures such as OBD or OBS, the pruning procedure stops oncethe validation error is larger than a threshold value. In some problems, if the available dataset is small, we can simply treat the training data set as the validation set in Step 3e.Remark :It should be noted that there are other proposals that share similar ideas to those presentedhere. Fino� et al (1993) used the ratio of the weight magnitude over its uctuation as ameasure of the importance of a weight. The uctuation is approximated by the standarddeviation of the change of the weight value during training. Cottrell et al. (1995) indepen-dently suggested an idea where the uctuation is approximated by �2k ���1�kk where � isthe Hessian matrix describing the shape of the error surface and simultaneously the shapeof probability distribution around the estimated weight vector. Larsen (1996) generalized71

Chapter 7 EKF based Pruning for RNNMeasure of weightMethods Importance Retrain Reestimate ModelOBD Error Sensitivity p � FNNOBS Error Sensitivity � p FNNFino� et al. (1993) Sensitivity in Prob. p � FNNCottrell et al. (1995) Sensitivity in Prob. p � FNNLarsen (1996) Sensitivity in Prob. � p FNNOurs Sensitivity in Prob. � � RNNTable 7.1: Summary of di�erence pruning method. As Larsen (1996) has uni�ed the ideaof statistical pruning to both OBD and OBS, we include them in this table for comparison.these ideas together with OBD and OBS under a statistical pruning framework. All thesemethods and ours share one similar point : If the mean value of a weight is small but itsvalue's uctuation is large, this weight should not be an important weight. It should beremoved with higher priority. However, there are three major di�erences between our ap-proach and theirs : (a) The problem we are dealing with is recurrent neural network pruningwhile all the aforementioned papers contribute to feedforward neural network pruning. (b)The motivation of the probabilistic pruning idea is due to the using of the extended Kalman�lter approach to train the neural network. (c) Practically, we suggest no retraining andreestimation of the network weights. Besides, we have no problem in determining the num-ber of weights to be removed. For clarity, we summarize the similarities and di�erencesbetween their pruning methods and ours in Table 7.1.7.4 Evaluation of the validation error.To do a one-step prediction based on the trained recurrent network, we need to again applythe extended Kalman �lter equation. Once the training has been �nished and thus thenetwork parameter � �xed, we still have the only hidden variable x(t) as an unknown. Topredict the output y(t) based on the past information y(t � 1); : : : ; y(1) and u(t); u(t �1); : : : ; u(1), we �rst estimate the value of state x(t) and then use this value to predict theoutput y(t). The estimation of state x(t) can readily be achieved by using Kalman �lterequations.Recall that the model of a recurrent network can be de�ned as a state-space model :x(t+ 1) = g(Ax(t) +Bu(t) +D) + v(t); (7.32)y(t+ 1) = Cx(t+ 1) + w(t): (7.33)Here, we assume that both the hidden state and output are contaminated by zero meanGaussian noise. Let Px; Lx be the estimated covariance matrix and the Kalman gain re-spectively for the estimate x. Moreover, we let Qx and Rx be the system noise covarianceand the measurement noise covariance. The prediction y(tjt� 1) will then be obtained via72

Chapter 7 EKF based Pruning for RNNthe following equations :x(tjt� 1) = g(Ax(t� 1jt� 1) +Bu(t) +D) (7.34)Px(tjt� 1) = Fx(t � 1)Px(t � 1jt� 1)FTx (t� 1) + Qx(t � 1) (7.35)y(tjt � 1) = Cx(tjt� 1) (7.36)x(tjt) = x(tjt� 1) + Lx(t) (y�(t)� y(tjt� 1)) (7.37)Px(tjt) = Px(tjt� 1)� Lx(t)CPx(tjt� 1); (7.38)where Fx(t+ 1) = @xg(x(tjt); u�(t + 1); �(t)); (7.39)Lx(t) = Px(tjt� 1)C[CPx(tjt� 1)CT +Rx(t� 1)]�1 (7.40)Here, we encounter the same problem as in the case of training. We do not have anyinformation about the covariance matrix Rx and Qx. So, we need to apply the sametechnique to estimate the values for both of them :Rx(t) = (1� �R)Rx(t � 1) + �R(y�(t)� y(tjt� 1))2 (7.41)Qx(t) = (1� �Q)Qx(t� 1) + �QLx(t)Lx(t)T (y�(t)� y(tjt� 1))2: (7.42)The above equations can be viewed as follows. Suppose, x(t� tjt � 1) is the near optimalestimation of x(t � 1) based on the information given up to the (t � 1)st time step. Inaccordance with these values, we can estimate x(t) from Equation (7.34) and predict theoutput y(tjt � 1) as well. Then, once we have the true value y�(t), the one-step predictionerror can be obtained. Based on this prediction error, we can proceed to estimate the valueof x(t) using Equation (7.37) and to update the system noise covariance and measurementnoise covariance using Equations (7.41) and (7.42). Let the number of testing data be Nt,the one-step prediction error can be de�ned as 1Nt PNti=1(y�(i)� y(tjt� 1))2. However, as weknow that the value x(t) estimated during the transient stage are usually not near optimal,the prediction would inevitably be large. It is better to de�ne the prediction error basedon the output value when the estimation of x(t) has reached near optimal. Of course, wedo not know when this will happen. So we simply assume that the estimation of x(t) willreach near optimal when t > 0:1Nt. Thus, the prediction error is de�ned as follows :Etest = 1Nt � � NtXi=�+1(y�(i)� y(tjt � 1))2; (7.43)where � = 0:1Nt.7.5 Simulation resultsIn this section, we will demonstrate the e�cacy of the proposed pruning scheme throughthree examples. The �rst one is a simple time series prediction problem. The second one isa non-linear single input single output system identi�cation problem which is adapted fromNarendra and Parthasarathy (1992). The third one is a real life example, the prediction ofexchange rate. 73

Chapter 7 EKF based Pruning for RNN
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8

10

12

14

16

18

20

Error_after_prune/Error_before_prune

F
re

qu
en

cy

Figure 7.2: The histogram of the ratio erraperrbp . The vertical axis corresponds to the frequencywhile the horizontal axis corresponds to the ratio. In almost all cases, the ratios are smallerthan one. This means that pruning can improve generalization ability.7.5.1 Simple linear time seriesThe linear time series we used is de�ned as follows:y(t) = 0:6sin(t=30) + 0:2sin(t=5) + 0:01w(t);where w(t) is a zero mean unit variance Gaussian noise. Eight hundred data are generated.Six hundred are used for training while two hundred are used for testing. The recurrentnetwork is constituted by one input unit, six hidden units and one output unit. Thus thetotal number of weights is 54. The weight values are initialized randomly around zeros withsmall variance. The same experiment is repeated for �fty trials.Let errbp and errap be the testing error before and after pruning respectively. Thethreshold is set to be the training error. Figure 7.2 and Figure 7.3 show the statistics of theratio erraperrbp and the number of weights removed for these �fty trials. It is observed that :(i) the ratios of errap and errbp are smaller than one in 47 out of 50 cases, and (ii) in mostof the cases, the number of weights being removed is equal to or more than 20, which isabout 0:37 of the total number of weights. This indicates that the above algorithm is ableto improve the generalization of a recurrent neural network in simple linear time series.7.5.2 Non-linear system identi�cationWe follow an example mentioned in [82]. The plant is described by the second-order non-linear di�erence equations as follows:~x1(k + 1) = ~x1(k) + 2~x2(k)1 + ~x22(k) + u(k) (7.44)74

Chapter 7 EKF based Pruning for RNN
0 5 10 15 20 25 30 35 40 45 50

0

2

4

6

8

10

12

Number of weight being pruned

F
re

qu
en

cy

Figure 7.3: The histogram of the number of weights pruned away. The horizontal axiscorresponds to the number of weights pruned away while the vertical axis corresponds tothe frequency. In most of the trials, the number of weights pruned away is more than thirtywhich is about 3=5 of the total number of weight connections.~x2(k + 1) = ~x1(k)~x2(k)1 + ~x22(k) + u(k) (7.45)yp(k) = ~x1(k) + ~x2(k) (7.46)The recurrent network is composed of one output unit (y(k)), ten hidden units (x(k))and one input unit (u(k)). During training, an iid random signal with a uniform distributionover [�1; 1] was used as the input to the non-linear plant. One thousand input-output pairsare generated. The �rst eight hundred data are used for training while the last two hundredare used for validation.In this example, as the input data are random signal and the system is complex, eighthundred data are not su�cient for network training. Therefore, we have to retrain thenetwork using the same training set several times. Thus we suggest the following alternativesteps for the network training:1. Passing through the training sequence fu(k); y�(k)gNk=1 and use the Kalman �lterformulation to learn the network parameters2. Fixing the network parameters and passing the validation data set.3. Evaluating the validation error by comparing the network output with the actualplant output.4. Going to Step 1 if the validation error does not converge.5. Stopping the training process if the validation error converges.75

Chapter 7 EKF based Pruning for RNNTrainingNo. of hidden units 10Initial hidden activity 0:01� randnoInitial weight 0:0004� randno�R 0:005�Q 0:005P (0) 30I140�140Q(0) I140�140R(0) 1Testing�R 0:005�Q 0:005Px(0) 30I10�10Qx(0) I10�10Rx(0) 1Table 7.2: The values of the parameters used for non-linear system identi�cation.Once the training process is �nished, we follow the steps stated in Section 4 to prune thenetwork. The training parameters are depicted in Table 7.2. Figure 8.1a and 8.1b showthe result after the network training has been �nished. Figure 8.1a shows the output of thenetwork and the output of the plant. It is observed that the recurrent network can closelypredict the plant output.To demonstrate that generalization can be improved if some weights in the neural net-work have been pruned, we feed in another set of input signals, a sine signal in this example,to test the pruned recurrent neural network and the non-linear plant. Figure 8.1b showsthe case when the input is fed with this sine signal:u(k) = sin�2�k25 � :� Validation error Testing error No of weights removedInitial 0.3325 0.6976 {0.1 0.3581 0.6068 150.2 0.3986 0.5962 150.3 0.4295 0.6058 210.4 0.4520 0.6892 220.5 0.4977 0.6747 25Table 7.3: The pruning results for the non-linear system identi�cation. The results are theaverage of 50 trials. 76

Chapter 7 EKF based Pruning for RNN(a) Training and validation (b) Testing
700 750 800 850 900 950 1000

−6

−4

−2

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

Figure 7.4: The neural network output against time when training is �nished. The solidlines correspond to the output of the actual plant and the dot-dash lines correspond to theoutput of the recurrent network. (a) shows part of the training data and validation datawhen the input is random signal. (b) shows the testing data when the input is sine signal.The validation set are the data from 801 to 1000 in (a).It shows that the trained network is able to model the non-linear system. Again, we letEbp be the validation error before pruning. We de�ne the threshold as (1+�)Ebp. Five valuesof � (0:1; 0:2; 0:3; 0:4; 0:5) are examined. The results are depicted in Table 7.3. Figure 7.5shows the output of the network and the plant for the cases when � is equal to 1=10.By setting � = 0:1, the number of weights removed is increased to �fteen. Although thevalidation error with � = 0:1 is larger than the error before pruning and the testing erroris smaller than the error before pruning, we can observe from Figure 7.5 that the networkcan still predict the output of the true system very close.In conclusion, this example has illustrated that the proposed pruning scheme is able toimprove the generalization ability of a recurrent network. Besides, this example also demon-strates that the setting of the threshold to a value larger than the validation error beforepruning may lead to an even better neural network model with fewer weight connectionsbut better generalization.7.5.3 Exchange rate predictionWe apply the proposed method to predict the daily USD/DEM exchange rate z(t). Therange of the data are selected from Nov 29 1991 to Nov 3 1994, altogether 764 workingdays. The �rst 564 data are used as training data and the last 200 as testing data. Therecurrent neural network model is constituted by one input unit, ten hidden units and oneoutput unit. The input is fed with small random noise during training and the outputof the network is to predict the fln z(t)g sequence. Altogether, there are 130 connectionweights. The training method is the same as the one we used in the last example except forthe initial condition of the matrix Q. The data are passed to the network ten times. Aftereach pass, the testing error is evaluated based on the method discussed in the Appendix.77

Chapter 7 EKF based Pruning for RNN(a) (b)
0 20 40 60 80 100 120 140 160 180 200

−6

−4

−2

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

Figure 7.5: The output of the recurrent network after pruning with � setting to be 1=10.The solid lines correspond to the actual plant output while the dot-dash lines correspondto the network output. (a) shows part of the training data and validation data when theinput is random signal. (b) shows the testing data when the input is sine signal.The training stops once the testing error converges. The training parameters are depictedin Table 7.4. As in the previous example, after training, we prune the network and checkthe resultant testing error. Seven values of � are examined : 0 0:1; 0:2; 0:3; 0:4; 0:5; 0:6.Table 7.5 and Figure 7.6 show the testing error and the number of weights being removedafter pruning. It shows that as � increases, more and more weights can be pruned away.The testing error reduces from 0:00080 to a minimum of 0:00032 when � = 0:2. This givesthe best network architecture (with 49 connection weights) for this problem. As � increasesfurther, the testing error increases again. When � = 0:5, the testing error rises back to thelevel before pruning has taken place. At this moment, only 42 weights are left, comparedto the original 130 weights.7.6 The Saliency RankingWe have shown that our pruning method can improve the generalization ability. Next, weclosely examine the ranking generated from our saliency term.7.6.1 Non-linear system identi�cationWe repeat the experiment using the data from example 2 (Section 5.2). Everything remainsthe same except the pruning procedure Step 3(c) in Section 4. Now instead of using theranking obtained from our saliency term, we replace it by a random list f�1; �2; : : : ; �n�g.We set the threshold to be (1 + �)Ebp, where � is 0:1; 0:2; 0:3; 0:4 and 0:5 respectively.The above experiment is repeated for 50 trials. The average testing errors and the averagenumber of weights removed are shown in Figure 7.8. The dot-dash lines correspond torandom ranking pruning while the solid lines correspond to the saliency ranking pruning.78

Chapter 7 EKF based Pruning for RNNTrainingNo. of hidden units 10Initial hidden activity 0:001� randnoInitial weight 0:0001� randno�R 0:005�Q 0:005P (0) 30I140�140Q(0) 0:01I140�140R(0) 1Testing�R 0:005�Q 0:005Px(0) I10�10Qx(0) Qe after trainingRx(0) R after trainingTable 7.4: The values of parameters used for the exchange rate prediction problem.
� Testing error No. of weights removedBefore prune 0:00080 {0:0 0:00037 480:1 0:00038 790:2 0:00032 810:3 0:00048 840:4 0:00054 850:5 0:00081 880:6 0:00113 93Table 7.5: The pruning result for the exchange rate prediction problem.79

Chapter 7 EKF based Pruning for RNN(a) RMS testing error vs � (b) No. of weights removed vs �
0 0.1 0.2 0.3 0.4 0.5 0.6

3

4

5

6

7

8

9

10

11

12
x 10

−4

0 0.1 0.2 0.3 0.4 0.5 0.6
45

50

55

60

65

70

75

80

85

90

95

Figure 7.6: The mean square testing error and the number of weights removed against thevalue of � in the prediction of exchange rate.� Validation error Testing error No. of weights removedInitial 0.3325 0.6976 {0.1 0.3281 0.6703 140.2 0.3976 0.7041 160.3 0.4280 0.7470 190.4 0.4613 0.8430 230.5 0.5011 0.9014 26Table 7.6: The pruning results for the non-linear system identi�cation when ranking heuris-tic is not imposed.From these �gures, we can observe that the number of weights being removed by bothpruning methods are similar. Saliency ranking pruning however generates a smaller testingerror compared with the random ranking. Beside, by inspecting the normalized frequencycurves2 | which show the normalized frequence of a weight being removed | we can even�nd that the heuristic rank list is a good cue for weight pruning.Figure 7.7 shows the normalized frequency curve for the case when � = 0:2 and theweight ranking is initialized randomly. As random ranking indicates no information onwhich weight is not important, we have to search the whole list to make sure that thepruning is �nished. It is rather time-consuming and with high computational cost.If we check carefully the set of weights being removed and plot the normalized frequencycurves against the saliency ranking list, Figure 7.9, it is found that those weights beingpruned away based on random ranking are indeed located in the �rst half of the heuristic2As we have repeated the experiment for 50 trials, the normalized frequency for the kth-weight is de�nedas total number of times it is being pruned/50. 80

Chapter 7 EKF based Pruning for RNN� = 0:2
0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.7: The normalized frequency curve for the random ranking case. The parameter �is set to be 0:2 and the ranking of the weight importance is initialized randomly.(a) Avg. no. of weights pruned vs � (b) Avg. testing error vs �
Heuristic

Random

0 0.1 0.2 0.3 0.4 0.5
12

14

16

18

20

22

24

26

28

Heuristic

Random

0 0.1 0.2 0.3 0.4 0.5
0.3

0.4

0.5

0.6

0.7

0.8

Figure 7.8: Comparison result between the cases when the proposed EKF-based heuristicpruning method is imposed (solid lines) and when the heuristic pruning procedure is notimposed (dot-dash lines). 81

Chapter 7 EKF based Pruning for RNN(a) � = 0:1 (b) � = 0:2
0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1
Rand
Heuristic

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
Rand
Heuristic

(c) � = 0:3 (d) � = 0:4
0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1
Rand
Heuristic

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
Rand
Heuristic

Figure 7.9: Comparison results between saliency rank pruning and random rank pruning.The dot-dash lines are the frequency curves for the heuristic case while the solid lines arethe frequency curves for the random ranking case. The horizontal axis corresponds to theindex of weight (according to the saliency ranking).ranking list. This reveals that no matter which weights are being pruned away by usingrandom ranking or saliency ranking, the actual set of weights being removed is in factlocated in the beginning portion of the saliency ranking list and their chance of being removeddecreases as their location is far from the beginning. That means, based on the EKF-basedheuristic ranking list, searching the whole list is not necessary3.3It should be noted that it does not mean that the algorithm could be terminated once the �rst weightis found which cannot be pruned. Observed from Figure 7.9, it appears that the weights pruned using thesaliency measure are always whose saliency falls below a certain threshold. It is not guaranteed in general.We have found experimentally that if � is set to be 0:05 or smaller, the second weight on the list will notbe pruned away but the third one will. Therefore, if the algorithm terminates once the �rst weight is foundwhich cannot be pruned, we can only prune away one weight.82

Chapter 7 EKF based Pruning for RNN� Validation error Testing error No of weight removedInitial 0.0769 0.0318 {0 0.0426 0.0774 60.05 0.0458 0.0656 110.10 0.0412 0.0734 130.15 0.0512 0.0509 170.20 0.0410 0.0991 21Table 7.7: The pruning result for a recurrent neural network being trained to identify asimple linear state-space model when the ranking heuristic is imposed.7.6.2 Linear system identi�cationThe model being discussed in this subsection is a simple linear state space model :x1(t+ 1) = 0:7x1(t) + 0:08x2(t) + u(t) (7.47)x2(t+ 1) = x1(t) (7.48)y(t) = 0:22x1(t): (7.49)The recurrent neural network consisting of one input unit, �ve hidden units and one outputunit is being trained. During training, 500 input-output data pairs are generated. Theinputs are randomly (uniformly) drawn from [�1; 1]. After training, the network is prunedand tested by a new input signal (the testing set) :u(k) = sin�2�k25 � :The experiment is repeated for 20 trials and the results obtained by using ranking are shownin Table 7.7. When the ranking heuristic is imposed, it is observed that the testing errorincreases progressively as � increases. On the other hand, when the ranking heuristic is notimposed, the testing error suddenly increases when � is increased from 0 to 0:05, Table 7.8.Similarly, this indicates that the ranking heuristic has encoded the importance of the weightwith respect to the testing data.7.7 Summary and DiscussionIn summary, we have presented a pruning procedure for the recurrent neural network. Theessence of this pruning method is the utilization of the result obtained from the extendedKalman �lter training : the parametric vector �̂(N) and the covariance matrix P (N jN).Instead of considering the error sensitivity as a measure of the importance of the weight,we take the a posteriori probability sensitivity. In accordance with the theory of optimal�ltering, �̂(N) and P (N jN) can be treated as an approximation of the mean and covarianceof this a posteriori probability, the sensitivity can thus be calculated.Applying this pruning method together with the recurrent neural network to threeproblems such as the prediction of a linear time series, the modeling of a non-linear system83

Chapter 7 EKF based Pruning for RNN� Validation error Testing error No of weight removedInitial 0.0769 0.0318 {0 0.0593 0.0603 50.05 0.0427 0.1580 90.10 0.0439 0.1400 16Table 7.8: The pruning result for a recurrent neural network being trained to identify asimple linear state-space model and the ranking heuristic is not imposed.and the prediction of the exchange rate, we observed that the proposed procedure notonly can reduce the number of weights of a recurrent network, but can also improve thegeneralization ability of the networks.Furthermore, we have also demonstrated that the heuristic ranking list is indeed a goodcue for the removal of weight. Comparing the results with random ranking listing on twoproblems : a non-linear system identi�cation and linear system identi�cation, we observedthat the ranking list generated by the factor �2k �P�1�� (N jN)�kk not only tells which weightis of more importance, but also helps to improve the generalization ability.One should also note that there are many ways of applying the recursive least squaremethod or extended Kalman �lter in feedforward neural network training, [48, 97, 12, 89,93, 95]. The pruning scheme proposed in this paper can be readily applied in conjunctionwith these methods. Besides, as the extended Kalman �lter is an adaptive method for stateestimation and parameter identi�cation, we suspect that this pruning scheme can readilybe extended as an adaptive pruning method and hence the search for a better model canalso be feasible for time varying systems.In recent years, a considerable amount of e�ort has been put into the generalizationand the pruning of a feedforward neural network [91, 98, 122]. The generalization and thepruning problem of a recurrent neural network have rarely been discussed. With Pedersenand Hansen (1995) derived a recursive algorithm for the evaluating of the second orderderivative of the error function so that pruning based on error sensitivity is possible. Wuand Moody (1996) derived a smoothing regularizer for recurrent neural networks so as toimprove the RNN generalization ability. The results presented in this paper may shed somelight on the development of a more e�ective pruning method.
84

Chapter 8Alternative Pruning Methods forRNNIn this chapter, several alternative pruning methods will be described. Their pros andcons in terms of computation complexity and generalization behavior will be discussed. Insection one, the EKF-based pruning method for RNN will be reviewed. The computationalcomplexity of using such a pruning approach will be derived in section two. In section three,several alternative pruning methods which require no weight ranking initialization will beintroduced. Their computational complexity will be derived in section four. Simulationresults on a nonlinear system modeling will be presented in section �ve and a comparativeanalysis of the di�erence between these pruning methods will be presented in section six.Then, we conclude this chapter in section seven.8.1 EKF-based Pruning for RNNUsing the EKF approach, the weight importance measure is de�ned by probability sensi-tivity. Let �(t) and x(t) be the weight vector and the hidden unit vector respectively atthe tth time step; (�̂(tjt); x̂(tjt)) be the estimate of (�(t); x(t)) at the tth time step via EKFequations. (�̂(tjt); x̂(tjt)) � arg max(�(t);x(t))P(�(t); x(t)jfui; yigti=1): (8.1)for t � 1. Assuming thatP(�(t); x(t)jfui; yigti=1) = P(�(t)jfui; yigti=1)P(x(t)jfui; yigti=1)for N is larger, the weights importance are ranked in according with their sensitivities tothe a posterior probability P(�(t)jfui; yigti=1), i.e.P(�̂(N jN)jfui; yigNi=1)� P(�̂k(N jN)jfui; yigNi=1);where �̂k(N jN) is identical to �̂(N jN) except that the kth element is null. The least impor-tance weight is the one with the least sensitivity.85

Chapter 8 Alternative Pruning Methods for RNNFurther assuming that both P(�̂(N jN)jfui; yigNi=1) and P(x(t)jfui; yigti=1) converge fort � N , the predicted output probability,P(y(t + 1)jfui; yigti=1; �̂(N jN))� Z Z P(y(t + 1)j�(t); x(t))P(�(t); x(t)jfui; yigti=1)�(�(t) � �̂(N jN))d�(t)dx(t)� Z Z P(y(t + 1)j�(t); x(t))P(�(t)jfui; yigti=1)P(x(t)jfui; yigti=1)�(�(t) � �̂(N jN))d�(t)dx(t)� P(�̂(N jN)jfui; yigti=1) Z P(y(t + 1)j�̂(N jN); x(t))P(x(t)jfui; yigti=1)dx(t); (8.2)where �(�(t)��̂(N jN)) is the delta function centered at �̂(N jN). Suppose thatP(x(t)jfui; yigti=1)converges to a Gaussian distribution with constant variance and the mean is equal to thetrue x(t), the predicted output probability distribution,Z P(y(t+ 1)j�̂(N jN); x(t))P(x(t)jfui; yigti=1)dx(t);will also converge to a Gaussian distribution with constant variance and the mean is equal tothe true y(t+1). The probabilistic sensitivity measure evaluated using the estimated �̂(N jN)can approximate the probabilistic sensitivity measure for the validation data set. That isto say, the measure is not just meaningful for the training data set, but also meaningful forthe validation data set or testing data set in the sense of probability measure.As presented in the last chapter, the sensitivity measure of the ith weight can be repre-sented by �2k �P�1�� (N jN)�kk ;where P��(N jN) is the approximated covariance matrix for �̂(N jN) and �P�1�� (N jN)�kk isthe kth diagonal element of its inverse. Two pruning procedures can be de�ned. If stoppruning criterion is included, a no-skipping procedure can be de�ned as follows :1. Initialization.(a) Setting �̂(0) as small random vector.(b) Setting P (0j0) to be a diagonal matrix with very large value.(c) Setting x(0j � 1) to be a small random vector.2. Training(a) Using the recursive equations to obtain �̂(N).(b) Checking the before-pruning one-step prediction error, denoted by Ebp.3. Pruning (no-skipping)(a) Decomposing the matrix P (N jN) into block matrix to get P�� .(b) Evaluating P�1�� and hence �2k �P�1�� (N jN)�kk for all k from 1 to n� .86

Chapter 8 Alternative Pruning Methods for RNN(c) Rearranging the saliency index f�kg according to the ascending order of�2k �P�1�� (N jN)�kk :(d) Setting k = 1.(e) While validation error is less than a threshold,i. Setting ��k to zero and checking the validation error.ii. k = k + 1.(f) Setting ��k back to its original valueIf stop pruning criterion is not included, a skipping pruning procedure can be de�ned asfollows :1. Initialization. Same as above procedure.2. Training Same as above procedure.3. Pruning (with skipping)(a) Decomposing the matrix P (N jN) into block matrix to get P�� .(b) Evaluating P�1�� and hence �2k �P�1�� (N jN)�kk for all k from 1 to n� .(c) Rearranging the saliency index f�kg according to the ascending order of�2k �P�1�� (N jN)�kk :(d) Setting k = 1.(e) While (k � n�),i. Setting ��k to zero and checking the validation error.ii. Setting ��k back to its original value if the error is greater than a prede�nedthreshold.iii. k = k + 1.The validation error is used for checking whether or not the weight should be removed.The pruning does not stop until all the weights have been checked. In some problems, ifthe available data set is small, we can simply treat the training data set as the validationset in Step 3e. In contrast to the conventional pruning procedures such as OBD or OBS,the pruning procedure stops once the validation error is larger than a threshold value.8.2 High computational cost in building ranking list for theEKF-based pruning methodSuppose the number of input dimensions is m (a small constant), the number of hiddenunits is n and the number of output unit is one, the total number of weights in RNN willbe given by n� = mn+ n2 + 2n = (m+ n+ 2)n: (8.3)87

Chapter 8 Alternative Pruning Methods for RNNDuring training, vector x and vector � are put together as a single state vector, hence thedimension of this augmented vector will be equal to (m+n+3)n. Ignoring the computationalcost of training and the computational cost of matrix decomposition, the major costs ofpruning will be determined by the following steps :1. Evaluating P�1��2. Rearranging the saliency index in the ascending order3. Checking the validation errorCost of evaluating P�1�� The cost of this step is easily evaluated. Generally, it requiresn3� multiplication. From Equation (8.3), the number of multiplications in this step is(m+ n+ 2)2n2.Cost of rearranging saliency index This step is to sort n� scalar values in ascendingorder. It requires n� logn� comparison1, i.e. (m+n+2)n log(m+n+2)nmultiplicationsteps.Cost of checking validation error We can see that in the validation phase, an extendedKalman �lter is running in order to update the vector x. Ignoring the additionoperation, the number of multiplications for updating the variables, such as the vectorx and the matrix P , are depicted in Table 8.1. Summing up all their cost, it can readilybe shown that the total number of multiplications in one iteration is 2n3+9n2+nm+4n+ 5. If stop-pruning criterion is applied, the cost will be(no. of weight pruned)� (2n3 + 9n2 + nm + 4n+ 5):If stopping criterion is not applied, i.e. skipping is allowed, the computational costwill be (m+ n + 2)� (2n3 + 9n2 + nm + 4n+ 5):The burden is in the step of updating the Px(tjt� 1) matrix. Let Cmul and Ccomp bethe costs of a single multiplication and a single comparison respectively, the numberof multiplication steps in using EKF based pruning will be given byCostekfp = (m+ n + 2)n log(m+ n + 2)nCcomp + (m+ n + 2)3n3Cmul+(m+ n+ 2)n(2n3 + 9n2 + nm + 4n+ 5)Cmul:Obviously, this computational cost will be dominated by the cost in calculating theinverse of the matrix P (N jN), i.e. the factor (m + n + 2)3n3Cmul. For example, ifn = 10 and m = 1, (m+ n+ 2)n log(m+ n+ 2)n � 633:(m+ n + 2)3n3 = 2197000:(m+ n+ 2)n(2n3 + 9n2 + nm + 4n+ 5) = 150150:1Suppose heap sort is used. 88

Chapter 8 Alternative Pruning Methods for RNNTable 8.1: The number of multiplications in each equation of the EKF in validation. Notethat n is the dimension of vector x.x(tjt� 1) n2 + nmPx(tjt � 1) 2n3y(tjt� 1) nx(tjt) nPx(tjt) 2n2Fx(t + 1) n2Lx(t) n2 + 1Rx(t) 2n2 + n + 2Qx(t) 2n2 + n + 2Total 2n3 + 9n2 + nm+ 4n+ 5The overhead in calculating the inverse of matrix P (N jN) is ten times more than theactual computational cost in evaluating the validation error. If stopping criterion isincluded in the algorithm, the complexity ratio, i.e.Cost of ranking list generationCost of validation :will be much larger.As the inverse of P (N jN) is needed only for building the ranking list, it will be worth-while to see whether we can simply discard the ranking list or seek an alternative rankinglist. Furthermore, it is also interesting to look into whether there is any alternative proce-dure which can better utilize the computational resource.8.3 Alternative methods for RNN pruningAs the actual relationship between the heuristic derived saliency measure and validationerror is vague, using generalization error (testing error) to determine the performance of apruning algorithm can only be a reference. The computational cost of the pruning algorithmand the size of the resultant pruned network should be better criteria to determine theperformance of a pruning algorithm.To reduce the pruning complexity, there are other tricks that can be applied. An intuitiveone is weight magnitude. Using error sensitivity (ES) or probabilistic sensitivity (PS)approaches, one can see that the saliency of a weight is proportional to the square of itsmagnitude. ES : saliency = (rr�k�kE)�2kPS : saliency = (rr�k�kP)�2kApart from using weight magnitude as a ranking heuristic, we can also introduce othertricks to further improve the performance of the algorithm.89

Chapter 8 Alternative Pruning Methods for RNNSkipping/No-skipping As a weight being removed will cause a sudden increase in thevalidation error, do we have to stop the prune and recover the weight or do we simplyrecover the weight and move on to the next weight on the list ? Obviously, in termsof network size, allowing skipping should result in a better performance.Single level/Multiple level Suppose skipping is allowed, could there be further weightremoval if we repeat the pruning loop one or several times more ?Heuristic initial rank/Random initial rank As the removal of weight is in regard tothe ranking list, this list is generated at the initial stage, by using probabilistic sensi-tivity, error sensitivity, weight magnitude or simply random.Fixed ranking/Dynamic ranking Usually, the weight importance ranking list will beused throughout the whole pruning process once it is generated in the initial stage.Dynamic ranking allows us to regenerate the ranking list each loop of pruning. Thatis to say, once all the weights have been checked and some of them have been pruned,it is intuitive to regenerate the ranking list. In order not to introduce additional cost,this new list can be generated by using the validation error.The algorithms de�ned in this section are de�ned in accordance with one or more of theabove factors.8.3.1 Single level pruning procedure : Algorithm 1 and 2Before proceeding, let us de�ne two general pruning algorithms. The �rst one is calledthe single level no skipping procedure. The second one is called the single level skippingprocedure.Algorithm 1 (Single level no skipping procedure) 1. Initialize ranking list f�1; �2; : : : ; �ng.2. Set Ev = 0,3. Set k = 1,4. While (Ev � (1 + �)Etr) Begin(a) Set ��k = 0(b) Evaluate validation error, Ev(��k = 0)(c) k = k + 1End� is a nonzero value determining the level of tolerance. Three algorithms can be de�nedwith respect to their initial ranking list generation. The ranking list can be generated byrandom, by means of weight magnitude or by using probability sensitivity.Algorithm 2 (Single level skipping procedure) 1. Initialize ranking list f�1; �2; : : : ; �ng.2. For k = 1 to n,Begin 90

Chapter 8 Alternative Pruning Methods for RNN(a) Set tmp = ��k(b) Set ��k = 0(c) Evaluate validation error, Ev(��k = 0)(d) If Ev(��k = 0) � (1 + �)Etr, set ��k = tmp.EndSimilarly, � is a nonzero value determining the level of tolerance and three algorithms canbe de�ned with respect to their initial ranking list generation. The ranking list can begenerated by random, by means of weight magnitude or by using probability sensitivity.8.3.2 Multilevel procedure : Algorithm 3 and 4One can imagine, after one pass, the behavior of the network will be changed. Some un-pruned weights which are important in the very �rst step may not be important after the�rst pass. In that case, checking the importance of all the un-pruned weights after eachpass could probably remove some more weights. Hence a smaller size neural network couldbe obtained.Algorithm 3 1. Initialize ranking list f�1; �2; : : : ; �ng.2. While (Total no. of pruned weights increases)Begin: For k = 1 to n, Begin(a) Set tmp = ��k(b) Set ��k = 0(c) Evaluate validation error, Ev(��k = 0)(d) If Ev(��k = 0) � (1 + �)Etr, set ��k = tmp.End EndOnce again � is a nonzero value determining the level of tolerance. The ranking list canbe generated by random, by means of weight magnitude or by using probability sensitivity.Three algorithms can be de�ned. The stopping criterion for these algorithms is as follows :the pruning procedure will be stopped if no more weight can be removed after several passes.Since the computation cost in validation is far below that of generating the ranking list,we can even make use of the validation error to generate the ranking list.Algorithm 4 (One weight at a time pruning) 1. Initialize ranking list fp1; p2; : : : ; png.2. While (Total no. of pruned weight increases) Begin(a) Set � = p(b) For j = k to n, Begini. Set tmp = ��kii. Set ��k = 0 91

Chapter 8 Alternative Pruning Methods for RNNProb. heurist Weight mag. heurist RandomNS 1a 1b {SLSP 2a 2b 2cMLSP 3a 3b 3cOWAT { { 4Table 8.2: A summary of the pruning algorithms being proposed. NS stands for no-skippingpruning procedure. SLSP stands for single level with skipping pruning. MLSP stands formultilevel skipping pruning procedure. OWAT stands for one weight at a time pruningprocedure.Algorithm Initial ranking Level Skipping Ranking regeneration1a prob. sensitivity Single No No1b weight magnitude Single No No2a prob. sensitivity Single Yes No2b weight magnitude Single Yes No2c Random Single Yes No3a prob. sensitivity Multiple Yes No3b weight magnitude Multiple Yes No3c Random Multiple Yes No4 Random Multiple Yes YesTable 8.3: Characteristics of di�erent pruning algorithms being discussed in the paper.iii. Evaluate the validation error, Ev(��k = 0)iv. Set ��k = tmpEnd(c) Regenerate ranking list fpk; : : : ; png in according to the ascending order of thevalidation error.(d) Set �p1 = 0 if Ev(�p1 = 0) � (1 + �)EtrEndFor clarity, Table 8.3 summarizes the essential features of these pruning algorithms forcomparison. Note that the Algorithm 1c is not included. The computational requirementof each algorithm is summarized in Table 8.4.8.4 Complexity of the alternative pruning proceduresUsing the same technique in Section 8.2, the computation complexity of the presentedpruning procedures can readily be derived. The notations used in derivation are depicted92

Chapter 8 Alternative Pruning Methods for RNNAlgorithm Initial ranking Ranking regeneration1a Matrix inversion & Sorting No1b Sorting No2a Matrix inversion & Sorting No2b Sorting No2c No No3a Matrix inversion & Sorting No3b Sorting No3c No No4 No SortingTable 8.4: Computational requirement for di�erent pruning algorithmsNotation Meaningn Number of hidden unitsm Number of input unitsT Length of the validation dataCcomp Cost of comparing two oating point numbersCmul Cost of multiplying two oating point numbersn1a Total number of weights being pruned using Algorithm 1an1b Total number of weights being pruned using Algorithm 1bL3a Total number of levels required using Algorithm 3aL3b Total number of levels required using Algorithm 3bL3c Total number of levels required using Algorithm 3cL4 Total number of levels required using Algorithm 4Table 8.5: Summary of notationin Table 8.5. The computational complexity of the above algorithms include three essentialcomponents :� Cost of the generation of initial pruning order list f�1; �2; � � � ; �n�g.� Cost of the evaluation of validation error1T TXk=1(y(k)� y�(k))2;where y�(k) is the target output of the system while y(k) is the output of the neuralnetwork.In Section 8.2, we have derived the cost of generating the initial list for EKF based pruning.For those alternative pruning algorithms, this cost can be neglected. If the initial list is93

Chapter 8 Alternative Pruning Methods for RNNAlgo. Computational complexity1a (m+ n + 2)3n3Cmul + ((m+ n+ 2)n log(m+ n+ 2)n)Ccomp+n1aT (2n3 + 9n2 + nm+ 4n+ 5)Cmul1b ((m+ n+ 2)n log(m+ n+ 2)n)Ccomp+n1bT (2n3 + 9n2 + nm+ 4n+ 5)Cmul2a (m+ n + 2)3n3Cmul + ((m+ n+ 2)n log(m+ n+ 2)n)Ccomp+(m+ n+ 2)T (2n3+ 9n2 + nm+ 4n+ 5)Cmul2b ((m+ n+ 2)n log(m+ n+ 2)n)Ccomp+(m+ n+ 2)T (2n3+ 9n2 + nm+ 4n+ 5)Cmul2c (m+ n + 2)T (2n3 + 9n2 + nm+ 4n+ 5)Cmul3a (m+ n + 2)3n3Cmul + L3a((m+ n + 2)n log(m+ n + 2)n)Ccomp+nT (2n3 + 9n2 + nm+ 4n+ 5)Cmul3b ((m+ n+ 2)n log(m+ n+ 2)n)Ccomp+L3bnT (2n3 + 9n2 + nm+ 4n+ 5)Cmul3c L3cnT (2n3 + 9n2 + nm+ 4n+ 5)Cmul4 L4[nT (2n3 + 9n2 + nm+ 4n+ 5)Cmul+((m+ n + 2)n log(m+ n + 2)n)Ccomp]Table 8.6: Summary of the computational complexity for di�erent pruning algorithms. Notethat the total number of weight in a recurrent neural network is in the order of O(n2).generated by random, this cost is null. If the initial list is generated in regard to theweight magnitude, the cost would simply be the cost for sorting (n+m+ 2) real numbers,i.e. (n + m + 2) log(n + m + 2)Ccomp. This cost is still small. Table 8.6 summarizes thecomplexities of each pruning algorithm. In case n is large, the asymptotic computationalcomplexity bounds of the presented pruning algorithms are shown in Table 8.7. From thefact that n1a; n1b < n and assuming that L3a, L3b and L3c are much smaller than n,2 itcan easily be seen that the complexity of EKF based pruning (including 1a, 2a and 3a) isindeed much larger than the other presented algorithms, even if the weights are removedone at a time (algorithm 4). Their complexities can be ranked as follows :1b < 2b; 2c < 3b; 3c < 4; 5 < 1a < 2a < 3a:The EKF based pruning requires much larger computational cost than the other one. Weightmagnitude based ranking requires the least computational cost.8.5 Experimental comparison on generalization and net-work sizeIn the previous section, we have analyzed the performance of di�erent pruning algorithms interms of their computation complexities. In this section, we will look into their performancein terms of their generalization ability.2We will con�rm this assumption in the next section.94

Chapter 8 Alternative Pruning Methods for RNNAlgo. Computational complexity1a O(n6Cmul + n1aTn3Cmul)1b O(n1bTn3Cmul)2a O(n6Cmul + Tn4Cmul)2b O(Tn4Cmul)2c O(Tn4Cmul)3a O(n6Cmul + L3a((m+ n+ 2)n log(m+ n+ 2)n)Ccomp + Tn4Cmul)3b O(L3a((m+ n+ 2)n log(m+ n+ 2)n)Ccomp + Tn4Cmul)3c O(L3cTn4Cmul)4 O(L4Tn4Cmul)Table 8.7: Summary of the asymptotic bound computational complexity for di�erent prun-ing algorithms assuming that m� n.A recurrent neural network is �rst trained, using the extended Kalman �lter approach,to identify a nonlinear system which is de�ned as follows :~x1(k + 1) = ~x1(k) + 2~x2(k)1 + ~x22(k) + u(k) (8.4)~x2(k + 1) = ~x1(k)~x2(k)1 + ~x22(k) + u(k) (8.5)yp(k) = ~x1(k) + ~x2(k) (8.6)The recurrent network is composed of one output unit (y(k)), ten hidden units (x(k))and one input unit (u(k)). During training, an iid random signal with a uniform distributionover [�1; 1] is used as the input to the nonlinear plant. One thousand input-output pairsare generated. The �rst eight hundred data are used for training while the last two hundredare used for validation.As the input data is random signal and the system is complex, eight hundred dataare not su�cient for network training. Therefore, we have to retrain the network usingthe same training set several times. The training parameters are depicted in Table 8.8.Figure 8.1a shows the output of the network and the output of the plant. To demonstratethat generalization can be improved if some weights in the neural network have been pruned,we feed in another input signal, a sine signal in this example, to test the pruned recurrentneural network and the nonlinear plant. Figure 8.1b shows the case when the input is fedwith this sine signal: u(k) = sin�2�k25 � :It shows that the trained network is able to model the non-linear system. Again, welet Ebp be the validation error before pruning. We de�ne the threshold as (1 + �)Ebp. Fivevalues of � (0:1; 0:2; 0:3; 0:4; 0:5) are examined.95

Chapter 8 Alternative Pruning Methods for RNN(a) Training and validation
700 750 800 850 900 950 1000

−6

−4

−2

0

2

4

6

(b) Testing
0 10 20 30 40 50 60 70 80 90 100

−8

−6

−4

−2

0

2

4

6

Figure 8.1: The result after the network training is �nished. The solid lines correspondto the output of the actual plant and the dot-dash lines correspond to the output of therecurrent network. (a) shows part of the training data and validation data when the inputis random signal. (b) shows the testing data when the input is sine signal. The validationset are those data from 801 to 1000 in (a). 96

Chapter 8 Alternative Pruning Methods for RNNTrainingNo. of hidden units 10Initial hidden activity 0:01� randnoInitial weight 0:0004� randno�R 0:005�Q 0:005P (0) 30I140�140Q(0) I140�140R(0) 1Testing�R 0:005�Q 0:005Px(0) 30I10�10Qx(0) I10�10Rx(0) 1Table 8.8: The values of those parameters used for nonlinear system identi�cation.8.5.1 Algorithm 1Obviously, if the initial ranking list is generated by random, pruning is not possible. There-fore, for Algorithm 1, we concentrate on the probabilistic heuristic and weight heuristiconly. Table 8.9 and Table 8.10 summarize the results for networks being pruned by usingthe probabilistic heuristic and weight heuristic respectively. The skipping procedure is notimposed in these algorithms. It is found that the number of weights being removed by usingeither heuristic can be up to twenty. Besides, there exists a range of � in which the testingerror generated by the pruned network is smaller than the testing error generated by theoriginal un-pruned network.8.5.2 Algorithm 2If the skipping procedure is imposed, it is found that the probabilistic measure does notalways outperform the others. According to Table 8.11, 8.12, 8.13 and Figure 8.3, theprobabilistic heuristic outperforms in the sense of generalization. In the sense of the numberof weights being removed, the weight magnitude ranking and random ranking both performsimilar to the probabilistic ranking. If the � value is 0:1, all three algorithms can make thepruned network generalize better.8.5.3 Algorithm 3For the multi-level skipping procedure type, the results are di�erent. For small values of�, all three ranking systems perform similarly. All of them can prune the network to havebetter generalization, see Figure 8.4. However, for large values of �, it is found that therandom ranking method can prune more weights than the other two methods.97

Chapter 8 Alternative Pruning Methods for RNN� Validation error Testing error No. of weights removedInitial 0.3325 0.6976 {0.1 0.3687 0.6408 130.2 0.4095 0.6220 160.3 0.4391 0.6027 170.4 0.4780 0.6021 190.5 0.5102 0.6511 21Table 8.9: The pruning results for the nonlinear system identi�cation when the probabilisticranking heuristic is imposed but the skipping procedure is not imposed.� Validation error Testing error No. of weights removedInitial 0.3325 0.6976 {0.1 0.3756 0.6277 90.2 0.4398 0.6415 110.3 0.4398 0.6415 110.4 0.5140 0.7362 210.5 0.4140 0.7362 21Table 8.10: The pruning results for the nonlinear system identi�cation when the weightmagnitude ranking heuristic is imposed but the skipping procedure is not imposed.� Validation error Testing error No. of weights removedInitial 0.3325 0.6976 {0.1 0.3581 0.6068 150.2 0.3986 0.5962 150.3 0.4295 0.6058 210.4 0.4520 0.6892 220.5 0.4977 0.6747 25Table 8.11: The pruning results for the nonlinear system identi�cation when the probabilis-tic ranking heuristic together with the skipping procedure are imposed.98

Chapter 8 Alternative Pruning Methods for RNN(a) Number of weights pruned
Heuristic
Weight

0 0.1 0.2 0.3 0.4 0.5
8

10

12

14

16

18

20

22

24

26

28

delta

A
ve

ra
ge

 n
o.

 o
f w

ei
gh

t p
ru

ne
d

(b) Testing error
Heuristic
Weight

0 0.1 0.2 0.3 0.4 0.5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

delta

A
ve

ra
ge

 te
st

in
g

er
ro

r
(R

M
S

)

Figure 8.2: The pruning results for the nonlinear system identi�cation when the skippingprocedure is not imposed. 99

Chapter 8 Alternative Pruning Methods for RNN� Validation error Testing error No. of weights removedInitial 0.3325 0.6976 {0.1 0.3571 0.6550 140.2 0.3959 0.6340 150.3 0.4234 0.6926 220.4 0.4655 0.7462 280.5 0.4903 0.7938 27Table 8.12: The pruning results for the nonlinear system identi�cation when the weightmagnitude ranking heuristic together the skipping procedure are imposed.� Validation error Testing error No. of weights removed. Initial 0.3325 0.6976 {0.1 0.3281 0.6703 140.2 0.3976 0.7041 160.3 0.4280 0.7470 190.4 0.4613 0.8430 230.5 0.5011 0.9014 26Table 8.13: The pruning results for the nonlinear system identi�cation when the randomranking together with the skipping procedure are imposed. The results are the average of50 trials. � Validation error Testing error No. of weights removedInitial 0.3325 0.6976 {0.1 0.3618 0.6563 210.2 0.3986 0.6335 150.3 0.4322 0.6544 230.4 0.4603 0.7605 250.5 0.4929 1.0315 31Table 8.14: The pruning results for the nonlinear system identi�cation when the probabilis-tic ranking heuristic together with the multi-level skipping procedure are imposed.100

Chapter 8 Alternative Pruning Methods for RNN(a) Number of weights pruned
Heuristic

Weight

Random

0 0.1 0.2 0.3 0.4 0.5
8

10

12

14

16

18

20

22

24

26

28

delta

A
ve

ra
ge

 n
o.

 o
f w

ei
gh

t p
ru

ne
d

(b) Testing error
Heuristic

Weight

Random

0 0.1 0.2 0.3 0.4 0.5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

delta

A
ve

ra
ge

 te
st

in
g

er
ro

r
(R

M
S

)

Figure 8.3: The pruning results for the nonlinear system identi�cation when the single levelskipping procedure is imposed. 101

Chapter 8 Alternative Pruning Methods for RNN
� Validation error Testing error No. of weights removedInitial 0.3325 0.6976 {0.1 0.3643 0.6605 150.2 0.3959 0.6339 150.3 0.4315 0.8210 230.4 0.4655 0.7461 280.5 0.4976 0.8855 29Table 8.15: The pruning results for the nonlinear system identi�cation when the weightmagnitude ranking heuristic together with multi-level skipping procedure are imposed.
� Validation error Testing error No. of weights removedInitial 0.3325 0.6976 {0.1 0.3618 0.6547 210.2 0.3976 0.6257 180.3 0.4263 0.8015 230.4 0.4610 0.8575 300.5 0.4955 1.1965 49Table 8.16: The pruning results for the nonlinear system identi�cation when the randomranking together with multi-level skipping procedure are imposed. The results are theaverage of 50 trials. 102

Chapter 8 Alternative Pruning Methods for RNN(a) Number of weights pruned
Heuristic

Weight

Random

0 0.1 0.2 0.3 0.4 0.5
5

10

15

20

25

30

35

40

45

50

55

delta

A
ve

ra
ge

 n
o.

 o
f w

ei
gh

t p
ru

ne
d

(b) Testing error
Heurist

Weight

Random

0 0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

delta

A
ve

ra
ge

 te
st

in
g

er
ro

r
(R

M
S

)

Figure 8.4: The pruning results for the nonlinear system identi�cation when the multi-levelskipping procedure is imposed. 103

Chapter 8 Alternative Pruning Methods for RNN� Validation error Testing error No. of weights removedInitial 0.3325 0.6976 {0.1 0.3810 0.6830 220.2 0.3969 0.6871 300.3 0.4048 0.7223 330.4 0.4350 0.7040 340.5 0.4762 0.8760 35Table 8.17: The pruning results for the nonlinear system identi�cation when the sequencere-generation strategy and the multi-level skipping procedure are imposed.Prob. heurist Weight mag. heurist RandomNS (0:4; 0:6021; 19) (0:1; 0:6277; 9) {SLSP (0:2; 0:5962; 15) (0:2; 0:6340; 15) (0:1; 0:6703; 14)MLSP (0:2; 0:6335; 16) (0:2; 0:6339; 15) (0:2; 0:6257; 18)OWAT { { (0:1; 0:6830; 22)Table 8.18: Best case comparison. NS stands for the no-skipping pruning procedure, i.e.Algorithm 1. SLSP stands for the single-level-with-skipping pruning procedure, i.e. Al-gorithm 2. MLSP stands for the multilevel-skipping pruning procedure, i.e. Algorithm 3.OWAT stands for the one-weight-at-a-time pruning procedure, i.e. Algorithm 4.8.5.4 Algorithm 4Table 8.17 shows the results when the ranking list is allowed to be re-generated after eachpass. It is found that this procedure can greatly increase the number of weights beingpruned. The number of weights being removed increases as the value of � increases. How-ever, it seems that the increasing rate drops as the value of � increases and the number ofweights being removed will approach a limit, around 37, see Figure 8.5a. In a case whenthe value of � is smaller than or equal to 0:4, it is also observed that the pruned networksperform similarly. All of them generate similar testing error. Besides, when the value of �is set to be less than or equal to 0:2, the pruned network manifests better generalizationability, see Figure 8.5b.8.6 AnalysisThe best case results are depicted in Table 8.18. Figure 8.6 plots the average testing erroragainst the number of weights removed.According to the above simulation results, we have the following observations :� Using probability sensitivity to build the initial ranking list can lead to better general-ization. 104

Chapter 8 Alternative Pruning Methods for RNN(a) Number of weights pruned
0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

25

30

35

40

45

50

(b) Testing error
0 0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

delta

A
ve

ra
ge

 te
st

in
g

er
ro

r
(R

M
S

)

Figure 8.5: The pruning results for the nonlinear system identi�cation when the sequencere-generation strategy and the multi-level skipping procedure are imposed.105

Chapter 8 Alternative Pruning Methods for RNN

0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

A
ve

ra
ge

 te
st

in
g

er
ro

r
(R

M
S

)

No. of weight pruned

1a
1b
2a
2b
2c
3a
3b
3c
4

Figure 8.6: Summary of the pruning results for all the proposed pruning procedures.
106

Chapter 8 Alternative Pruning Methods for RNNAlgorithm Complexity1 Size2 Generalization31a 4 5 21b 1 9 42a 4 2 12b 2 4 72c 2 8 83a 4 3 53b 2 7 63c 2 6 34 3 1 9Table 8.19: Comparison of the performance of di�erent pruning procedures. 1The rankingis in accordance with order of complexity. 2The ranking is in according with the size of thepruned networks. At the same time, the networks must have a testing error smaller than0:6976. The one with the least number of weights will be rank number one. 3The rankingis simply following the data depicted in the last section.� No matter what type of pruning procedure is used, skipping procedure can always leadto a smaller size neural network.� For large � values,the alternative pruning procedures can usually remove more weightsthan the probability based procedure. This is one interesting observation that wecannot explain at this point.There are some other observations that we have made. They are not shown from the abovesimulation results.� For large network size, both RTRL and second order training methods are not ableto converge.� The number of levels in Algorithm 3, such as L3a, L3b and L3c, are smaller than5. They are much smaller than the total number of weights in the recurrent neuralnetwork.� The value of L4 is equal to the number of weights being removed. This value is usuallyproportional to (but smaller than) the total number of weights in the network. Thatis to say, the order of L4 should be in between O(n) and O(n2).By comparing the size of the pruned network, the generalization ability and the pruningcomplexity (see Table 8.19), it is found that using the probability heuristic (EKF basedpruning) together with the skipping procedure should be the best approach to pruningrecurrent neural networks if pruning complexity is not considered. The weight magnitudeheuristic with no skipping procedure is the one which requires the least computational cost.Whereas, one weight at a time (Algorithm 4) pruning can reduce a recurrent neural networkto a smaller size. 107

Chapter 8 Alternative Pruning Methods for RNN8.7 SummaryIn summary, we have reviewed the EKF-based pruning method for the recurrent neuralnetwork pruning. Because of its high computation costs, we thus proposed four alternativepruning algorithms trying to get rid of these problems. The essential idea behind thesealternative algorithms is the inclusion of skipping and re-pruning. In contrast to the con-ventional method | once a removal of weight will cause a large degradation of the networkperformance, we simply recover the weight and let the pruning process continue for the nextweight in the list until all the weights on the list have been checked. In this case, exper-imental results demonstrate that the size of the network can be further reduced withoutmuch loss to the generalization ability. Since the cost of checking the list one time or twotime is just di�erent by a constant, we proposed re-pruning. Once the whole list of weightshave been checked, the pruning process re-runs again and again until no more weight can beremoved. These skipping and re-pruning ideas are normally ine�cient when we are dealingwith feedforward neural network pruning. As pruning a recurrent neural network is alreadya di�cult problem, skipping and re-pruning does not introduce much overhead.The pruning performance of the presented pruning methods, in terms of computationalcomplexity, network size and generalization ability are analyzed. No simple conclusion hasyet been drawn from the analysis. No single algorithm is found to be e�ective in all threeperformance instances. The results presented in this chapter hopefully can o�er certainguidelines for the practitioner if they really want to apply recurrent neural network insolving real life problems such as system identi�cation and time series prediction.

108

Part IVSeveral Aspects of NeuralNetwork Learning

109

Chapter 9Approximate RealizationProperty of RNNRecurrent neural networks have been proposed for about a decade [94] and during thattime many di�erent recurrent neural network models have been proposed. The Jordanmodel [33] and Elman model [33] are two typical models in the literature of fully con-nected recurrent neural networks. Recently some other models have been proposed as well.Tsoi and Back [117] proposed a class of local recurrent global feedback networks for solv-ing problems mainly in non-linear system identi�cation and time series modeling. Gilesand coworkers [25] proposed a second order recurrent neural network applied to grammarlearning. Chen et al. [13] developed a recurrent radial basis function network for use in anon-linear system modeling problem. In applying such recurrent neural networks in systemidenti�cation, one basic assumption is that the applied model is able to realize any non-linear system. That is to say, for any given state space non-linear system, such recurrentneural networks are able to model such behavior as accurately as possible.In this chapter, we will attempt to discuss this approximate realization property. Usingsome of the latest theoretical results concerning the universal approximation property ofsome multilayered feedforward neural networks, we can readily show that the Jordan modeland recurrent radial basis function networks are able to realize any non-linear state-spacesystem with arbitrary accuracy. Besides, using the result derived by Funahashi [24], we canshow that any fully connected recurrent neural network with hidden units being de�nedby sigmoid function or radial basis function is able to realize any discrete-time non-linearstate-space system.In section one, some recent results on the approximation property of multilayer percep-tron and recurrent networks will be presented. The new result on the realization propertyof the Elman network will be given in Section two. Section three will present a conclusionfor this chapter.9.1 Recent ResultsFirst of all, let us state three theorems without proof. The prove of the approximation ca-pabilities of some recurrent network models will be based on these theorems. For simplicity110

Chapter 9 Approximate Realization Property of RNNof later discussion, some of these theorems are briey described, reader can refer to thereference cited for the original statement of such theorems.9.1.1 Multilayer perceptronTheorem 3 (Funahashi Theorem[24]) Let K be a subset of Rn and f : K ! Rm be acontinuous mapping. Then for an arbitrary � > 0, there exists a multilayer perceptron with�nite number of hidden nodes such thatmaxx2K kf(x)�W1�(W2x+ �)k < � (9.1)holds, where � : Rn ! Rn is a sigmoid mapping. The matrix W1;W2 corresponds to thehidden to output connection matrix and input to hidden connection matrix. 222Theorem 4 (Girosi-Poggio Theorem[26]) Let K be a subset of Rn and f : K ! Rmbe a continuous mapping. Then for an arbitrary � > 0, there exists a multilayer perceptronwith �nite number of hidden nodes such thatmaxx2K kf(x)�W1�(x;W2)k < � (9.2)holds, where � : Rn ! Rn is a radial basis function. 222Both of the above theorems show that a multilayer feedforward perceptron is a universalapproximator no matter whether the hidden units are de�ned as a sigmoid or radial basisfunction. It should be remarked that some other researchers have also obtained the sameresult, using di�erent approaches [21] [35].9.1.2 Recurrent neural networksFollowing Theorem 1, Funahashi and Nakamura further proved the approximate realizationproperty of recurrent neural networks as stated in the following theorem.Theorem 5 (Funahashi-Nakamura Theorem[24]) Let D be an open subset of Rn, f :D ! Rn be a C1-mapping. Suppose that dxdt = f(x) be de�ned a dynamical system onD. Let K be a subset of D and we consider trajectories of the system on the intervalI = [0; t0]. Then, for any � > 0, there exists a recurrent neural network with n output anda �nite number of hidden units such that for any trajectory of the system with initial valuex(0) 2 K and an appropriate initial state of the network,maxt2I kx(t)� y(t)k < � (9.3)holds, where y is the internal state of the output units of the network. 222111

Chapter 9 Approximate Realization Property of RNN
epsilon

K

z(k) : System

y(k) : RNNFigure 9.1: A graphical interpretation of the meaning of Theorem 3 and Theorem 4.The discrete-time trajectory approximation is recently proven by Jin et al. [40].Theorem 6 (Jin-Nikiforuk-Gupta Theorem[40]) Let D be an open subset of S, andf : S � Rn ! Rn be a continuous vector-valued function which de�nes the following non-autonomous non-linear systemz(k + 1) = f(z(k); u(k)); z 2 Rn; u 2 S; (9.4)with an initial state z(0) 2 K. Then, for any arbitrary number � > 0 and an integer0 < I < +1, there exist an integer N and a recurrent neural network of the formx(k + 1) = ��x(k) + A�(x(k) +Bu(k)); (9.5)y(k) = Cx(k); (9.6)where x 2 RN and y 2 Rn, with an appropriate initial state x(0) such thatmax0�k�I kz(k)� y(k)k < �: (9.7)222The basic achievement of the above theorems can be shown graphically in Figure 9.1.Theorem 1 concludes that the Jordan model is an universal approximator. Theorem 2implies that the recurrent RBF net is also a universal approximator.9.2 Realization property of Elman ModelThe approximation property of the recurrent RBF net can be implied from Theorem 2.Suppose the matrix A in equation (9.5) is operated before the non-linear function �, it can112

Chapter 9 Approximate Realization Property of RNNbe shown that the universal approximation property still holds. The idea of proof is basedon Theorem 1.Theorem 7 Let D be an open subset of S, and f : S � Rn ! Rn be a continuous vector-valued function which de�nes the following non-autonomous non-linear systemx(k+ 1) = f(x(k); u(k)); (9.8)y(k) = Cx(k): (9.9)Then, for an arbitrary number � > 0 and an integer 0 < I < +1, there exist an integer Nand a recurrent neural network of the formx(k + 1) = �(Ax(k) + Bu(k)); (9.10)y(k) = Dx(k); (9.11)where x 2 RN and y 2 Rn, with an appropriate initial state x(0) such thatmax0�k�I kz(k)� y(k)k < �: (9.12)(Proof) In accordance with Theorem 1, there exists a multilayer perceptron with �nitenumber of hidden nodes such thatjf(x(t); u(t))� U�(V1x(t) + V2u(t))j < � (9.13)holds, where � : Rn ! Rn is a sigmoid mapping. The matrix V1; V2 corresponds to thehidden to output connection matrix and input to hidden connection matrix. The corre-sponding structure is shown in Figure 9.2a. As x(t + 1) in the output will feedback to theinput for next iteration, the structure can be redrawn as Figure 9.2b. Suppose we let x̂(t)be the output of the hidden layer, we can establish a relation for x̂(t+ 1) and x̂(t) as :x̂(t+ 1) = �(UV1x̂(t) + V2u(t)); (9.14)and the output of the network being y(t) = CUx̂(t): (9.15)As the existence of U; V1 and V2 is guaranteed, A = UV1, B = V2, and D = CU exist.This implies that every non-linear state-space model in the form of (9.8) and (9.9) can bemodeled by an Elman network. And the proof is completed. 222It should be noted that there are certain di�erences between our result and those ofthe others. (i) In Jin et al.'s work, the model considered is a local recurrent model similarto that proposed in [117] where the feedback is before the non-linearity, while the modelproven in the last theorem is with the feedback after the non-linearity. (ii) In the Funahashi-Nakamura Theorem and Jinet al. Theorem, the output of the recurrent neural network isused for the modeling of the state of the state-space model. In our work, the output of113

Chapter 9 Approximate Realization Property of RNN
x(t+1)

x(t) u(t)

U

V2V1 (a)
x(t+1)

x(t) u(t)

U

V2V1

D

(b)Figure 9.2: The universal approximation property.114

Chapter 9 Approximate Realization Property of RNN
u(t)

f(x,u)

x(t)

CDelay
x(t+1) y(t)

SYSTEM

u(t)

CRNN

u(t) y(t)

RNN

Theorem 3/ Theorem 4

Theorem 5

y(t)

Figure 9.3: Comparison of the di�erence between Theorem 3, 4 and 5.the recurrent neural network is for the identi�cation of the output of the state model, (seeFigure 9.3). This property is extremely important. Since we in general have no idea aboutthe dimension of the state of the non-linear system being identi�ed, even if we can haveinformation on the dimension, it may not be possible to measure such state information. Inpractice, we can generally have the series of input-output data. Therefore, Theorem 3 and4 are not su�cient to support such a situation. (iii) The Funahashi-Nakamura Theorem[24]is for continuous non-linear autonomous systems while Theorem 5 is for discrete-time non-linear non-autonomous systems. For clarity, Table 9.1 summarizes the above theorems andtheir di�erences.It should be remarked that the same result can be readily shown if the non-linear function� in Equation (9.10) is replaced by radial basis function, � : Rn ! Rn. The proof is basedon the result in Theorem 2. 115

Chapter 9 Approximate Realization Property of RNNThm Model1 MLP with g de�ned as sigmoidalJordan model2 MLP with g de�ned as radial functionRecurrent RBF network3 Continuous-time RNN4 x(k + 1) = ��x(k) + A�(x(k) +Bu(k))5 x(k + 1) = �(Ax(k) + Bu(k))Elman ModelTable 9.1: Summary of the signi�cance of the theorems.9.3 SummaryIn this chapter, we have reviewed some of the recent results concerning the approximationproperty of multilayer perceptrons and recurrent networks. Following the theorem statedin [24] and [26], we are able to argue that the Jordan model and recurrent RBF network areuniversal approximators. Furthermore, we are able to show that the discrete-time recurrentnetwork model proposed by Elman can approximate any discrete-time state space system.These results provide a theoretical foundation for those who apply the Elman networkin system identi�cation and time series prediction. Using similar techniques, it is readilyshown that if the hidden unit nonlinearity of the Elman network is replaced by a radial basisfunction, the recurrent network is still able to realize any non-linear state-space system.

116

Chapter 10Regularizability of FRLSDue to its fast convergence rate and its adaptive behavior, the forgetting recursive leastsquare (FRLS) method has recently been applied widely in the training of feedforwardneural network. As in many applications, such as system identi�cation and time seriesprediction, a batch of training data usually cannot be obtained in advance. Therefore,conventional batch mode training techniques such as backpropagation, the Newton methodand other nonlinear programming techniques, cannot be easily applied. Thus, the useof the FRLS method or other adaptive training methods become inevitable. With theincreasing popularity of using FRLS in neural network learning [12] [15] [48] [56] [57] [95]and pruning[56] [57], it is interesting to further investigate other properties besides itsadaptive behavior.Regularization is one approach to facilitate a better generalization for the neural networktraining. There have been many articles focusing on the design of a regularizer [128], the useof regularization [42] [67] and the e�ect of regularization in model complexity [75] [76] [79].In general, regularization is a method which aims at reducing the model complexity [42],[53], [67], [74], [75], [76] and [79]. In the conventional batch mode training approach,regularization is usually realized by adding an extra term or a penalty term to the trainingerror function. Three commonly used de�nitions are weight decay term [74], Tikhonovregularizer [114, 8, 42] and smooth regularizer [128].In this chapter, we will discuss the regularization behavior of the FRLS training method.This chapter is organized into eight sections. In section one, the FRLS training method willbe introduced. The main result will briey be presented in section two, and the relationshipbetween FRLS and weight decay in section three. We derive, from the very �rst principle,two equations describing the expected mean training error and the expected mean predictionerror. The former one will be derived in section four and the latter one will be derived insection �ve. The derivation of the main result will thus be presented in section six. Insection seven, by comparing these with the error equations obtained for recursive leastsquare, we show that, under certain conditions, the model complexity and the expectedprediction error of a model being trained by FRLS could both be smaller than that gainedwhen the model is trained using RLS method. Finally, we conclude the chapter in sectioneight. 117

Chapter 10 Regularizability of FRLS10.1 PreliminaryThe model being discussed in this chapter is the generalized linear model de�ned as follows :y(x) = 'T (x)�0 + �; (10.1)where y; � 2 R, �0; '(x) 2 Rn and � is a mean zero Gaussian noise. '(x) is a nonlinear vectorfunction depending on the input x 2 Rm. �0 is assumed to be the true model parameter.In neural network literature, model (10.1) represents many types of neural networkmodel. One example is the radial basis function network [28] if the ith element of '(x),'i(x), is de�ned as exp��12(x�mi)T�i(x�mi)� ;where �i 2 Rm�m is a �xed positive de�nite matrix and mi 2 Rm is a �xed m-vector.�0 would then be the output weight vector. In nonlinear system modeling, model (10.1)can also represent a Volterra series [43]. Suppose that x = (x1; x2; : : : ; xm)T and '(x) isa 2m-vector which consists 1, xi (for all i = f1; : : : ; mg), xixj (for all i; j = fi; : : : ; mg),xixjxk (for all i; j; k = fi; : : : ; mg ,: : :, x1x2 � � �xm, as the elements.Considering model (10.1), we usually de�ne the estimator as follows :ŷ(x) = 'T (x)�̂; (10.2)where �̂ is the estimate of the true parameter �0.By feeding the training data one by one, the estimate �̂ can be updated iteratively basedon the forgetting recursive least square method [33]. Let �̂(t) be the optimal estimation of�0 when t data have been fed, the training can be accomplished via the following recursiveequations : S(t) = 'T (xt)P (t� 1)'(xt) + (1� �) (10.3)L(t) = P (t � 1)'(xt)S�1(t) (10.4)P (t) = (In�n � L(t)'(xt))P (t� 1)1� � (10.5)�̂(t) = �̂(t� 1) + L(t)(y(xt)� 'T (xt)�̂(t� 1))); (10.6)with the initial conditions : �̂(0) = 0 (10.7)P (0) = ��1In�n; (10.8)and � is the forgetting factor in between zero and one.In the theory of system identi�cation [43], the objective of the above recursive algorithmis to minimize the cost function J(�(t)), whereJ(�(t)) = tXk=1wk(y(xk)� 'T (xk)�̂(t))2 + �k�(t)k2; (10.9)118

Chapter 10 Regularizability of FRLSwhere f'(xk); y(xk)gtk=1 is the training data set and wk = (1� �)t�k. Note that 1 � wi >wj � 0, for all 1 � i < j � t. These weighting factors will lead to capturing the informationobtained from the most recent training data more than the earlier training data. Fork = t, the weighting on (y(xt) � 'T (xt)�̂(t)) is one. When k = t � 1, the weighting on(y(xt�1)� 'T (xt�1)�̂(t)) is (1� �). This factor is smaller than one. As a result, the factorwk serves as a weighting factor which counts the information obtained from the most recenttraining data more than the earlier training data.10.2 The Main ResultA criterion for measuring the performance of (10.2) is the mean prediction error [5], thatis the accuracy of the model in predicting the output of an unseen data xF :MPE(t) = Z
� Z
x(y(xF)� 'T (xF)�̂(t))2p(xF)p(�)dxFd�; (10.10)where p(xF) and p(�) are the probability density functions of xF and � respectively. ThisMPE(t) depends on the estimator �̂(t) and hence it is a random variable dependent on thetraining set, f'(xk); y(xk)gtk=1. Therefore, another criterion would be the expected meanprediction error [75, 79, 98] which is de�ned as follows :hMPE(t)i�t = �Z
� Z
x(y(xF)� 'T (xF)�̂(t))2p(xF)p(�)dxFd���t : (10.11)h:i�T denotes the expectation over the training set, �t = f'(xk); �tgtk=1.Assuming that t is large enough and � is very small, by using a similar technique to thatdepicted in papers [5], [53], [75], [79] and [98], we can derive thathMPE(t)i�t � �0 241 + 2t nXk=1 �̂k�̂k + ��!235 ; (10.12)where �0 is the variance of the output noise �t and �̂k is the kth eigenvalue of the matrixH = 1t tXk=1'(xk)'T (xk)and limt!1H = h'(x)'T(x)i
x :Besides, if we de�ne the mean training error as follows :hMTE(t)i�t = *1t tXk=1(y(xk)� 'T (xk)�̂(t))2+�t ; (10.13)we could further relate the prediction error and the training error by the following equation :hMPE(t)i�t � hMTE(t)i�t + 2�0t nXk=1 �̂k�̂k + �� : (10.14)The derivation of Equation (10.14) will be shown in the following sections.119

Chapter 10 Regularizability of FRLS10.3 FRLS and weight decayComparing (10.14) to that obtained from weight decay [75], it will be realized that the FRLStraining method has an e�ect similar to weight decay training. This result is extremelyuseful. The reason can be explained as below.In weight decay, the cost function is de�ned as follows :JWD(�) = 1N NXk=1(y(xk)� 'T (xk)�)2 + c0k�k2; (10.15)where c0 is the regularization factor controlling the penalty due to large weight. Theestimate �̂ is the one which maximizes JWD(�), that is�̂ = argmax� (1N NXk=1(y(xk)� 'T (xk)�)2 + c0k�k2) :By comparing Equation (10.15) with the objective function of recursive least square,1N NXk=1(y(xk)� 'T (xk)�̂(N))2+ c0k�̂(N)k2;one can readily apply RLS method by setting �(0) to be zero vector and P (0) = (c0N)�1In�n.However, in on-line mode training, we usually do not know whatN exactly is. We just knowthat training data will come one after the other. In such a case, a simple recursive algorithmcannot be easily derived.Therefore, based on the �nding that the FRLS training method is asymptotically iden-tical to weight decay training, we can now have an elegant on-line training method whichcan accomplish the same e�ect as weight decay if �� = c0.10.4 Derivation of the Expected Mean Training ErrorIn accordance with the theory of identi�cation, the objective of FRLS is to minimize thecost function de�ned as (10.9) :J(�̂(t)) = tXk=1(1� �)t�k(y(xk)� 'T (xk)�̂(t))2 + �k ^�(t)k2;where f'(xk); y(xk)gtk=1 is the training data set. Di�erentiating (10.9) once with respectto �̂(t) and equating it to zero, we can derive the solution of �̂(t) :�̂(t) = " tXk=1(1� �)t�k'(xk)'T (xk) + �I#�1 " tXk=1(1� �)t�k'(xk)y(xk)# : (10.16)Replacing y(xk) by its de�nition, Equation (10.1), and using Equation (10.16), it canbe shown thaty(xk)� 'T (xk)�̂(t) = �k + �'T (xk)G�11 �0�'T (xk)G�11 " tXk=1(1� �)t�k'(xk)�k# ; (10.17)120

Chapter 10 Regularizability of FRLSwhere G1 = tXl=1(1� �)t�l'(xl)'T (xl) + �I: (10.18)Note that for k = 1; : : : ; t, �k is a zero mean Gaussian noise with variance �0 for all k =1; 2; : : : ; t: By squaring Equation (10.17), summing up for k from 1 to t and taking theexpectation over the set �t, we can thus obtain an equation for the expected training error.Assuming that t is large enough,G1 � 1�h'(x)'T(x)i
x + �I: (10.19)* tXk=1(y(xk)� 'T (xk)�̂(t))2+�T = t�0 + �20 tXk=1'T (xk)G�11 �0�T0 G�11 '(xk)+�0 tXk=1'T (xk)G�11 H2G�11 '(xk)�2�0 tXk=1(1� �)t�k't(xk)G�11 '(xk) (10.20)� t�0 + �2trfHG�11 �0�T0 G�11 g�2�0trfH1G�11 g+ �0trfHG�11 H2G�11 g;(10.21)where tr is the trace operator,H1 = tXk=1(1� �)t�k'(xk)'T (xk)� 1� h'(x)'T(x)i
x : (10.22)H2 = tXk=1(1� �)2(t�k)'(xk)'T (xk) (10.23)� 11� (1� �)2 h'(x)'T(x)i
x (10.24)Therefore, the expected mean training error can be rewritten as follows :hMTE(t)i�T = 1N * tXk=1(y(xk)� 'T (xk)�̂(t))2+�T (10.25)= �0 + �0N �trfHG�11 H2G�11 g � 2trfH1G�11 g�+�2N trfHG�11 �0�T0 G�11 g: (10.26)121

Chapter 10 Regularizability of FRLS10.5 Derivation of the Expected Mean Prediction ErrorNext, we are going to derive the equation for the expected mean prediction error de�nedin Equation (10.11). First, let us derive an equation for �0 � �̂(t). Using the result inEquation (10.16) once again, we can readily show that�0 � �̂(t) = �0 � G�11 " tXk=1(1� �)t�ky(xk)'(xk)#= �G�11 �0 � G�11 tXk=1(1� �)t�k�k'(xk) (10.27)and hence h(�0 � �̂(t))(�0 � �̂(t))T i�t = �2G�11 �0�T0 G�11 + �0G�11 H2G�11 : (10.28)Recall that the de�nition of the expected mean prediction error is as follows :hMPE(t)i�t = �Z
� Z
x(y(xF)� 'T (xF)�̂(t))2p(xF)p(�)dxFd���t :Since �̂(t) is a random variable independent of x and �, Equation (10.11) can be rewrittenas follows :hMPE(t)i�t = �0 + tr�Z
x '(xF)'T (xF)p(xF)dxF h(�0 � �̂(t))(�0 � �̂(t))T i�t� : (10.29)Suppose that t is large enough, we approximate R
x '(x)'T(x)p(x)dx by t�1H . By using(10.28), we can show thathMPE(t)i�t � �0 + �2t tr n�2G�11 �0�T0 G�11 o+ �0t trnG�11 H2G�11 o : (10.30)10.6 Derivation of Equation for MPE and MTEComparing Equation (10.30) and (10.26), it can be shown thathMPE(t)i�T � hMTE(t)i�T + 2�0t trfH1G�11 g: (10.31)As when t is large, H1 = tXk=1(1� �)t�k'(xk)'T (xk) (10.32)� 1�tH (10.33)� 1�t Z
x '(x)'T (x)p(x)dx; (10.34)122

Chapter 10 Regularizability of FRLSand G1 � 1�tH + �I (10.35)� 1�t Z
x '(x)'T(x)p(x)dx+ �I: (10.36)Using the asymptotic approximations, Equation (10.33) and Equation (10.35), for H1 andG1, we could get that trfH1G�11 g � tr(1tH �1t H + ��I��1) : (10.37)Let �̂k be an estimate of the kth eigenvalue of the matrix R
x '(x)'T(x)p(x)dx,hMPE(t)i�T � hMTE(t)i�T + 2�0t nXk=1 �̂k�̂k + �� : (10.38)10.7 Comparison with recursive least squareOnce the factor � is zero, it should be noted that the algorithms (10.3)-(10.6) can bereduced to the standard recursive least square (RLS) method. Using a similar technique,Equations (10.18), (10.22) and (10.24), the following equalities will be obtained.G1(� = 1) = G: (10.39)H1(� = 1) = H: (10.40)H2(� = 1) = H: (10.41)Then the mean prediction error and the mean training error for RLS method can readilybe derived.hMPE(t)i�T � �0 + �2t tr n�2G�1�0�T0 G�1o+ �0t tr nG�1HG�1o : (10.42)hMTE(t)i�T = �0+�0t �trfHG�1HG�1g � 2trfHG�1g�+ �2t trfHG�1�0�T0 G�1g: (10.43)In such a case the di�erence between the expected mean prediction error and the expectedmean training error will be equal to 2�0t trfHG�1g, i.e.hMPE(t)i�T � hMTE(t)i�T + 2�0t trfHG�1g= hMTE(t)i�T + 2�0t nXk=1 �̂k�̂k + �=t : (10.44)Suppose t is very large, the second term in Equation (10.44) would be equal to 2�0n=t.If we de�ne the network complexity as the e�ective number of parameters, Equa-tion (10.38) and Equation (10.42) reveal that the complexity of the models being trainedby using FRLS is usually smaller than that by using RLS.123

Chapter 10 Regularizability of FRLSApart from the di�erence in the model complexity, we can also show that under certainconditions, the expected mean prediction error generated by the network being trained byFRLS is smaller than that by using RLS. Again, we consider the asymptotic situation.We let h'(x)'T(x)i be R
x '(x)'T(x)p(x)dx. The following approximations can readily beobtained. H � 1t h'(x)'T(x)i (10.45)H1 � 1�h'(x)'T(x)i (10.46)H2 � 12�� �2 h'(x)'T(x)i (10.47)G1 � 1�h'(x)'T(x)i+ �I: (10.48)Using these approximated equations and considering the factors G�11 H2G�11 and G�1HG�1in the Equations (10.30) and (10.42), one can show that:G�11 H2G�11 � � 1�h''Ti+ �I��1 � 12�� �2 h''T i� � 1�h''T i+ �I��1 (10.49)G�1HG�1 � hth''T i+ �Ii�1 hth''T ii hth''T i+ �Ii�1 ; (10.50)and if 1� > t > 12� (10.51)or equivalently 1t > � > 12t ; (10.52)the expected mean prediction error of using FRLS will be smaller than that of using RLS.10.8 SummaryIn this chapter, we have presented certain analytical results regarding the use of the forget-ting recursive least square method in the training of a linear neural network. The expectedmean prediction error and the expected mean training error are derived from the �rst prin-ciple with the assumptions that the number of training data is large and the output noise� is a zero mean Gaussian noise. Using these error equations, we are able to analyze andcompare the behavior of FRLS with RLS. First, we have shown that FRLS has an inherentweight decay (regularization) e�ect. In RLS training, this e�ect is not persistent. It willfade out as the number of training data is increasing [56][57]. Second, we have shown thatthe expected mean prediction error of using FRLS can be smaller than that of using RLS ifthe forgetting factor � is set appropriately. 124

Chapter 11Equivalence of NARX and RNNNonlinear Autoregressive models with exogenous input (NARX model) and recurrent neu-ral networks (RNN) are two models commonly used in system identi�cation, time seriesprediction and system control. Formally, a NARX model [10, 11, 62, 82, 96], is de�ned asfollows : y(t) = g(y(t� 1); : : : ; y(t� ny); u(t); : : : ; u(t� nu)); (11.1)where u(t) and y(t) correspond to the input and output of the network at time t; ny andnu are the input order and output order respectively. A simple example is illustrated inFigure 11.1 with ny = 1 and nu = 0. This model is expressed as follows :y(t) = 3Xi=1 �i tanh(�iy(t� 1) + iu(t) + �i);where tanh(x) = ex � exex + ex :Parameters �i and i are usually called the input weight and the parameter �i is calledbias. The parameter �i is called output weight. This model is basically a multilayerperceptron [94] except that the output is feedback to the input.On the other hand, a RNN [39, 40, 41, 125, 90, 101, 123] is de�ned in a state-spaceform : ~s(t) = g(~s(t� 1); u(t); u(t� 1); : : : ; u(t� nu)) (11.2)y(t) = cT~s(t); (11.3)where ~s(t) is the output of the hidden units at time t and c is the output weight vector.A simple example which consists of three hidden units is illustrated in Figure 11.2. Thismodel is expressed as follows :s1(t) = tanh 3Xk=1 ~�1ksk(t) + ~1u(t) + ~�1! ; (11.4)s2(t) = tanh 3Xk=1 ~�2ksk(t) + ~2u(t) + ~�2! ; (11.5)125

Chapter 11 Equivalence of NARX and RNN
u(t)

y(t)

D

Output

Input

Neuron

D Time Delay Element

y(t-1)Figure 11.1: A NARX models3(t) = tanh 3Xk=1 ~�3ksk(t) + ~3u(t) + ~�3! ; (11.6)y(t) = 3Xk=1 ~�ksk(t): (11.7)~s(t) = (s1(t); s2(t); s3(t))Tand c = (~�1; ~�2; ~�3)T :Parameters ~i, ~�ij , ~�i and ~�i are called the input weight, the recurrent weight, the bias andthe output weight respectively.In contrast to the NARX model, RNN does not have feedback connections from theoutput to the input. The feedback connection exists only amongst the neurons in thehidden layer.According to their structural di�erence, the NARX model and RNN are studied inde-pendently. Only a few papers have presented results concerning their similarity [19, 84].Olurotimi [84] has recently showed that every RNN can be transformed into a NARX model.Thus he derived an algorithm for RNN training with feedforward complexity.Inspired by Olurotimi's work, in the rest of the chapter, we would like to present someother aspects regarding the equivalence between NARX and RNN. Section two presents126

Chapter 11 Equivalence of NARX and RNN

Neuron

y(t) Output

u(t) Input

s1(t) s2(t) s3(t)

s1(t-1)

s2(t-1)s3(t-1)

Time delay elementFigure 11.2: Recurrent neural network model.the major result, the model equivalence between NARX and RNN. Three issues concerningthe use of these equivalence results are studied in section three. Finally, we conclude thechapter in section four.11.1 Model EquivalenceAssuming that the system being identi�ed is deterministic and given byx(t + 1) = g(x(t); u(t+ 1)) (11.8)y(t+ 1) = cx(t+ 1); (11.9)where x(t); y(t) is the system input and output, due to the universal approximation propertyof a feedforward neural network [21, 100, 101, 107], the nonlinear function g thus can beapproximated by a feedforward neural network. Hence, the above system can be rewrittenas follows : x(t+ 1) = nXi=1 di tanh(aix(t) + biu(t+ 1) + ei) (11.10)y(t+ 1) = cx(t+ 1); (11.11)where fai; bi; di; eigni=1 and c are the system parameters.127

Chapter 11 Equivalence of NARX and RNN11.1.1 tanh neuronIf x; y; u are scalarsObviously, system (11.10) and (11.11) is equivalent to a NARX model if we substitute x(t)in Equation (11.10) by c�1y(t). That is,y(t+ 1) = nXi=1 �i tanh(�iy(t) + iu(t+ 1) + �i) (11.12)with �i = cdi, �i = aic�1, i = bi and �i = ei.If, we let si(t+ 1) = tanh(aix(t) + biu(t+ 1) + ei) for all i = 1; : : : ; n, Equation (11.10)and (11.11) can be rewritten assi(t+ 1) = tanh nXk=1 ~�iksk(t) + ~iu(t+ 1) + ~�i! ; (11.13)y(t) = nXk=1 ~�ksk(t); (11.14)where ~�ik = aidk, ~i = bi, ~�i = ei and ~�i = cdi.By comparing the coe�cients amongst (11.10), (11.11), (11.12), (11.13) and (11.14), wecan de�ne the following transformations :~�ik = �i�k ; (11.15)~i = i; (11.16)~�i = �i; (11.17)~�i = �i: (11.18)Let [~�] be the matrix (~�ik)n�n, the vector form is given byh~�i = ��T ; ~ = ; ~� = �; ~� = �: (11.19)This establishes a way to transform a NARX to a recurrent neural network. The inversetransformation of a RNN to a NARX model can be accomplished via the following equa-tions : � = (~�T ~�)�1 h~�i ~�; (11.20) = ~; (11.21)� = ~�; (11.22)� = ~� (11.23)as long as � (or ~�) is non-zero vector. 128

Chapter 11 Equivalence of NARX and RNNIf x; u; y are vectorsIf u 2 RM , x; y 2 RN , the vector NARX model is given by~y(t + 1) = nXi=1W1 tanh(W2 ~y(t) +W3 ~u(t+ 1) +W4); (11.24)where W1 2 RN�n, W2 2 Rn�N , W3 2 Rn�M and W4 2 Rn. Similarly, an equivalenttransformation can be established for RNN~s(t+ 1) = tanh(~W2 ~s(t) + ~W3 ~u(t+ 1) + ~W4) (11.25)~y(t+ 1) = ~W1 ~s(t+ 1) (11.26)via the following equations : ~W1 = W1; (11.27)~W2 = W2W1; (11.28)~W3 = W3; (11.29)~W4 = W4: (11.30)For getting back the NARX model, we can perform the inverse transformation de�ned asfollows : W1 = ~W1 (11.31)W2 = ~W2 ~WT1 (~W1 ~WT1)�1 (11.32)W3 = ~W3 (11.33)W4 = ~W4 (11.34)for ~W1 is nonsingular.11.1.2 Piece-wise linear neuronOnce the neuron's transfer function is piece-wise linear, i.e.~y(t + 1) = W1f(W2~y(t) +W3~u(t+ 1) +W4); (11.35)where f(x) = 8><>: 1 if x > 1x if �1 � x � 1�1 if x < �1 (11.36)this result can be extended to higher order NARX models. Without loss of generality, weconsider a second order NARX :~y(t+ 1) = W1f(W20~y(t) +W21~y(t � 1) +W3~u(t+ 1) +W4): (11.37)129

Chapter 11 Equivalence of NARX and RNNNow we de�ne a state-vector ~z(t) = (~s(t) ~s(t� 1))T , where ~s(t+1) = f(W20~y(t)+W21~y(t�1) +W3~u(t+ 1) +W4). Since s = f(s) if s is bounded by �1, we can rewrite the model asfollows : ~z(t + 1) = f(~W2~z(t) + ~W3~u(t+ 1) + ~W4) (11.38)~y(t + 1) = ~W1~z(t+ 1) (11.39)where ~W1 = h W1 ON�n i : (11.40)~W2 = " W20W1 W21W1In�n On�n # (11.41)~W3 = " W3On�M # (11.42)~W4 = " W4On�1 # : (11.43)Note that ~W1 2 RN�2n, ~W2 2 R2n�2n, ~W3 2 R2n�M and ~W4 2 R2n�1.11.2 Implications of the equivalence property11.2.1 On trainingOne should note from the equation, ~W2 = W2W1, that the number of parameters in RNN isfewer than NARX if n < N (since ~W2 2 Rn�n while W2 2 Rn�N), where n is the numberof hidden units and N is the number of output units.In most of the applications of NARX in dynamic system modeling, the output dimensionis small. Suppose we ignore the computational complexity in each training step, and wepurely look at the number of parameters being updated, training a NARX should be fasterthan training a RNN. It will be a doubtful if the dimension of ~y is larger than the numberof hidden units. That is n < N .Suppose a NARX is being trained by using the forgetting recursive least square1 (FRLS)method. Let � be the augmented vector including all the parameters fW1;W2;W3;W4g,xt = (~yT (t�1); ~uT(t))T and '(t) = @y(t)@� , the training can be accomplished via the followingrecursive equations. S(t) = 'T (t)P (t� 1)'(t) + (1� �)IN�N (11.44)L(t) = P (t� 1)'(t)S�1(t) (11.45)P (t) = (Idim��dim � � L(t)'(xt))P (t� 1)1� � (11.46)�(t) = �(t� 1) + L(t)(y(t)� y(xt; �(t� 1))); (11.47)1We pick up FRLS for discussion simply because it is a fast training method for a feedforward neuralnetwork [11, 56, 95]. 130

Chapter 11 Equivalence of NARX and RNNwith the initial conditions �(0) = 0 and P (0) = ��1Idim ��dim � and 0 < � < 1, and � is asmall positive number. y(xt; �(t�1)) is the output of the NARX model at the tth step. Thecomputational burden is on Equation (11.45) and Equation (11.46) which requires O(dim �3)multiplication. Even though some decomposition on P (t) can speed up the training [89, 90],the complexity is still of the same order if N � n.Next, if the same dynamic system is identi�ed by a RNN, the extended Kalman �lterapproach [104, 113, 123] is one fast method which can simultaneously estimate the statevector ~s(t) and identify the parametric vector �̂(t) :ŝ(tjt� 1) = g(ŝ(t� 1jt� 1); u(t); �̂(t� 1)) (11.48)P (tjt � 1) = F (t � 1)P (t� 1jt� 1)FT (t� 1); (11.49)" ŝ(tjt)�̂(t) # = " ŝ(tjt� 1)�̂(t� 1) #+ L(t)e(t) (11.50)e(t) = �~y(t)� ~y(ŝ(tjt � 1); �̂(t � 1))�P (tjt) = P (tjt � 1)� L(t)HT (t)P (tjt � 1); (11.51)where F (t + 1) = " F11(t+ 1) F12(t+ 1)0dim��n Idim ��dim � # ; (11.52)F11(t + 1) = @sg(ŝ(tjt); u(t+ 1); �̂(t))F12(t + 1) = @�g(ŝ(tjt); u(t+ 1); �̂(t))HT (t) = [@Ts y(t) @T� y(t)] (11.53)L(t) = P (tjt � 1)H(t)S�1(t) (11.54)S(t) = HT (t)P (tjt � 1)H(t) + rIN�NThe initial P�1(0j0) is set to be a zero matrix and �̂(0) is a small random vector. We haveg(ŝ(tjt); u(t+ 1); �̂(t))= tanh(Ŵ2(t) ŝ(tjt) + Ŵ3(t) ~u(t+ 1) + Ŵ4(t)): (11.55)The computational burden is again on P (tjt) which requires O(dim �̂3) multiplication.Since � is the augmented vector including all the parameters fW1;W2;W3;W4g and �̂is the augmented vector including all the parameters f ~W1; ~W2; ~W3; ~W4g, the dimension of� will be the total number of elements in W1, W2, W3 and W4. That isdim � = n(2N +M + 1):Similarly, the dimension of �̂ is given bydim �̂ = n(n+M +N + 1):By comparing their computational complexities on updating the matrix P (t) and P (tjt)respectively, it is observed that training RNN may not be more time consuming than traininga NARX model. So, we suggest the following indirect method for training NARX and RNN :131

Chapter 11 Equivalence of NARX and RNNa. If N > n and NARX has to be trained, we can �rst initialize a random NARX modeland transform it to a RNN model. We then train the RNN using the extended Kalman�lter method. Once the training is �nished, we inversely transform RNN to a NARXmodel.b. If N < n and RNN has to be trained, we can �rst initialize a random RNN andtransform it to a NARX. We then train the NARX using the forgetting recursive leastsquare method. Once the training is �nished, we inversely transform a NARX to RNNmodel.11.2.2 On pruningOne should also realize that this equivalence result sheds light on the design of a moree�ective RNN pruning algorithm. As indicated in some papers [62, 125, 104], pruning aRNN is basically more di�cult than pruning a feedforward neural network. One reasonis the evaluation of the second order derivative of the error function. Therefore, it will beinteresting to see whether we can reformulate the RNN pruning in such a way that is similarto a feedforward network pruning.The idea is simple. After the RNN has been trained, it is transformed to an equivalentNARX model. Then we can apply optimal brain damage [55, 91] or other techniques [31,76, 126] to prune the NARX model. Empirically, pruning a feedforward neural networkis usually easier than pruning a recurrent neural network [56, 104]. Once the pruningprocedure is �nished, we transform it back to a RNN model. Of course, this kind of indirectpruning procedure for RNN does not ensure that the number of weights will be reduced.Note that not all pruning techniques for feedforward networks can be applied. Twoexamples are the statistical stepwise method (SSM) [20] and RLS based pruning [56] astheir pruning methods require information which can only be obtained during training.To do so, we will have to transform the RNN to an equivalent NARX model at the verybeginning. Once the RNN is initialized, it is transformed to an equivalent NARX model.Once training of this equivalent NARX model is �nished, we can apply methods such asstatistical stepwise method, RLS based pruning and non-convergent method [22] to prunethe NARX model. After pruning is �nished, the pruned NARX model is transformed backto a RNN. For clarity, we summarize all these training and pruning ideas graphically inFigure 11.3.11.2.3 On stability analysis of NARX modelStability is one concern that researchers would like to know once a dynamic system has beenidenti�ed. In RNN, some results on this issue have recently been derived [41, 100, 101]. Inaccordance with the equivalence of NARX and RNN, we can readily use these theorems toanalyze the system stability.Theorem 8 A NARX model de�ned as in (11.24) is stable if the magnitude of all theeigenvalues of W2W1 are smaller than one. 132

Chapter 11 Equivalence of NARX and RNN
R

R

R

N

R N

R

N N R

NRR

R RN

RNNN

N

R NN

Recurrent Neural Network NARX model

Training

Transformation Training

Training

Pruning

PruningTraining

Training

Transformation

TransformationTransformation

Transformation Transformation

TransformationTransformation

Training

Figure 11.3: Summary of the training and pruning ideas implied by the model equivalence.(Proof) Using the equivalence relation, a NARX model~y(t+ 1) = nXi=1W1 tanh(W2 ~y(t) +W3 ~u(t+ 1) +W4);can be transformed to~s(t+ 1) = tanh(~W2 ~s(t) + ~W3 ~u(t+ 1) + ~W4)~y(t+ 1) = ~W1 ~s(t+ 1)When no input is fed to the system, the di�erence between ~s(t+ 1) and ~s(t) is given byk~s(t+ 1)� ~s(t)k = k tanh(W2W1~s(t) +W4)� tanh(W2W1~s(t� 1) +W4)k� kW2W1kk~s(t)� ~s(t� 1)k:Therefore, if all the eigenvalues of W2W1 are smaller than one, limt!1 k~s(t+1)�~s(t)k = 0,which implies that ~s(t) will converge to a constant vector ~s0. Hence limt!1 ~y(t) = W1~s0.And the proof is completed. 2133

Chapter 11 Equivalence of NARX and RNN
u(t) y(t)Dynamic System

NARX Identifier

(b)

(a)

Dynamic System

NARX Identifier

W0

y(t)Figure 11.4: (a) Training of a NARX model to identify an unknown dynamic system. (b)Once the system is identi�ed, an output feedback controller, ~u(t + 1) = W0~y(t), can bedesigned.One consequence of Theorem 8 is on the design of a feedback controller for a dynamicsystem. Assuming that an unknown system is already identi�ed by a NARX model with~y0 being an equilibrium and the system is unstable, due to disturbance, the output of ~y0shifts to ~y0 +�~y. In order to make the output of the system go back to ~y0, one can designan output feedback controller as shown in Figure 11.4b,~u(t+ 1) = W0~y(t)with W0 satis�es the condition that all the eigenvalues of (W2+W3W0)W1 are smaller thanone. Usually, researchers proposed to use two neural networks, one for identi�cation and theother for control [50, 80, 89, 90]. In order to make the controller work, two-phase trainingis needed. In the �rst phase, a neural network identi�er has to be trained to identify thedynamical behavior of the system. Then, in the second phase, the weight values of theidenti�er are �xed and the controller network is trained. This will be a time consuming anddi�cult to implement as an on-line control method.134

Chapter 11 Equivalence of NARX and RNN11.3 SummaryIn this chapter, we have presented several results on the equivalence of the NARX modeland a RNN. First, we have shown that if the neuron transfer function is tanh, every �rstorder NARX model can be transformed to a RNN and vice versa. Second, we have alsoshown that if the neuron transfer function is a piecewise linear function, every NARX model(irrespective of its order) can also be transformed to a RNN and vice versa. In accordancewith this equivalent relationship, we are able to� speed up the training of a NARX or a RNN by indirect method,� simplify the pruning procedure of a RNN,� analyze the stability behavior of a NARX, and� design an output feedback controller for the unknown dynamic system.

135

Chapter 12Parallel Implementation ofTraining and Pruning Algorithmsfor FNNThe use of massively parallel processing architecture is one of the major reasons for thegrowth in the area of arti�cial neural networks (ANN). In recent years, most of the im-plementation of ANN have been accomplished by using general purpose, serial computers.This approach is though exible but is often too slow. In training such a network, a suitablenetwork size is hard to determine in advance, so one usually starts with a large networkwhich consists of a large number of hidden units. After training is �nished, the redundantweights are removed [55]. In order to speed up the training process, intensive research on themapping of ANN onto parallel computing architectures [36, 17], such as mesh structure [63],array structure [52, 18, 38, 44, 129], ring structure [1, 77] and hypercube structure [51, 72]has been carried out. These methods solely apply the backpropagation approach to trainthe neural network.FRLS is an alternative method which has been applied to train feedforward neuralnetworks in recent years [28, 48]. Experimental results have demonstrated that the timecomplexity of using the FRLS training method is usually much smaller than that of usingthe backpropagation training method even though the one-step computation complexity inthe FRLS method is higher than in the backprogation. Many advantages can also be gainedby using FRLS.� the FRLS method can easily be decoupled by assuming that the weights associatedwith one hidden neuron are uncorrelated with those weights associated with anotherhidden neuron [89, 95].� the FRLS method can easily be modi�ed to include the e�ect of regularization inneural network training [57].� On-line pruning can easily be accomplished by using the FRLS method [56].The rest of the chapter will describe how the FRLS training and pruning algorithm canbe implemented on parallel architecture. The mapping of the training algorithm is indeed136

Chapter 12 Parallel Implementation of Training and Pruning Algorithms for FNNa direct extension of the algorithm presented in [89] and [95]. We add an analysis of thetime complexity of using such parallel architecture. Besides from training, we describe howpruning can be realized by using parallel architecture.In section one, the FRLS method in feedforward network training and pruning will bedescribed. In section two, we describe the method by which FRLS training can be mappedonto a parallel architecture which consists of n processor element, where n is the numberof hidden units. The time complexity is also analyzed in that section. The mapping ofthis pruning algorithm onto such a parallel architecture is presented in section three. Theanalysis of the speed up is presented in section four, and section �ve concludes the chapter.12.1 Review of FRLS training and pruningWithout loss of generality, we will consider a neural network consists of n hidden units, oneoutput unit and m input units. The function of a neural network is written as follows :ŷ(x) = f(x; �); (12.1)where y 2 R is the output of the network, x 2 Rm is the input, � 2 Rn(m+2) is theparametric vector.12.1.1 TrainingLet �̂(0) be the initial parametric vector and P (0) = ��1In(m+2)�n(m+2), the training of afeedforward neural network can be accomplished by the following recursive equations [48],[56], [57], [95]: P (t) = (I � L(t)H(t))P (t� 1) (12.2)�̂(t) = �̂(t � 1) + L(t)[y(xt)� ŷ(xt)]; (12.3)where L(t) = P (t � 1)H(t)HT (t)P (t� 1)H(t) + 1H(t) = @f@� �����=�̂(t�1)Suppose f(x; �) is a linear function, the objective of the above algorithms is minimizing themean square prediction E(�) is given byE(�) = 1N NXk=1(y(xk)� f(xk; �))2: (12.4)Once f is a nonlinear function, FRLS can only be treated as a heuristic algorithm searchingfor the minimum E(�). Fortunately, experimental studies always demonstrate that FRLScan give good solutions in neural network training. Besides, a FRLS based method convergesmuch faster than the backpropagation approach.137

Chapter 12 Parallel Implementation of Training and Pruning Algorithms for FNN12.1.2 PruningBasically, pruning is a model reduction technique which attempts to remove excessive modelparameters. One heuristic pruning method is based on the idea of error sensitivity (seeoptimal brain damage [55] and optimal brain surgeon [31]). A weight is ranked in regard toits corresponding error sensitivity. If its error sensitivity is small, it is assumed to be lessimportant. That is to say, �̂i can be set to zero if rr�i�iE(�) is small.Since after N iteration, the matrixP�1(N) � P�1(0) + NXk=1H(k)HT(k): (12.5)Multiplying the kth diagonal element of 1NP�1(N) with the square of the magnitude of thekth parameter, we can approximate the second order derivative of E(�) byrrE(�) = 1N hP�1(N)� P�1(0)i : (12.6)The saliency measure of the kth weight can thus be computed by the following equation :E(�̂k)� E(�̂) � 1N �̂2k ��P�1(N)�kk � �� (12.7)if we let P�1(0) be equal to �I . Thus, the pruning algorithm can be summarized asfollowing.1. Evaluating P�1(N) and �2k ��P�1(N)�kk � �� for all k from 1 to n� .2. Rearranging the index f�kg according to the ascending order of �2k ��P�1(N)�kk � ��.3. Setting E(�̂[1;0]) = 0 and k = 14. While E(�̂[1;k�1]) < E0,(a) Computing validation error E(�̂[1;k])(b) k = k + 1.Here �̂[1;k] is the parameter vector where �1 to �k elements are zero and the �k+1 to �n�elements are identical to �̂�k+1 up to �̂�n� .12.2 Mapping FRLS training onto n parallel processorsTo map the training algorithm onto a parallel processor structure, some notations haveto be de�ned. Let w1; w2; : : : ; wn be the weight vectors associated with the 1st to the nthhidden unit. 138

Chapter 12 Parallel Implementation of Training and Pruning Algorithms for FNNExample 2 Suppose a neural network consists of two hidden units, one output unit andone input unit, f(x; �) = �10 �(�11x+ �12)+ �20 �(�21x+ �22);where � is the nonlinear sigmoidal function. In this model, w1 = (�10; �11; �12)T and w2 =(�20; �21; �22)T .Next, we assume that wi and wj are statistically uncorrelated. The FRLS algorithmcan thus be decoupled into n �lter equations [89, 95]. For i = 1; : : : ; n,Pi(t) = (I � Li(t)Hi(t))Pi(t � 1) (12.8)ŵi(t) = ŵi(t� 1) + Li(t)[y(xt)� ŷ(xt)]; (12.9)where Li(t) = Pi(t� 1)Hi(t)HTi (t)Pi(t� 1)Hi(t) + 1 (12.10)Hi(t) = @f@wi ����wi=ŵi(t�1) : (12.11)For implementation purposes, we introduce a notation si for i from 1 to n, where s1 =�10 �(�11x+ �12) and s2 = �20 �(�21x+ �22).Parallel algorithm The parallel algorithm can be described as follows :1. PARBEGINInitialize wi(0) and Pi(0)PAREND2. FOR t = 1; : : : ; T DOBEGIN(a) Input xt to PE.(b) Input yt to P0.(c) PARBEGINEvaluate si(xt)Output si(t) to P0Evaluate Hi(t)Evaluate Li(t)Evaluate Pi(t)Input e(t) = [y(xt)� ŷ(xt)] from P0ŵi(t) = ŵi(t� 1) + Li(t)e(t)PARENDENDThe parallel architecture for such implementation is shown in Figure 12.1.139

Chapter 12 Parallel Implementation of Training and Pruning Algorithms for FNN
PE PE PE PE PE PE PE

PO

Host

Computer

S(t), e(t)

x(t) y(t)

Figure 12.1: Parallel architecture for the implementation of FRLS based training.Time complexity analysis Consider the case that the dimension of xt is m and the ele-ment is denoted by xt1 to xtm. Without loss of generality, we assume the output dimensionis one.For the evaluation of si(xt), it requires (m+2) ops1. From Eqn (12.11), one can readilyderive that Hi(t) = 266666664 �iwi0 �i (1� �i)xt1wi0 �i (1� �i)xt2� � �wi0 �i (1� �i)xtmwi0 �i (1� �i) 377777775 ; (12.12)where �i = �(Pmk=1 wik(t�1)xtk+wi;m+1). This step requires (m+2) ops. As Pi(t�1)Hi(t)is also involved in the evaluation of Pi(t), Pi(t � 1)H(t) is �rst computed and then storedin a register. The complexity of computing Pi(t � 1)H(t) is 12(m + 2)(m+ 3). Hence, theevaluation of Li(t) requires 12(m+ 2)(m+ 3) + (m+ 2) ops. To compute Pi(t), it requiresonly (m+ 2)2 ops. Finally, it requires (m+ 2) ops for the update of wi(t).For the time being, we ignore the communication delay. Summing them altogether, thecomputation cost for one-step update is12(m+ 2)(3m+ 15)which is O(m2). As we have ignored the communication and computation cost due toP02, the time complexity of using n parallel processor structure to realize FRLS is O(m2).1We assume the computation cost on addition and evaluation of �(:) are relatively very small.2It is reasonable to have this assumption. Since the purpose of P0 is receiving signal yt from the host140

Chapter 12 Parallel Implementation of Training and Pruning Algorithms for FNNMethod Processor TimeComplexity ComplexityOriginal 1 O((n +m)2df)Parallel O(n) O(m2df)Table 12.1: Complexity di�erence between the original and parallel FRLS in one-iterationstep.Compared with the original single machine scheme, Table 12.1, the speed up can be verylarge. In case communication delay is counted, the time complexity will bemax�0; (n� 1)dc � 12(m+ 2)(3m+ 7)df� + 12(m+ 2)(3m+ 15)dfwhere df and dc are oating point multiplication delay and communication delay. The timecomplexity will be the maximum of (n� 1)dc+2(m+ 2)df and 12(m+ 2)(3m+ 15)df . Thetotal time delay for complete training will be the maximum ofNt ((n� 1)dc + 2(m+ 2)df) ; Nt2 (m+ 2)(3m+ 15)dfif the total number of training data is Nt.12.3 Implementation of FRLS based pruning in parallelprocessorsBecause of the use of the decoupling FRLS training method, the pruning process becomesmuch simpler. Instead of using the one-phase approach as described in the last section, wecan de�ne a two-stage pruning scheme.In stage-1, we evaluate the error sensitivity for each output weight. If the error sensitivityof an output weight is smaller than a threshold, the corresponding output weight is removed.Hence those weights associated with this neuron have to be examined3.In stage-2, the remaining un-pruned weights are then ranked in accordance with theirerror sensitivity. This can be accomplished in two sub-steps. First, each PE will evaluatetheir local ranking list �(i) = (�(i)1 ; : : : ; �(i)m+1) for wi1 to wi;m+1 according to the ascendingorder of their error sensitivities. Then all these �(i) will merge and sort to give a globalranking list $ with at most n(m+ 1) elements. Weights are thus removed one by one untilthe accumulative error Eacc is larger than a threshold.computer and computer the predicted network output ŷt byŷt = nXi=1 si(xt):This involves only addition. Based on the assumption that computation cost for addition is much smallerthan multiplication, we can ignore this cost as well.3This is valid only for a single output unit neural network. Suppose the network output is larger thanone, a similar technique can be applied. 141

Chapter 12 Parallel Implementation of Training and Pruning Algorithms for FNNParallel algorithm This pruning scheme can be summarized in the following algorithm.1. PARBEGINEvaluating SENi0 = w2i0 ��P�1i (N)�00 � ��PARENDRearrange index f�igEacc = 0 and k = 1WHILE Eacc < E0 DOBEGIN(a) Disable PE1 to PEk(b) Evaluate validation error Eacc = E(w�10 = : : : = w�k0 = 0)(c) k = k + 1END2. For the activated PEPARBEGIN4(a) Evaluating SENij = w2ij ��P�1i (N)�jj � �� for all j(b) Rearrange index f�(i)j g(c) Output �(i) = (�(i)1 ; : : : ; �(i)m+1) to host computer5PARENDSet Eacc = 0 and k = 1WHILE Eacc < E0 DOBEGINPARBEGINHost computer output $kEvaluate validation error Eacc = E(w$1 = : : : = w$k = 0)k = k + 1PARENDENDThe way of generating $k can be described by the following example. Suppose thereare three sorted lists : (1; 3; 5), (7; 8; 9) and (2; 4; 6) respectively. Comparing �(i)1 for i = 1to 3, `1' is the minimum of the nine numbers. Therefore, $1 = (1; 1). Once the $st1 weightis removed, the numbers being compared are �(1)2 ; �(2)1 ; �(3)1 , i.e. 3; 7; 2. The operation forthe �rst step up to the 4th step is shown in Figure 12.2.4Note that SENi0 is not involved in this state.5Certainly, these data can also be output to processor PO for sorting if the local memory size in it islarger enough to handle the prune-index generation.142

Chapter 12 Parallel Implementation of Training and Pruning Algorithms for FNNInitial 5 9 63 8 41 7 2 ! $1 = (1; 1)step 1 � 9 65 8 43 7 2 ! $2 = (3; 1)step 2 � 9 �5 8 63 7 4 ! $3 = (1; 2)step 3 � 9 �� 8 65 7 4 ! $4 = (3; 2)step 4 � 9 �� 8 �5 7 6 ! $5 = (1; 3)Figure 12.2: The pruning index generation algorithm.Time complexity analysis Similar to the analysis in training, we discard the communi-cation cost. The evaluation of SENi0 requires only 2df time delay. The rearrangement ofindex �i requires a sorting algorithm. This can be done by n log nds time delay in the hostcomputer. Here ds is the time delay for one comparison. The time delay bound for stage-1pruning will be 2df + (n logn)ds + nNv ((m+ 2)df + (n� 1)dc)where Nv is the total number of validation data.In stage-2, the analysis is similar. For the evaluation of SENij, the time delay is 2mdf .For the generation of the list f�(i)j g, the time delay is (m+ 1)ds. This is the time requiredby each processor. To generate the �rst index using the idea described above, (n logn)dsdelay is required. Therefore, the time delay bound for stage-2 pruning will ben(m+ 1)� + 2(m+ 1)df + (n logn)dswhere � = maxf(logn)ds; Nv ((m+ 2)df + (n� 1)dc)g:Summing two time delay bound, we can get that the time delay bound for pruning is4df + 2(n logn)ds + nNv(m+ 2)df + n(m+ 1)�:If Nv(m+2)df � lognds, the time delay bound is in the order of O(n). On the other hand,if Nv(m+ 2)df > (logn)ds, the time complexity may be larger than O(n logn).143

Chapter 12 Parallel Implementation of Training and Pruning Algorithms for FNNFrom these simple analyse, we can see that the sorting preprocessing step can be aburden in pruning if the size of the validation set is small. In that case, other non-heuristicalgorithms may outperform the conventional pruning method in terms of time complexity.12.4 Speed upSuppose communication delay is not taken into account, i.e. dc = 0, the time delay forcomplete training using SIMD architecture is given byTtrain(SIMD) = Nt2 (m+ 2)(3m+ 15)df : (12.13)Using a single processor, the time delay will be given byTtrain(SIN) = Nt2 n(m+ 2)(3n(m+ 2) + 9)df : (12.14)In the pruning phase, the time delay bound for pruning using SIMD architecture is givenby Tprune(SIMD) = 4df + 2(n logn)ds + nNv(m+ 2)df + n(m+ 1)� (12.15)where � = maxf(logn)ds; Nv ((m+ 2)df + (n� 1)dc)g:Using a single processor, the time delay bound for pruning will be given byTprune(SIN) = 2n(m+2)df+(n logn)ds+nNv(m+2)df+[n(m+1) logn(m+1)]ds+n(m+1)(logn)ds(12.16)The speed up factor can thus be de�ned as follows :Fsu = Ttrain(SIN) + Tprune(SIN)Ttrain(SIMD) + Tprune(SIMD) (12.17)Figure 12.3 shows the case when m = 5, Nt = 200 and df = 5ds. From the speed up curve,we can see that the speed up is not linear. It is asymptotically equal to a constant whichdepends on the ratio of Nt to Nv.12.5 SummaryIn summary, we have presented a parallel algorithm for the realization of recursive leastsquare based training and pruning for a neural network implemented on a SIMD machine.Discarding the delay due to data communication, time delay bounds for both trainingand pruning are deduced. From such derived results, preliminary analysis such as totaltime delay and speed-up can be accomplished. Finally, it should be noted that the methodpresented in this chapter can equally be applied to the extended Kalman �lter based trainingmethod. 144

Chapter 12 Parallel Implementation of Training and Pruning Algorithms for FNN

0 100 200 300 400 500 600
0

100

200

300

400

500

Nt/Nv=200
Nt/Nv=20
Nt/Nv=4
Nt/Nv=1

Figure 12.3: The speed up factor against the number of processors used in the parallelarchitecture for the implementation of FRLS based training.
145

Part VConclusion

146

Chapter 13ConclusionBeing the last chapter of this dissertation, its �rst section summarizes the contribution ofthe research work done in previous chapters. The second section discusses some future workthat can be extended from the work done here.13.1 Revisit of the contributions of the dissertationWe have reviewed several contemporary techniques in neural network learning and revealedsome of their limitations in training and pruning. Then, two weight importance measuresbased on the ideas of1. expected prediction error sensitivity and2. a posterior probability sensitivity,have been proposed for both feedforward neural network (FNN) and recurrent neural net-work (RNN). Extensive simulation and comparison results have been included to justifythe e�ectiveness of those algorithms. Moreover, several theoretical and implementationissues have also been presented to supplement some background analysis on neural net-work learning. The contributions made in this dissertation are highlighted in the followingparagraphs.13.1.1 EKF-based pruningFor FNN, a weight importance measure linking up prediction error sensitivity and the by-products obtained from EKF training has been derived. Comparison results have demon-strated that the proposed measure can better approximate the prediction error sensitivitythan using the forgetting recursive least square (FRLS) based pruning measure. Anotherweight importance measure that links up the a posteriori probability sensitivity and by-products obtained from EKF training has also been derived. An adaptive pruning proce-dure designed for FNN in a non-stationary environment has presented. Simulation resultsillustrate that the proposed measure together with the pruning procedure is able to identifyredundant weights and remove them. As a result, the computation cost for EKF-basedtraining can also be reduced. 147

Chapter 13 ConclusionUsing a similar idea, a weight importance measure linking up the a posteriori proba-bility sensitivity and by-products obtained from EKF training has been derived for RNN.Applications of such a pruning algorithm together with the EKF-based training in systemidenti�cation and time series prediction have been presented. The computational cost re-quired for EKF-based pruning has analyzed. Several alternative pruning procedures havebeen proposed to compare with EKF-based pruning procedure. Comparative analysis in ac-cordance with computational complexity, network size and generalization ability has beenpresented. No simple conclusion can be drawn from the comparative results. However,these results provide a guideline for practitioners once they want to apply RNN in systemmodeling.13.1.2 Several aspects of neural nework learningSeveral new results with regard to neural network learning have been presented in this dis-sertation. To provide a support for the use of recurrent neural network in system modeling,the approximate realizability of the Elman recurrent neural network has been proved. Ithas also been proved that FRLS training can have an e�ect identical to weight decay. Thisprovides more evidence showing the advantages of using FRLS in training a neural network.Another result is the proof of the equivalence between a NARX model and recurrent neuralnetwork. Finally, a parallel implementation methodology for FRLS training and pruningon a SIMD machine has been presented.13.1.3 Review on the limitation in existing learning techniquesApart from proposing new measures for pruning and presenting new theoretical results forneural network learning, this dissertation has also revealed several limitations in the existinglearning techniques.First, it has revealed that training a RNN by gradient descent or the FRLS approachusually works well when the training set is de�ned as fui; yigNi=1 and the validation set isde�ned as fui; yigN+Ti=N+1. However, in case the validation set is de�ned as fui; yigTi=1 andthe training set is de�ned as fui; yigN+Ti=T+1 (or the form of the training input is di�erentfrom that of the validation input), it might happen that the validation error will be muchgreater than the training error.Second, it has revealed that the error sensitivity measure is not appropriate for pruningRNN due to the composite weight removal and initialization error e�ect. It is hard toidentify how much the validation error is caused by the weight removal and how much byinitialization error.Third, it has also discussed a shortcoming of using error-sensitivity-based pruning meth-ods, such as OBD and OBS. Since backpropagation is a slow training method, the actualtime for obtaining a good network structure using the backpropagation training methodtogether with the error-sensitivity-based pruning method may thus be time-consuming. Ifthe nature of the problem is non-stationary, it will be much more di�cult to implementsuch a pruning method since training will never �nish and then the ranking of the weightimportance obtained at time t may not be equal to the weight importance obtained at othertimes. 148

Chapter 13 Conclusion13.2 Future workThe work presented in this dissertation is only a small part of the whole neural networklearning theory. Lots of work ought to be done to make the learning theory complete. Somepossible work leading from that presented in this dissertation is summarized in the followingparagraphs.Alternative training and pruning methods for RNNOne future direction is to develop an alternative training method for RNN. In this disser-tation, the training method employed is the Williams method. The idea can be describedas follows : � � � EKF! " x̂(t� 1jt� 1)�̂(t� 1) # EKF! " x̂(tjt)�̂(t) # EKF! � � �That is, both x̂(tjt) and �̂(t) are assumed to be coupled with each other. This is onereason why an error sensitivity measure is not easy to de�ne. One approach to facilitate thede�nition of an error sensitivity measure for RNN is to decouple the updating of �̂(t) andestimation of x̂(tjt). That is, an on-line training can be accomplished by gradient descentwhereas an on-line estimation of x(t) is accomplished by EKF.� � � EKF! x̂(t� 1jt� 1) EKF! x̂(tjt) EKF! � � �� � � GD! �̂(t� 1) GD! �̂(t) GD! � � �Using this idea, a better estimation of �̂(t) and x̂(t � 1jt � 1) might be obtained. Hence,the signi�cance of �̂(t) and P��(t) might be improved. Useful tools for the design andperformance analysis of such an approach should be investigated.Imprecise Neural ComputationTo control a dynamic system in real-time, a real-time system identi�er is usually required.Figure 13.1 shows the block diagram of a self-tuning regulator. Assuming a parametricmodel for the system, the identi�er estimates the model parameters from the sampledinput-output data pair. Then a model parameter is passed to the design considerationblock to generate a regulator parameter, which is used for suggesting a suitable regulationscheme. Once the regulator has received its parameter, it generates a sequence of controlsignals according to the control scheme.This design methodology has been used by a neural network researchers who employneural network as identi�er and regulator. As training of a neural network is time consum-ing, application of such a real-time controller can only be feasible for soft real-time controlproblems such as process control [102]. To deal with such problems, we have recently pro-posed a conceptual framework called imprecise neural computation [110] to extend the ideaof imprecise computation, by introducing a concept of mandatory structure.Imprecise neural computation is a generic principle which tries to facilitate the softwareand hardware design of a neural network based system in dealing with time-critical prob-lems. Traditionally, a neural network is simply treated as a black box. Once a batch ofdata has been collected from a dynamic system, a neural network identi�er will be trained149

Chapter 13 Conclusion
Regulator Process

Design
Considerations Identifier

r
yx

Regulator

Parameters

STR

Figure 13.1: Block diagram of a real-time self-tuning regulator. Adapted from Astrom K.and B. Wittenmark, Computer-Controlled Systems, Prentice Hall, 1990.to learn the system behavior and then a neural network controller will be trained to controlthe system. The cost of building such a controller/identi�er system is solely determined bythe quality of the system output with respect to the desired output. Heavy computationalcost and the error incurred due to incomplete computation are usually ignored.In real-time problems, one always needs to face the following important problem :Problem 1 If it is not possible to �nish all computation tasks within the given time, whatshould we do?Similarly, in real-time neural computing, we face the same problem :Problem 2 If it is not possible to train a fully connected neural network with the wholedata set within a given allowable time span, what should we do?These problems can be answered in the light of imprecise computation [83, 115, 103].Principle 1 (Imprecise Computation) If the computation of a task can be partitionedinto a mandatory part and a optional part (where the mandatory part is the necessary portionwhich must be executed in order to achieve an acceptable result according to a performancemeasure while the optional part is the portion for re�ning the result), the optional part maybe left un�nished when it is not feasible to complete all tasks.In a time-critical situation, the system can decide how much of the optional part can beexecuted.Therefore in the design of an algorithm for solving such a problem, the execution timefor the mandatory part should be small enough in order to meet the critical time constraintby trading o� the quality of the results [58, 59, 63, 61].150

Appendix ConclusionBorrowing the idea from imprecise computation in real-time computing, the impreciseneural computation [110] which provides a conceptual framework for the design and analysisof real-time neural system can be proposed. Imprecise neural computation not just concernsthe issue of computation complexity, but also the complexity of the neural network beingused. The basic principle of imprecise neural computation can be stated as follows :Principle 2 (Imprecise Neural Computation) If the learning for neural computationcan be partitioned into a mandatory part and optional part where the mandatory part is thenecessary portion which must be executed in order to achieve an acceptable result accordingto a performance measure while the optional part is the portion for re�ning the result), theoptional part may be left un�nished when it is not feasible to complete all tasks.In a time-critical situation, the system can decide how much of the optional part can beexecuted.From the implementation point of view, imprecise neural computation provides a newconceptual framework for studying methodologies of employing a neural network approachin real-time applications. With the advancement of the hardware and parallel computingtechnology, true real-time neural systems for solving real-time problems will be possiblyachievable in the future.

151

Appendix AExtended Kalman �lterA.1 Kalman �lterIn the theory of linear system identi�cation and state estimation, Kalman �lter is one usefulapproach [2, 4, 9, 99]. Basically, the essential problem that the Kalman �lter solves is astate estimation problem in linear systems.Optimal state estimation: Consider a non-autonomous system:x(t+ 1) = Fx(t) +Gu(t) + v(t); (A.1)y(t) = Hx(t) + e(t); (A.2)where v(t) and e(t) are white noise sequences with zero means and covariance matriceE v(t)e(t) ! (vT (t) eT (t)) = R1 R12R21 R2 ! : (A.3)At time t, the available information is the measurements, Y t = fy(t); u(t); y(t� 1); u(t �1); : : : ; y(t0); u(t0)g. Now �nd the optimal state estimate of x(t) given the measurements.Denoting x̂(tjs) = E[x(t)jY s] and P (tjs) = E[x(t) � x̂(tjs)][x(t) � x̂(tjs)]T to be theconditional mean and the associated error covariance matrix, the one step ahead stateestimate, x̂(t+ 1jt), can be calculated as follows [99]:x̂(t+ 1jt) = Fx̂(tjt� 1) + Gu(t) +K(t)[y(t)�Hx̂(tjt� 1)]; (A.4)x(t0jt0 � 1) = Ex(t0); (A.5)where K(t) = [FP (tjt � 1)HT +R12][HP (tjt� 1)HT +R2]�1; (A.6)P (t + 1jt) = FP (tjt � 1)FT + R1 �K(t)[R21+HP (tjt � 1)FT]; (A.7)P (t0jt0 � 1) = cov(x(t0)): (A.8)152

Appendix A Extended Kalman �lterA.2 Kalman �lter for linear system identi�cationNow suppose that the measurements of the input fu(t)g and output fy(t)g are available inreal time for the following ARMA system:y(t) + a1y(t� 1) + : : :+ any(t� n) = an+1u(t� 1) + : : :+ an+mu(t�m): (A.9)It is readily shown that the identi�cation of system parameters faig can be formulated asan state estimation problem and solved by the Kalman �lter.De�ne x(t) = [a1 a2 : : : an+m]T as a state vector,HT (t) = [�y(t� 1) � y(t� 2) : : :� y(t� n) u(t� 1) u(t� 2) : : :u(t�m)] (A.10)as a row vector and de�ne the process fz(t)g by z(t) = y(t). Then the system identi�cationproblem can be written as the following state estimation problem:x(t+ 1) = x(t) + v(t); (A.11)z(t) = HT (t)x(t) + e(t): (A.12)Suppose that the noise processes, fv(t)g and fe(t)g, are independent, the identi�cationproblem (A.12) can be solved by making use of the above Kalman �ltering algorithm [2]:x̂(t+ 1jt) = [I �K(t)HT(t)]x̂(tjt� 1) +K(t)z(t); (A.13)K(t) = P (tjt � 1)H(t)[HT(t)P (tjt� 1)H(t) + R2]�1; (A.14)P (t + 1jt) = (I �K(t)HT(t))P (tjt � 1) +R1: (A.15)Remarks� It should be noted that the values of R1 and R2 are in general not known. Therefore,we need to estimate it as a prior information or estimate it adaptively. For instance,R1(t) = (1� �)R(t� 1) + �(z(t)�HT (t)x(t))2;where � is a small positive number.� The above algorithm is also a version of the recursive least square method in for thelinear regression problem once the value R1 is set to be zero and R2 is unity (seesection 6.3 of [78] for a detailed discussion on the relation between the recursive leastsquare method and Kalman �ltering.).� If R1 is a zero matrix and R2 is unity, it can be easily checked that the covariancematrix P is identical to the inverse of the input covariance matrix, i.e.P�1(N jN) = NXt=1H(t)HT (t) + P (0j � 1):153

Appendix A Extended Kalman �lterA.3 Extended Kalman �lterFor the case that the system is non-linear, the extended Kalman �lter is applied as a sub-optimal �lter. The key idea of the extended Kalman �lter stamps on the approximation ofnon-linear terms by �rst order linear approximation. Consider the non-linear autonomousmodel: x(t+ 1) = ft(x(t)) + gt(x(t))v(t); (A.16)z(t) = ht(x(t)) + e(t): (A.17)The non-linear functions ft; gt; ht are su�xed by t indicating that these non-linear functionmay even be time varying. If the these functions are su�ciently smooth, they can beexpanded in a Taylor series:ft(x(t)) = ft(x̂(tjt)) + Ft(x(t)� x̂(tjt)) + : : : (A.18)gt(x(t)) = gt(x̂(tjt)) + : : : = Gt + : : : (A.19)ht(x(t)) = ht(x̂(tjt� 1)) +HTt (x(t)� x̂(tjt� 1)) + : : : ; (A.20)where Ft = @ft(x̂(tjt))@x ; HTt = @ht(x̂(tjt� 1))@x ; Gt = gt(x̂(tjt)):Ignoring those higher order terms, the non-linear model (A.17) can be approximated asfollows: x(t + 1) = Ftx(t) +Gtv(t) + u(t); (A.21)z(t) = HTt x(t) + e(t) + y(t) (A.22)where u(t) = ft(x̂(tjt))� Ftx̂(tjt);and y(t) = ht(x̂(tjt� 1))�HTt x̂(tjt� 1):The Kalman �lter for this approximated non-linear model is then given as the followingextended Kalman �lter [2]:x̂(tjt) = x̂(tjt� 1) + Lt[z(t)� ht(x̂(tjt� 1))] (A.23)x̂(t+ 1jt) = ft(x̂(tjt)) (A.24)Lt = P (tjt� 1)Ht[HTt P (tjt� 1)Ht +R2]�1 (A.25)P (tjt) = P (tjt� 1)� LtHTt P (tjt� 1) (A.26)P (t+ 1jt) = FtP (tjt)FTt + GtR1GTt (A.27)where R1 = EfvvTg;R2 = EfeeTg:It should be remarked that the solution obtained by using the extended Kalman �lterapproach is not optimal, in contrast to the Kalman �lter [2], and the convergence is alsonot ensured [64]. 154

Bibliography[1] d'Acierno A. and R. Del Balio, Nested-rings architecture for feedforward networks,in E.R. Caianiello (ed) Parallel Architectures and Neural Networks, World Scienti�c,1991.[2] Anderson B.D.O. and J. Moore (1979). Optimal Filtering, Prentice Hall Inc.[3] Astrom K. and B. Wittenmark, Computer-Controlled Systems, Prentice Hall, 1990.[4] K.J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed., Addison Wesley, 1995.[5] Barron A., Prediction squared error: A criterion for automatic model selection. InSelf-Organizing Methods on Modeling, S. Farlow, ed., Marcel Dekker, New York. 1984.[6] S.A. Billings et al., Properties of neural networks with applications to modelling non-linear dynamical systems, International Journal of Control, Vol.55(1), 193-224, 1992.[7] Billings S.A. and C.F. Fung, Recurrent radial basis function networks for adaptivenoise cancellation. Neural Networks, Vol.8(2), 273-190, 1995.[8] Bishop C.M., Training with noise is equivalent to Tikhonov regularization, NeuralComputation, Vol.7(1), 108-116, 1995.[9] R.S. Bucy, Linear and nonlinear �ltering, Proceedings of the IEEE, Vol.58(6), 854-864,1970.[10] Chen S., S.A. Billings and P.M. Grant. Non-linear system identi�cation using neuralnetworks. International Journal of Control, Vol. 51(6), 1191-1214, 1990.[11] S. Chen et al., Practical identi�cation of NARMAX models using radial basis func-tions, International Journal of Control, Vol.52(6), 1327-1350, 1990.[12] Chen S., C. Cowan, S.A. Billings and P.M. Grant (1990). Parallel recursive predictionerror algorithm for training layered neural networks. International Journal of Control,Vol.51(6), 1215-1228.[13] S. Chen et al., Recursive hybrid algorithm for non-linear system identi�cation usingradial basis function networks, International Journal of Control, Vol.55(5), 1051-1070,1992. 155

[14] S. Chen et al., A clustering technique for digital communication channel equaliza-tion using radial basis function networks, IEEE Transactions on Neural Networks,Vol.4(4), 570-579, 1993.[15] Chen S. and J. Wigger, Fast orthogonal least squares algorithm for e�cient subsetmodel selection, IEEE Transactions on Signal Processing, Vol.43(7), 1713-1715, 1995.[16] Cho J., Y. Kim and D. Park (1997). Identi�cation of nonlinear dynamic systemsusing higher order diagonal recurrent neural network, Electronics Letters, Vol.33(25),2133-2135.[17] Cong B, N. Yu and W. Zhou, Image data classi�cation by neural networks and SIMDmachines, Proceedings of PDCS'96, Chicago, 213-217, 1996.[18] Cong B., Mapping of ANNs on linear array with a recon�gurable pipelined bus system,Proceedings of PDPTA'97, Vol.I, 522-529, 1997.[19] Connor J.T., D. Martin and L.E. Atlas, Recurrent neural networks and robust timeseries prediction, IEEE Transactions on Neural Networks Vol.5(2), 240-254, 1994.[20] Cottrell M., et al. (1995). Neural modeling for time series: A statistical stepwisemethod for weight elimination. IEEE Transactions on Neural Networks Vol.6(6), 1355-1362.[21] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematicsof Control, Signals, and Systems, Vol.2, 303-314, 1989.[22] Finno� W., F. Hergert and H.G. Zimmermann (1993). Improving model selection bynonconvergent methods. Neural Networks, Vol 6.:771-783.[23] K. Funahashi, On the approximate realization of continuous mappings by neural net-works, Neural Networks, Vol.2, 183-192, 1989.[24] K. Funahashi and Y. Nakamura, Approximation of dynamical systems by continuoustime recurrent neural networks, Neural Networks, Vol.6(6), 801-806, 1993.[25] C.L. Giles et al., Learning and extraction �nite state automata with second-orderrecurrent neural networks, Neural Computation, Vol.4, 393-405, 1992.[26] F. Girosi and T. Poggio, Networks and the best approximation property, BiologicalCybernetics, Vol.63, 169-176, 1990.[27] Girosi F. et al. (1995), Regularization theory and neural networks architectures, Neu-ral Computation, Vol.7, 219-269.[28] Gorinevsky D., On the persistency of excitation in radial basis function network iden-ti�cation of nonlinear systems, IEEE Transactions on Neural Networks, Vol.6(5),1237-1244, 1995.[29] P.J. Green and B.W. Silverman, Nonparametric Regression and Generalized LinearModels, Chapman and Hall, 1994.

[30] F. Gustafsson and H. Hjalmarsson, Twenty-one ML estimation for model selection,Automatica, Vol.31(10), 1377-1392, 1995.[31] Hassibi B and D.G. Stork (1993). Second order derivatives for network pruning: Opti-mal brain surgeon. In Hanson et al. (eds) Advances in Neural Information ProcessingSystems, 164-171.[32] Hassoun M.H., Fundamentals of Arti�cial Neural Networks, Bradford Book, MITPress. 1995.[33] S. Haykin, Neural networks: A comprehensive foundation, Macmillan College Pub-lishing Company, Inc. 1994.[34] Hertz J., A. Krogh and R.G. Palmer (1991), Introduction to the theory of neuralcomputation, Addison Wesley.[35] K. Hornik et al., Multilayer feedforward network networks are universal approxima-tors, Neural Networks, Vol.2(5), 359-366, 1989.[36] Hwang J. and S. Kung, Parallel algorithms/ architectures for neural networks, Journalof VLSI Signal Processing, 1989.[37] Iiguni Y., H. Sakai and H. Tokumaru (1992). A real-time learning algorithm for amultilayered neural network based on the extended Kalman �lter, IEEE Transactionson Signal Processing, Vol.40(4), 959-966.[38] Jang M. and K.Y. Yoo, Snake-like systolic array design for back-propagation algo-rithm, Proceedings of PDCS'96, Chicago, 348-351, 1996.[39] L. Jin et al., Absolute stability conditions for discrete-time recurrent neural networks,IEEE Transactions on Neural Networks, Vol.5(6), 954-964, 1994.[40] L. Jin et al., Approximation of discrete-time state-space trajectories using dynamicrecurrent neural networks. IEEE Transactions on Automatic Control, Vol.40(7), 1266-1270, 1995.[41] Jin L. and M.M. Gupta, Globally asymptotical stability of discrete-time analog neuralnetwork, IEEE Transactions on Neural Networks, Vol.7(4), 1024-1031, 1996.[42] Johansen T.A. On Tikhonov regularization, bias and variance in nonlinear systemidenti�cation, Automatica, Vol.33(3), 441-446, 1997.[43] Johansson R. (1993) System Modeling and Identi�cation. Prentice-Hall.[44] Jun Y., C. Park and H. Lee, A new parallel array architecture design for neuralnetwork, Proceedings of PDCS'96, Chicago, 398-402, 1996.[45] Kimura A., I. Arizono and H. Ohta. An improvement of a back propagation algo-rithm by extended Kalman �lter and demand forecasting by layered neural networks.Internationa Journal of System Science, Vol.27(5), 473-482, 1996.

[46] G. Kitagawa and W. Gersch, A smoothness priors { state space modeling of timeseries with trend and seasonality. Journal of the American Statistical Association,Vol.79(June), 378-389, 1984.[47] G. Kitagawa and W. Gersch, A smoothness priors time-varying AR coe�cient model-ing of nonstationary covariance time series, IEEE Transactions on Automatic Control,Vol.30(1), 48-56, 1985.[48] Kollias S. and D. Anastassiou (1989). An adaptive least squares algorithm for thee�cient training of arti�cial neural networks. IEEE Transactions on Circuits andSystems, Vol.36(8), 1092-1101.[49] B. Kosko, Neural Network and Fuzzy System, Prentice Hall Inc., 1992.[50] Ku C. and K. Lee (1995), Diagonal recurrent neural networks for dynamic systemscontrol, IEEE Transactions on Neural Networks, Vol.6(1), 144-156.[51] Kumar V., S. Shekhar and M. Amin, A scalable parallel formulation of the back-propagation algorithm for hypercubes and related architecture, IEEE Transactionson Parallel and Distributed Systems, Vol.5(10), 1073-1090, 1994.[52] Kung S.Y. and W. Chou, Mapping neural networks onto VLSI array processors, inK.W. Przytula and V.K. Prasanna (eds) Parallel Digital Implementations of NeuralNetworks, Prentice Hall, 1993.[53] Larsen J. and L.K. Hansen. Generalization performance of regularized neural networkmodels. Proc. IEEE Workshop on Neural Networks for Signal Processing IV, 42-51,1994.[54] Larsen J. (1996).Design of Neural Network Filters. PhD Thesis, CONNECT, Depart-ment of Mathematical Modeling, Technical University of Denmark.[55] LeCun Y. et al. (1990). Optimal brain damage, Advances in Neural Information Pro-cessing Systems 2 (D.S. Touretsky, ed.) 396-404.[56] Leung C.S., K.W Wong, J. Sum and L.W.Chan. (1996) On-line training and pruningfor RLS algorithms. To appear in Electronics Letter.[57] Leung C.S., P-F. Sum, A-C. Tsoi and L Chan, Several aspects of pruning methods inrecursive least square algorithms for neural networks, Theoretical Aspects of NeuralComputation : A Multidisciplinary Perspective, K. Wong et al. (eds.) Springer-Verlag,p.71-80, 1997.[58] Leung J.Y.T., A survey of scheduling results for imprecise computation tasks, inS. Natarajan (eds) Imprecise and Approximate Computation, Kluwer Academic Pub-lication, 1995.[59] Lin, K-J., S. Nataragin and J. W-S. Liu, Imprecise results : Utilizing partial com-putations in real-time systems, Proc. of the 8th Real-Time Systems Symposium, SanFranciso, CA, 1987.

[60] R. Lippman. An introduction to computing with neural nets, IEEE ASSP Magazine,Vol. 4, pp.4-22, 1987.[61] Liu J., K. Lin, A.C. Yu, J. Chung and W. Zhao, Algorithms for scheduling imprecisecomputations, IEEE Computer, May, 1991.[62] Lin T., C. Lee Giles, B.G. Horne and S.Y. Kung (1997), A delay damage modelselection algorithm for NARX neural networks, Accepted for publication in IEEETransactions on Signal Processing, Special Issue on "Neural Networks for Signal Pro-cessing".[63] Lin W., V. Prasanna and K. Przytula, Algorithmic mapping of neural network modelsonto parallel SIMD machines, IEEE Transactions on Computers, Vol.40(12), 1390-1401, 1991.[64] L. Ljung, Asymptotic behavior of the extended Kalman �lter as a parameter estimatorfor linear systems, IEEE Transactions on Automatic Control, Vol.24(1), 36-50, 1979.[65] L. Ljung and T. Soderstrom, Theory and Practice of Recursive Identi�cation, MITPress, 1983.[66] L. Ljung, System Identi�cation: Theory for the user, Prentice Hall Inc., 1987.[67] Ljung L. J. Sj�oberg and T. McKelvey. On the use of regularization in system iden-ti�cation. Technical Report of Dept. of Elec. Engg., Linkoping University, Sweden.1992.[68] Lo J., Synthetic approach to optimal �ltering, IEEE Transactions on Neural Networks,Vol.5(5), 803-811, 1994.[69] Luenberger D.G., Introduction to linear and nonlinear programming, Addison-Wesley,Reading, Mass., 1973.[70] Mackay D.J.C. (1992), A Practical Bayesian Framework for Backprop Networks, Neu-ral Computation, Vol.4(3) 448-472.[71] Mackay D.J.C. (1995), Bayesian Methods for Neural Networks: Theory and Applica-tions, Course notes for Neural Networks Summer School.[72] Malluhi Q.M., M. Bayoumi and T. Rao, E�cient mapping of ANNs on hypercubemassively parallel machines, IEEE Transactions on Computers, Vol.44(6), 769-779,1995.[73] Matthews M.B. and G.S. Moschytz (1990), Neural network non-linear adaptive �lter-ing using the extended Kalman �lter algorithm, Proceedings of the INNC'90 Paris,Vol.I, 115-119.[74] Moody J.E. (1991), Note on generalization, regularization, and architecture selec-tion in nonlinear learning systems, First IEEE-SP Workshop on Neural Networks forSignal Processing.

[75] Moody J. The e�ective number of parameters: An analysis of generalization regu-larization in nonlinear learning systems, Advances in Neural Information ProcessingSystems 4, 847-854, 1992.[76] Moody J. (1994), Prediction risk and architecture selection for neural networks, inFrom Statistics to Neural Networks: Theory and Pattern Recognition Application,V.Cherkassky et al. (eds.), Springer-Verlag.[77] Morgan N., The RAP: A ring array processor for layered network calculations, Proc.Conference on Application Speci�c Array Processors, 296-308, 1990.[78] Mosca E. (1995), Optimal Predictive and Adaptive Control. Prentice Hall.[79] Murata N., S. Yoshizawa and S. Amari. Network information criterion{Determiningthe number of hidden units for an arti�cial neural network model, IEEE Transactionson Neural Networks, Vol.5(6), pp.865-872, 1994.[80] K.S. Narendra and K. Parthasarathy, Identi�cation and control of dynamical systemsusing neural networks, IEEE Transactions on Neural Networks, Vol.1(1), 4-27, 1990.[81] K.S. Narendra and K. Parthasarathy, Gradient methods for the optimization of dy-namical systems containing neural networks, IEEE Transactions on Neural Networks,Vol.2(2), 252-262, 1991.[82] Narendra K.S. and K. Parthasarathy (1992). Neural networks and dynamical systems.International Journal of Approximate Reasoning, Vol.6, 109-131, 1992.[83] Natagajan S., Imprecise and Approximate Computation, Kluwer Academic Publisher,1995.[84] Olurotimi O., Recurrent neural network training with feedforward complexity, IEEETransactions on Neural Networks Vol.5(2), 185-197, 1994.[85] van Overbeek A.J.M. and L. Ljung, (1982). On-line structure selection for multivari-able state-space models. Automatica, Vol.18(5), 529-543.[86] B.A. Pearlmutter, Fast exact multiplication by the Hessian, Neural Computation,Vol.6, 147-160, 1994.[87] Prechelt L. Comparing adaptive and non-adaptive connection pruning with pure earlystopping. Progress in Neural Information Processing, 46-52, 1996.[88] Prechelt L. (1997) Connection pruning with static and adaptive pruning schedules, inpress in Neurocomputing.[89] Puskorius G.V. and L.A. Feldkamp (1991), Decoupled extended Kalman �lter trainingof feedforward layered networks, in Proceedings of IJCNN'91, Vol.I, 771-111.[90] Puskorius G.V. and L.A. Feldkamp (1994), Neurocontrol of nonlinear dynamical sys-tems with Kalman �lter trained recurrent networks, IEEE Transactions on NeuralNetworks, Vol.5(2), 279-297.

[91] Reed R. (1993), Pruning algorithms { A survey, IEEE Transactions on Neural Net-works, Vol.4(5), 740-747.[92] Rosenblatt F., Principles of Neurodynamics : Perceptrons and the Theory of BrainMechanisms. Spartan Press. 1962.[93] Ruck D.W., S.K. Rogers, M. Kabrisky, P.S. Maybeck and M.E. Oxley (1992), Com-parative analysis of backpropagation and the extended Kalman �lter for trainingmultilayer perceptrons, IEEE Transactions on Pattern Analysis and Machine Intelli-gence, Vol.14(6), 686-691.[94] Rumelhart D.E., G.E. Hinton and R.J. Williams (1986). Parallel Distributed Process-ing: Exploration in the Microstructure of Cognition, Vol.1. MIT Press, Cambridge,Mass.[95] Shah S., F. Palmeieri and M. Datum (1992), Optimal �ltering algorithms for fastlearning in feedforward neural networks, Neural Networks, Vol.5, 779-787.[96] Siegelmann, Hava T., Bill G. Horne and C. Lee Giles, Computational capabilities ofrecurrent NARX neural networks, IEEE Transactions on Systems, Man and Cyber-netics { Part B: Cybernetics, Vol. 27(2), 208, 1997.[97] Singhal S. and L. Wu (1989). Training multilayer perceptrons with the extendedKalman algorithm, in Advances in Neural Information Processing Systems I,D.S.Touretzky Ed., 133-140.[98] Sj�oberg J. and L. Ljung (1995), Overtraining, regularization and searching for a min-imum, with application to neural networks. Int. J. Control, 62, 1391-1407.[99] T. Soderstrom, Discrete-Time Stochastic Systems: estimation and control. PrenticeHall, 1994.[100] Sontag E.D., Neural network for control. In Essays on Control: Perspectives inthe Theory and its Applications (H.L. Trentelman and J.C. Willems, eds), 339-380,Birkhauser, Boston, 1993.[101] Sontag E.D., Recurrent neural networks: Some systems-theoretic aspects. In Deal-ing with Complexity: a Neural Network Approach (M. Karny, K. Warwick, and V.Kurkova, eds.), Springer-Verlag, London, 1997, to appear.[102] Soucek B., Neural and Concurrent Real-Time systems, John Wiley & Sons, Inc., 1989.[103] Stankovic J. and K. Ramamritham, Hard Real-Time Systems, IEEE Computer SocietyPress, 1988.[104] Sum J., C.S. Leung and L.W. Chan (1996) Extended Kalman �lter in recurrent neuralnetwork training and pruning. Technical report CS-TR-96-05, Department of Com-puter Science and Engineering, The Chinese University of Hong Kong, June 1996.

[105] Sum J., C. Leung, L. Chan, W. Kan and G.H. Young, On the Kalman �ltering methodin neural network training and pruning, to appear in IEEE Transactions on NeuralNetworks.[106] Sum J., C. Leung, L. Chan, W. Kan and G.H. Young, An adaptive Bayesian pruningfor neural network in non-stationary environment, to appear in Neural Computation.[107] Sum J. and L.W. Chan, On the approximation property of recurrent neural network.To appear in the Proceedings of World Multiconference on Systemics, Cybernetics andInformatics, Caracas, Venezuela July 7-11, 1997.[108] Sum J., W. Kan and G.H. Young, Hypercube recurrent neural network, submitted.[109] Sum J., W. Kan and G.H. Young, Note on some pruning algorithms for recurrentneural network, unpublished manuscript.[110] Sum J., G.H. Young and W. Kan, Imprecise neural computation, to be presented inInternational Conference in Theoretical Computer Science, Hong Kong, 1998.[111] Sum J., G.H. Young and W. Kan, Parallel algorithm for the realization of recursiveleast square based training and pruning using SIMD machine, submitted to PDPTA'98Les Vegas.[112] John Sum, Gilbert H. Young and Wing-kay Kan, Imprecise Neural Computation inReal-Time Neural System Design, to be presented in Workshop of Real-Time Pro-gramming, Shatou, China.[113] Suykens J., B. De Moor and J.Vandewalle (1995). Nonlinear system identi�cationusing neural state space models, applicable to robust control design. InternationalJournal of Control. Vol.62(1), 129-152.[114] Tikhonov A.N., Incorrect problems of linear algebra and a stable method for theirsolution, Doklady Vol.163(3), 988-991. 1965.[115] van Tilborg A. and G. Koob, Foundations of Real-Time Computing : Scheduling andResource Management, Kulwer Academic Publishers, 1991.[116] Tresp V., R. Neuneier and H. Zimmermann (1996). Early brain damage. Presented inNIPS'96.[117] A. Tsoi and A. Back, Locally recurrent globally feedforward networks: A criticalreview of architectures, IEEE Transactions on Neural Networks, Vol.5(2), 229-239,1994.[118] Wahba G., A survey of some smoothing problems and the method of generalizedcross-validation for solving them, in P.R.Frishnaish (ed.) Applications of Statistics,North-Holland, pp.507-523, 1977.[119] Watanabe K. T. Fukuda and S.G. Tzafestas. Learning algorithms of layered neu-ral networks via extended Kalman �lters. International Journal of Systems Science,Vol.22(4), 753-768, 1991.

[120] Wan E.A. (1993).Finite Impulse Response Neural Networks with Applications in TimeSeries Prediction. PhD Dissertation, Standford University, Nov.[121] Wan E.A. and A.T. Nelson (1996). Dual Kalman �ltering methods for nonlinear pre-diction, smoothing, and estimation. To appear in NIPS'96.[122] Weigend A.S. et al. (1991), Generalization by weight-elimination applied to currencyexchange rate prediction. Proceeding of IJCNN'91, Vol.I, 837-841.[123] Williams R.J. (1992), Training recurrent networks using the extended Kalman �lter,Proceedings of the IJCNN'92 Baltimore, Vol.IV, 241-246.[124] Williams R.J. and D. Zipser (1989). A learning algorithm for continually running fullyrecurrent neural networks, Neural Computation, 1(2), 270-280.[125] With Pedersen M. and L.K. Hansen (1995), Recurrent networks: Second order proper-ties and pruning, Advances in Neural Information Processing Systems 7, (G. Tesauroet al. ed.). 673-680, MIT Press.[126] With Pedersen et al. (1996), Pruning with generalization based weight saliencies:OBD and OBS. To appear in Advances in Neural Information Processing Systems 8,edited by D.S. Touretzky et al.. MIT Press.[127] With Pedersen M. Optimization of Recurrent Neural Networks for Time Series Mod-eling, P.D. Thesis, Department of Mathematical Modelling, Technical University ofDenmark, 1997.[128] Wu L. and J. Moody (1996), A smoothing regularizer for feedforward and recurrentneural networks, Neural Computation, 8, 461-489.[129] Yang B. and J.F. Bohme, CORDIC processor arrays for adaptive least squares al-gorithms, in R. Eckmiller et al. (eds), Parallel Processing in Neural Systems andComputers, Elsevier Science Publishers, 1990.[130] E.F.Y. Young and L.W. Chan, Locally connected recurrent neural network, Depart-ment of Computer Science Technical Report, CUHK, 1995.

