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AbstratThis thesis presents two algorithms for soft Self-Organizing Map (SSOM) alledSSOM1 and SSOM2. Their onstrutions are motivated by the ordering propertymanifested by Self-Organizing Map (SOM) and the nature of soft ompetition mani-fested by Maximum Likelihood Competitive Learning (MLCL) and Fuzzy Competi-tive Learning (FCL). By studying the relationship between the algorithm of ompet-itive learning and SOM, a mehanism for ordered map formation is proposed. Basedon the introdution of suh mehanism, the idea of neighborhood interation, thealgorithms of MLCL and FCL are modi�ed to form SOM-like algorithms: SSOM1and SSOM2.These algorithms (SSOM1 and SSOM2) in addition with SOM are then appliedto solve two problems inluding (i) unovering the neighborhood amongst di�erentvowels and (ii)minimizing the hannel noise e�et for vowel data transmission. It isfound that SSOM1 is not feasible to onstrut the luster relationship while SOMand SSOM2 an onstrut suh relationship based on a simple heuristi labelingsheme. In the problem of vowel data transmission, it is experimented that theperformane of SSOM1 and SSOM2, in the sense of quantization error and thehanges of quantization error with respet to hannel noise variane, are omparableto that of using SOM.Moreover, this thesis provides some results on the onvergene analysis on thethree algorithms disussed. In partiular, the proof on the onvergene of the onedimensional SOM will be proven. It is shown that the onvergene an be loallyalmost sure even if the neighborhood size is not �nite. Furthermore, if the input datais uniformly distributed, an energy funtion an be de�ned. Equivalent the energyfuntion to Lyapunov funtion, the onvergene of SOM is proven to be globallyalmost sure.
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Chapter 1IntrodutionThe prinipal objetive of this thesis is to onstrut two algorithms alled Soft Self-Organizing Map I (SSOM1) and Soft Self-Organizing Map II (SSOM2). They angenerate soft-ompetition-based neighborhood preserved map. In sequel, the algo-rithms are applied to unover the relationship amongst di�erent vowels and minimizethe hannel noise e�et in vowel data transmission. In this hapter, we will mainlypresent the behind motivation of this thesis and the ontributions of this thesis.Four setions are inluded in this hapter. In the �rst setion, the motivation willbe presented. Then, the methodology of the onstrution of suh SSOM algorithmwillbe disussed in setion two with remarks on ertain similar approahes. To larify theontribution of the thesis, setion three onisely lists out all the new results obtainedinluding new algorithms, possible appliations and theoretial supplement. Finally,we outline the thesis in setion four.1.1 MotivationSelf-Organizing Map (SOM) is an unsupervised learning algorithm resembling thestruture and learning of sensory maps in the mammalian brain due to its mani-festation of neighborhood preserved map and its vetor quantization ability. It wasproposed early by Willshaw and Malsburg in a somewhat di�erent struture [48, 49℄.Lately, Kohonen proposed the urrent algorithm and applied it to engineering prob-lems suh as speeh reognition [20℄ and the onstrution of semanti map [37℄. Re-ently, SOM has even been applied to many other areas inluding motor ontrol [38℄,traveling salesman problem [1℄, hannel noise redution [25℄ and et. Nowlan andJou proposed two soft ompetition1 algorithms: Maximum Likelihood CompetitiveLearning (MLCL) [33℄ and Fuzzy Competitive Learning (FCL) [16℄. The former onerepresents an algorithm of neural network while the latter one represents an algorithm1Here and after, eah time we use the term soft ompetition, we atually refer to MLCL andFCL. 1



Chapter 1 Chapterof fuzzy lustering2. Although MLCL and FCL are from two rather di�erent areas,their mehanism share one ommon property: the boundaries of the resultant lustersare "soft" in nature.The advantage of soft boundary an be illustrated by some of reent papers.In [33℄, Nowlan applied MLCL to lassify vowel data and demonstrated that theorret lassi�ation ratio attended by MLCL was higher than that from SOM. In[50℄ Yair et.al. applied this algorithm3 to generate odebook for Gauss-Markov data.Similarly, in [7℄, Chung and Lee applied FCL to vowel data lassi�ation and foundthat the performane of FCL in vowel data lassi�ation was better than ompetitivelearning and Learning Vetor Quantization. Therefore, it is speulated that the goodresults indiated in these papers are essentially due to the soft boundary nature of thelustering algorithms utilized. However, as we mentioned previously, there are someproblems whih annot be solved by soft ompetition, for instane, onstrution ofsemanti map for syntati analysis [37℄ and the minimization of hannel noise e�etin image transmission [25℄ as they needs topologial preserved map.As both soft ompetition algorithms and SOM have their own ontributions, it isinteresting to ask whether we an merge them together or not. Thus the resultantalgorithm an possess all the good features from both soft ompetition and SOM. Inthe rest of the thesis, the merging algorithm will be presented.1.2 Idea of SSOMTo aomplished suh merging algorithm, there are two possible approahes. The�rst approah is to extend the algorithms of MLCL and FCL to SOM-like algorithmsby introduing the proess of neighborhood interation. The method is as follows:We �rst examine the mehanism of SOM and ompetitive learning and �gure outhow ompetitive learning an be extended to SOM. Based on this ue, we extend thealgorithms of MLCL and FCL in suh a way as that of ompetitive learning do4.The seond approah is to extend the mehanism of SOM by modifying the om-petition mehanism to soft ompetition. The method is as follows: We �rst �gure outthe ompetition mehanism in the algorithm of SOM. Then we replae this ompeti-tion algorithm by soft ompetition algorithm and keep the neighborhood interationmehanism unhange.Though these two approahes seem distint, their resultant methodologies are the2It is remarked that the reason why FCL is being onsidered in this thesis is not due to its softboundary nature.3In [50℄, they alled MLCL as soft ompetition.4In fat, there is an alternative method to realize suh idea. It is ame from Elasti net. Themethod an be treated as a regularization problem sine the objetive funtion onsists of a termorresponding to the objetive funtion of MLCL and another term orresponding to the distanebetween neighborhood neurons. Along the same line, we an extend any other lustering algorithmin the same way as long as objetive funtion for the lustering algorithm exists.2



Chapter 1 Chaptersame: to merge the algorithm of SOM with soft ompetition, stritly speaking, tomerge the algorithm of SOM with MLCL and FCL.1.3 Other ApproahesIn the reent years, many researhers have proposed di�erent approahes to mergetopologial order and soft ompetition. Durbin et.al. [10℄ proposed a model alledElasti network to solve TSP. One the training is �nished, elasti net manifeststopologial ordered property. Pal et.al. [34℄ proposed a lassi�er whih used Self-Organizing Map (SOM) as part of the network struture. The proposed lassi�erwas similar to ounter-propagation network proposed by Heht-Nielsen [14℄. Mitraet.al. [30℄ proposed a self-organizing fuzzy lassi�er (SOFC) whih is similar to thealgorithm of SOM. SOFC is responsible to lassify the bath of data into lusters andusing the topologial ordering property to reveal the neighborhood struture amongstlusters. Pham et.al. [35℄ and Vuorimaa [46℄ de�ned a SOM-based training proedureto obtain the luster enters. Then, based on the result obtained after the �rst phase,they onstrut the fuzzy sets.Pal et.al. and Mitra et.al. inrease the number of fan-in by a fator of three inorder to inorporate the onept of linguisti variable. Although the struture anbe revealed using their approahes, the struture annot reet to the original inputdata spae. The algorithms of Pham et.al. and Vuorimaa are too heuristi. In suhase, they are diÆult to be analyzed and evaluated. Amongst all, only elasti netdoes not su�er from their problems. Besides, Yullie has provided a vigorous analysison the statisti-mehanial property to elasti net. However, the usefulness of thismethod is in so far restrited to one-dimensional map.1.4 Contribution of the ThesisAording to the previous disussion, hopefully, SSOM should be able to reveal theneighborhood relationship amongst lusters (due to soft ompetition). Furthermore,SSOM an be applied to data transmission with the aid of ordering property. Fortu-nately, it does. In addition with other supplementary results, below lists the ontri-bution of the thesis:1. Development of SSOM(a) SSOM1 and SSOM2 are onstruted.(b) Ordering property of both models are demonstrated by simulation.() Convergene property of both models are proven using the tehnique ofstohasti approximation and perturbation method.2. Theoretial supplement to SOM3



Chapter 1 Chapter(a) Following the approah of Bouton and Pages [4℄, the onvergene of 1DSOM is proven to be almost sure even if the neighborhood set size is not�nite.(b) Applying Krasovskii method [18℄, an energy funtion is onstruted forthe 1D SOM when the input data distribution is uniform. Hene, theonvergene of 1D SOM under suh onditions is globally almost sure.3. Theoretial supplement to FCL and CL(a) Applying the tehnique of stohasti approximation, the suÆient ondi-tion ensuring the onvergene of FCL is globally almost sure is derived.4. Appliation of SSOM(a) SSOM is applied to onstrut the neighborhood relationships amongst lus-ters.(b) SSOM is applied to data transmission.1.5 Outline of ThesisThis thesis is organized into seven hapters and four Appendies. This hapterpresents the motivation and the basi ideas of SSOM. In hapter two, the meh-anism and properties of SOM will be presented. The mehanisms of ompetitivelearning, soft ompetitive learning and algorithms of soft SOM will be eluidated inhapter three. The ordering property of SSOM is demonstrated by several simulationexamples. Then, SSOM is applied to solve two problems. In hapter four, SSOM isapplied to reveal the relationship amongst lusters. In hapter �ve, SSOM is om-bined with quadrature amplitude modulation (QAM) sheme to transmit vowel data.Preliminary theoretial study on the onvergene of SSOM, SOM, CL and FCL willbe presented in hapter six. Then onlusion follows in hapter seven. Appendix Aprovides the proof of Corollary 1 and 2, whih are stated in Chapter 2. Appendix Bdisusses di�erent sense of neighborhood whih an help to understand the de�nitionof SSOM. Appendix C inludes some �gures supplemented to the results disussed inhapter four. Appendix D gives a brief review on QAM.
4



Chapter 2Self-Organizing MapThis hapter reviews the model of SOM. The onvergene and ordering propertieswill be disussed based on several illustrative examples. Mathematial disussion onthe onvergene property will be presented in Chapter 7 and Appendix A1. Afteran introdution given in the �rst setion. The mehanism of SOM will briey bedesribed in setion two. Then, in setion three, a some examples are provided toillustrate the behavior and the properties of SOM. The purpose of these three setionsis to visualize the mehanism of SOM. Setion four and setion �ve summarize urrentresults on the onvergene, ordering and ost funtion of SOM. Finally, a onlusionwill be presented in setion six.2.1 IntrodutionAs evidene from neural siene [17℄, human brain exhibits topologial ordered mapin a number of plae in the erebral ortex suh as retinotopi map in the visualortex, somatotopi neural map in the somatosensory ortex, tonotopi neural mapand motor map. Aording to the property of topologial ordering, researhers haveproposed many di�erent models to mimi suh neural maps. Willshaw and Von derMalsburg �rst proposed a model of retinotopi map [48℄, [49℄ and demonstrated theordering property through simulations. Sine then, many other models have also beenproposed to aomplish suh MAP [19℄ [27℄ and [45℄. Self-Organizing Map (SOM) isone of the simpliest model and widely applied2. However, there are limitations in theappliation of SOM: there is no omplete analysis on the onvergene and orderingproperties of SOM. Besides, in so far, there is no energy funtion has been proven tobe its ost funtion. Therefore, it beomes not so possible to evaluate the performaneof SOM analytially based on the riteria mean square error. The following setionswill be devoted to the desription of the model of SOM and its properties. Certainly,1In Chapter 7, the loal onvergene proof on higher dimensional map is shown. In Appendix A,the onvergene of one dimensional map is eluidated.2See [38℄ and the referene listed. 5



Chapter 2 Chapternot all of them, odevetor density for instane, will be disussed due to the sopeof this thesis. Only some of the ruial property related to the development of SoftSelf-Organizing Map will be introdued.2.2 Algorithm of SOMGenerally, SOM is a two layered neural network. Eah of the nodes in the in-put layer reeives input signal and transmits to the seond layer through weights(synapses). Suppose there are s input nodes, we denote the input data by x =(xi; x2; : : : ; xs)T 2 Rs and the values of weights onneting input to ith output nodeby vi = (vi1; vi2; : : : ; vis)T 2 Rs. Eah of the node in the seond layer ollets allthe signal fed from the �rst layer and output a signal, say yi. Consider there are neurons at the output layer. They are indexed by 1; 2; ::; . One the x is fed to thenetwork, eah of the output nodes will give out a signal either one or zero dependedon the Eulidean distane between x and vi:yi = ( 1 if kx� vik � kx� vjk for all i 6= j.0 otherwise.Unless the data is equal distane from two weights vetor, there is one and only oneoutput node will give out one. So, this mehanism is also alled winner-take-all. Theoutput one node will be alled the winner.While the SOM is in learning, the weight vetors will be modi�ed aording tothese output values. The learning mehanism an be summarized in the followingfour steps [21℄:Step 1 Selet randomly one sample, x, from the stationary sample spae, f(x).Step 2 Evaluate the winning output neuron, Ith output node, by evaluating kx �vIk = minikx� vikStep 3 Modify the weight vetors byvi(t+ 1) = ( vi(t) + �(t)Ai(t)[x(t)� vi(t)℄ if i 2 NIvi(t) otherwise (2.1)Step 4 Goto Step 1.Here NI in (2.1) is a set whih de�nes the weight vetors to be updated. Ai(t) is asalar funtion of time and ji� Ij. It determines the relative update step size for theith weight vetor. �(t) is the updating step size. Usually, Ai is a dereasing funtionof ji � Ij and �(t) dereases to zero as t ! 1. Adopted from [51℄, NI is alled theneighborhood interating set (NIS). and Ai(t) is alled the neighborhood interatingfuntion. 6



Chapter 2 ChapterExample 1 Consider that there are six output nodes. Their orresponding weight vetorsare denoted by v1; v2; v3; v4; v5; v6. We an de�ne the NIS and NIF as the following: N1 =f1; 2g; N2 = f1; 2; 3g;N3 = f2; 3; 4g;N4 = f3; 4; 5g; N5 = f4; 5; 6g; N6 = f5; 6g and Ai = 1.Example 2 Consider the output nodes are arranged as a two dimensional mesh. Thewinner node is denoted by IJ. The NIS an be de�ned as thatNIJ = I � 1; J � 1 I � 1; J I � 1; J + 1I; J � 1 I; J I; J + 1I + 1; J � 1 I + 1; J I + 1; J + 1and the NIF an be de�ned as thatAi(t) = ( �0(t) if i = I�1(t) if i 2 NI � fIg. (2.2)If the map is three by three, the NIF an be written by�0(t) �1(t) 0�1(t) �1(t) 00 0 0 �1(t) �0(t) �1(t)�1(t) �1(t) �1(t)0 0 0 0 �1(t) �0(t)0 �1(t) �1(t)0 0 0�1(t) �1(t) 0�0(t) �1(t) 0�1(t) �1(t) 0 �1(t) �1(t) �1(t)�1(t) �0(t) �1(t)�1(t) �1(t) �1(t) 0 �1(t) �1(t)0 �1(t) �0(t)0 �1(t) �1(t)0 0 0�1(t) �1(t) 0�0(t) �1(t) 0 0 0 0�1(t) �1(t) �1(t)�1(t) �0(t) �1(t) 0 0 00 �1(t) �1(t)0 �1(t) �0(t)Ignoring the boundary nodes, the inner node is surrounded by eight neighboring nodes.Therefore, this type of NIS is alled eight-neighbor type.2.3 Illustrative ExampleFor larity, here gives a simple example to illustrate the mehanism of SOM learningand to desribe its properties numerially and graphially. The SOM is onstitutedby one input node and �ve output nodes. The weights are denoted by v1; v2; v3; v4 andv5. The input sample set onsists of two elements f0:25; 0:75g. The probability massfuntion is given by f(0:25) = f(0:75) = 0:5. Initially, the weight values are set asfollowing: v1(0) = 0:5, v2(0) = 0:1, v3(0) = 0:7, v4(0) = 0:3 and v5(0) = 0:9. The stepsize �(t) = 0:1. The NIF, Ai = 1 and the NIS are de�ned as f1; 2g, f1; 2; 3g, f2; 3; 4g,f3; 4; 5g and f4; 5g respetively. The values of vis in the �rst �fteen iterations aretabulated in Table 2.1. The �rst olumn indiates the number of iterations. Theseond olumn indiates the winning node at the orresponding step. The input to7



Chapter 2 Chapterthe SOM is shown in the third olumn. The values of vis are indiated from the 4tholumn to 8th olumn. In the �rst iteration, the element x = 0:25 is seleted. Atthat time, v4(0) is the losest weight vetor. Hene, node four is the winner node.In sequel, v3; v4 and v5 are hanging aording to Step 3. Graphially, these updatemanifests two phenomena simultaneously: (i)the input x attrats the winner and itsneighborhood to move towards itself and (ii)the winner and its neighborhood aregetting loser. Figure(2.1a) plots the values of vis in the �rst �fteen iterations. As v4and v5 are neighbor, they tend to getting loser. Similar situation happens to v1, v2and v3. Winner Input v1 v2 v3 v4 v50 - - 0.5000 0.1000 0.7000 0.3000 0.90001 4 0.2500 0.5000 0.1000 0.6550 0.2950 0.83502 5 0.7500 0.5000 0.1000 0.6550 0.3405 0.82653 5 0.7500 0.5000 0.1000 0.6550 0.3814 0.81884 5 0.7500 0.5000 0.1000 0.6550 0.4183 0.81205 5 0.7500 0.5000 0.1000 0.6550 0.4515 0.80586 2 0.2500 0.4750 0.1150 0.6145 0.4515 0.80587 2 0.2500 0.4525 0.1285 0.5780 0.4515 0.80588 5 0.7500 0.4525 0.1285 0.5780 0.4813 0.80029 2 0.2500 0.4322 0.1406 0.5452 0.4813 0.800210 5 0.7500 0.4322 0.1406 0.5452 0.5082 0.795211 2 0.2500 0.4140 0.1516 0.5157 0.5082 0.795212 2 0.2500 0.3976 0.1614 0.4891 0.5082 0.795213 5 0.7500 0.3976 0.1614 0.4891 0.5324 0.790714 2 0.2500 0.3829 0.1703 0.4652 0.5324 0.790715 5 0.7500 0.3829 0.1703 0.4652 0.5541 0.7866Table 2.1: The hanging of the vis value in the �rst �fteen iterations.Repeating the steps for several hundreds of iterations, v4 and v5 merge togetherat 0:75. The v1; v2 and v3 merge together at the value 0:25. As a result, topologialorder is formed sine v1 = v2 = v3 < v4 = v5. However, when the learning steps arerepeated until the 646th iteration, it is found v3 gets out from the value 0:25 andinreases to about 0:5, Figure(2.1b).If the value of � is hanged to a smaller value, the resultant vis are di�erene.Figure(2.2) shows the ases when � = 0:05 and � = 0:01 respetively. It is foundthat ordering ease in the former ase while the ordering preservation is manifestedin the latter ase.In all three ases, ordering property is manifested. However, it is not always thease. For instane, Figure(2.3) shows one ase where ordering property is eased.8
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v5(a) (b)Figure 2.3: The hanging of the weight values for the illustrative example. Thevertial axis indiates the value of the weight while the horizontal axis indiates thenumber of training step. In (a) �(t) is set to a onstant value 0.01. In (b), �(t) = 0:1.Noting that the initial onditions of vis are di�erent.Here, NIS and NIF are de�ned in the same way as above. The data set is the same.But the initial ondition is di�erent. Figure(2.3a) shows the ase when �(t) = 0:01.Figure(2.3b) shows the ase when �(t) = 0:1.Aording to these examples, four observations an be noted: (1)If the network pa-rameters and initial onditions are set appropriately, topologial map an be formed.(2)SOM an onverge to a stationary state. (3)There are more than one station-ary state that SOM an be reah. (4)Larger step size an enhane the formation oftopologial map.2.4 Property of SOM2.4.1 Convergene propertyAlthough the mehanism of SOM is very simple, there is no proof on the onvergeneproperty exept on ertain simple ases [4℄ [8℄ [11℄ [21℄ [22℄ [28℄ [36℄ [42℄ [51℄.Ritter and Shulten treated it as a Markovian proess. They derived Fokker-Plank approximated equation for SOM and arrived with an approximated equationfor the mean average update [36℄. Hene they showed that SOM an onverge tostationary state.Theorem 1 (Ritter and Shulten [36℄) Suppose that �0(t) = �1(t) = 1 for allt and V � be an asymptoti equilibrium state, then the neessary and suÆient on-ditions for the loal onvergene of SOM are: (i) limt!1 R t0 �(s)ds = 1 and (ii)limt!1 �(t) = 0. 10



Chapter 2 Chapter222Others applied the so-alled Gladyshev Theorem to show that the onvergene of1D or 2D SOM is loally almost sure if the input distribution is uniform [8℄ [22℄ [28℄[51℄.Reently, Bouton et.al. [4℄ proved that the onvergene of SOM, under nonuniformdistribution, is almost sure.Theorem 2 (Bouton and Pages [4℄ [8℄) Consider 1-D SOM whih �0(t) = �1(t) =1 for all t, the onvergene is loally almost sure if either� the distribution of the data is uniform, i.e. f(x) = 1� the distribution of the data is logonave or� the distribution of the data is loglinear.And �(t) should satis�es that P1t=0 �(t) =1 and P1t=0 �2(t) <1. 222Following the same idea as Bouton et.al. we an extend the onvergene proofto the ase that the NIF is dereasing outward and the size of NIS is any large. Asthe proof is lengthy, the orollary is stated below while the proof is presented inAppendix.Corollary 1 Consider 1-D SOM whih �0 � : : : � �l � 0 for all t, where l > 1the onvergene is almost sure if �(t) satis�es the onditions of Theorem 2 and theinput distribution is either uniform, logonave or loglinear. Furthermore, if the inputdistribution is uniform, the onvergene is globally almost sure. 22.4.2 Topologial OrderOne promising property of SOM is that SOM an organize to an ordered map whihreveals the intrinsi relationship amongst the training lusters. It has been demon-strated by hte illustrative example. However, the analysis on this property, in so far,is restrited to one-dimensional map. One ritial reason is due to the laking offormal de�ntion of "order" in higher dimensional map.11



Chapter 2 Chapter2.4.3 Objetive Funtion of SOMBesides the laking of formal de�nition of "order", SOM is su�ered from the lak ofobjetive funtion. So that, on one hand, the performane of SOM is hard to omparedwith other algorithms analytially. On the other hand, it reveals one reason why theonvergene proof of SOM is not yet ompleted. Anyway, there are two speial asesunder whih we an de�ne the objetive funtion for SOM.Firstly, suppose the �0(t) = 1 and �1(t)! 0 for all k 6= 0, the objetive funtionof self organizing map an be de�ned byJ = Xk=1 Xx2
k kx� vkk2f(x)dx: (2.3)It is just the same as the objetive funtion of LBG [26℄ or ompetitive learning[15℄, if the NIF is dereasing to zero. That is to say, one speial ase of SOM anbe treated as LSE-based algorithm. However, when the NIF is not dereasing, it isdiÆult to onstrut suh an objetive funtion. Tolat [42℄ tried to de�ne neuronalenergy funtion, whih is tried to generalize the proof to high dimension. However,the energy funtions are not the true energy funtions. So, it annot reet the truemehanism of SOM. Reently, Erwin et.al. [11℄ laimed that the global objetivefuntion for SOM does not exist.Seondly, onsider an one dimensional SOM. If (a) the input data is salar andthe distribution is uniform and (b) �0 � : : : � �l � 0 where l > 1, thenJ = Xi=1 hi(v1; : : : ; v)2 (2.4)is the objet funtion, whereh1(v1; : : : ; v) = Z
1(x� v1)f(x)dx+ Z
2(x� v1)f(x)dx+ : : : (2.5)+ Z
l+1 (x� v1)f(x)dxh2(v1; : : : ; v) = Z
1(x� v2)f(x)dx+ Z
2(x� v2)f(x)dx+ : : : (2.6)+ Z
l+2 (x� v2)f(x)dx: : :hi(v1; : : : ; v) = Z
i�l(x� vi)f(x)dx+ : : :+ Z
i�1(x� vi)f(x)dx (2.7)12



Chapter 2 Chapter+ Z
i(x� vi)f(x)dx+ Z
i+1(x� vi)f(x)dx+ : : :+ Z
i+l(x� vi)f(x)dx: : :h(v1; : : : ; v) = Z
�l(x� v)f(x)dx+ : : :+ Z
(x� v)f(x)dx; (2.8)where 
i = fxjkx�vik � mink 6=i kx�vkkg. The derivation of suh objetive funtionis in the proof of the ase 1 of orollary 1. The idea of proof is based on Krasovskiimethod [18℄. The derivation of suh objetive funtion is given in Appendix A. Asenergy funtion an be de�ned, the onvergene of SOM de�ned in this ase an beproven to be almost sure.2.5 ConlusionIn this hapter, we have briey reviewed the model of SOM. Its network strutureand its learning mehanism. To larify the mehanism, a simple example is given.Moreover, these examples illustrate the ordering and onvergene behavior of SOM.Some theoretial results on these issues are disussed as well. In summary, SOM is asimple neural network model and it resembles the map property of erebral ortex inour brain. However, it su�ers from the lak of ompleted analytial proof on eah ofits properties inluding onvergene and ordering.Even though, we have added on some new results on both the onvergene proofand objetive funtion for SOM, there are lot of work have to be done to aomplisha omplete theoretial analysis and to explore the topologial ordering property toother models.
13



Chapter 3Algorithms for Soft Self-OrganizingMapThis hapter presents two algorithms for Soft Self Organizing Map and demonstratestheir ordering properties using three simulation examples. In the �rst setion, themehanisms of ompetitive learning, Maximum Likelihood Competitive Learning andFuzzy Competitive Learning will be desribed. Then, the relationship between thealgorithms of SOM and simple ompetitive learning will be disussed in setion three.It aims at of indiating a ue explaining why SOM an generate neighborhood pre-served map but ompetitive learning annot. Using this ue, MLCL and FCL areextended to two soft algorithms of SOM: SSOM1 and SSOM2. These algorithmswill be presented in setion four. In setion �ve, simulation results are providedto illustrate the ordering properties of both algorithms. Hene a onlusion will bepresented in setion six.3.1 Competitive Learning and Soft CompetitiveLearningThe proposing of ompetitive learning an be traed bak to the time when FrankRosenblatt invented Pereptron. In [39℄, Rosenblatt proposed a lass of Pereptronmodel to explain the information proessing and storage in our brain. One modelalled -pereptron is exatly the modern time ompetitive learning algorithm [15℄.Briey, the mehanism of ompetitive learning an be desribed using Figure(3.1).Suppose that there are  neurons in the output layer. The output of the neuronsare denoted by y1; : : : ; y. Eah neurons reeives signal from the input layer. Theresponse of the neuron is de�ned byyi(t) = ( 1 if kx(t)� vi(t)k � mink 6=i kx(t)� vk(t)k0 otherwise. (3.1)14



Chapter 3 Chapter����������������h hh�������������������� DDDDDDDDDD6 6 6 6viy1 y2 yi y
XFigure 3.1: Struture of ompetitive learning.The learning of the weights, vi is de�ned byvi(t+ 1) = vi(t) + �(t)yi(t)(x(t)� vi(t)); (3.2)where �(t) satis�es the onditions: R10 �(t)dt =1 and R10 �2(t)dt <1.Suppose that the pdf of x is denoted by f(x), the objetive funtion of ompetitivelearning is given by J = Xi=1 Z
i kx� vik2f(x)dx; (3.3)where 
i = fx : kx� vik < mink 6=i kx� vkkg. Hene, ompetitive learning is just theon-line omplement of LBG algorithm [26℄.In ompetitive learning, it an oneive that the response of neuron is a hara-teristi funtion indiating the degree of winning of that neuron in the ompetition.If the neuron is winner, its degree will be one. If it is loser, the degree will bezero. In another words, eah neuron an only either be winner or loser. The deisionwhether the neuron is winner or not is hard deision and the ompetition is alledhard deision.Instead of de�ning the ompetition in a hard way, Nowlan and Jou reently pro-posed algorithms whih are inorporated with the onept of soft ompetition:� vi(t+ 1) = vi(t) + �(t)yi(x(t)� vi(t)); (3.4)where yi(x; vi; v2; : : : ; v) = exp(�kx� vik2=t)Pk=1 exp(�kx� vkk2=t) (3.5)and t > 0; 15



Chapter 3 Chapter� vi(t+ 1) = vi(t) + �(t)ymi (x� vi(t)) (3.6)where yi(x; v1; : : : ; v) = 24 Xk=1 kx� vik2kx� vkk2!1=(m�1)35�1 (3.7)and m > 1.The former algorithm is Nowlan's maximum likelihood ompetitive learning whilethe latter one is Jou's fuzzy ompetitive learning. Their algorithm share one ommonfeature. There is no absolute winner or loser. Eah neuron is winner. The valueof the harateristi funtion is not binary but any value between zero and one, i.e.yi 2 [0; 1℄. Essentially, their algorithms an be written in the following general form:yi = yi(x; vi; v2; : : : ; v);vi(t+ 1) = vi(t) + �(t)F (yi(t))(x(t)� vi(t)); (3.8)where F (yi(t)) is a monotone inreasing funtion de�ned on [0; 1℄ and �(t) satis�esthe onditions, R10 �(t)dt = 1 and R10 �2(t)dt < 1. Then, in ase of Nowlan'salgorithm, F (yi) = yi. In ase of Jou's algorithm, F (yi) = ymi .Intuitively, as their algorithms are di�erent, both algorithms minimize di�erentobjetive funtion exept at the limiting ase when m = 1+ and t = 0+. In ase ofNowlan's algorithm, the objetive funtion is de�ned byJt = � Z log " Xi=1 exp ��kx� vik2=t�# f(x)dx: (3.9)In ase of Jou's algorithm, the objetive funtion is de�ned byJm = Xi=1 Z 24 Xk=1 kx� vik2kx� vkk2! 1m�135�m kx� vik2f(x)dx: (3.10)3.2 How does SOM generate ordered map?In order to modify MLCL and FCL we need to understand how SOM generatesordered map. In sequel, we may �nd out some ues so that we an modify thealgorithms of Nowlan and Jou in suh a way. Ignoring the onditions of �(t), thealgorithms of SOM and CL are given as follows: Without loss of generality, we onsiderthe SOM a one dimensional map and suppose that x; vi 2 Rn, yi 2 R. For SOM,vi(t+ 1) = ( vi(t) + �(t)[x(t)� vi(t)℄ if i 2 NIvi(t) otherwise (3.11)16



Chapter 3 Chapterand for CL, vi(t+ 1) = ( vi(t) + �(t)[x(t)� vi(t)℄ if i = Ivi(t) otherwise; (3.12)where I is de�ned by I = argminifkx(t)�vi(t)kg, NI is the neighborhood interatingset. For example, N1 = f1; 2g, N2 = f1; 2; 3g, N3 = f2; 3; 4g and so on. If we de�neyi(t) as that yi(t) = ( 1 if kx(t)� vi(t)k � mink 6=i kx(t)� vk(t)k0 otherwise, (3.13)we an re-formulate the mehanism of SOM and CL in the following way:vi(t+ 1) = vi(t) + �(t)[x(t)� vi(t)℄zi(t); (3.14)where zi(t) = Pk2Ni yk(t).Thus if Ni = fig, (3.14) redues to CL. If Ni = fi � 1; i; i + 1g, then (3.14)redues to SOM. Therefore, we an de�ne a three-layered network to mimi SOM,Figure(3.2), with the �rst two layers onstituting the ompetitive learning network.Between the yi layer and zi layer, the assoiated weights are not fully onneted butpartially onneted. The value of eah weight onnetion is one. Certainly, it doesnot mean that SOM is a three-layered network.If gij denotes the value of the weight onneting yi and zj, gij = 1 if ji � jj � 1and zero otherwise, then the ue that makes SOM generate ordered map an beoneived as the existene of the assoiated weights, the gijs, onneting y-layer andz-layer. Using this ue, we an imagine that the ordering map an still be generatedif the lower layer is replaed by MLCL or FCL instead. This is the idea that will beeluidated in the rest of the paper.t t t tt t t tt t t6���6��I ���6���6��I��I66y1 y2 y3 y4z1 z2 z3 z4x CL SOMFigure 3.2: Network struture of SOM.It is worthy to note that although our disussion onern solely on the one dimen-sional map and the value of the weights assoiating y-z layers is one, the priniplestill holds for the ase when the map is a higher dimensional map and the value ofthe weights are dereasing outward, i.e. gii � gi;i�1 � gi;i�2 and so on.17



Chapter 3 Chapter3.3 Algorithms of Soft SOMAording to our preliminary analysis, it is found that the formation of topologialmap is due to the existene of assoiation between the y-layer and z-layer. Thatis, from the de�nition of gij , we an extend the algorithms of MLCL and FCL toSSOM1 and SSOM2. Again, without loss of generality, we assume that the SSOM1and SSOM2 are one dimensional map1. Assuming that G(t) = (gij)� is a toeplitzmatrix satisfying the ondition g1i � g1j for all i � j, their learning algorithms anbe stated as shown below:SSOM 1 For all i = 1; 2; : : : ; ,vi(t+ 1) = vi(t) + �(t)[x(t)� vi(t)℄zi(t); (3.15)where zi(t) = Pk2Ni gikyk(t) andyi = exp(�kx� vik2=� )Pk=1 exp(�kx� vkk2=� ) (3.16)for all � > 0.SSOM 2 For all i = 1; 2; : : : ; ,vi(t+ 1) = vi(t) + �(t)[x(t)� vi(t)℄zi(t); (3.17)where zi(t) = Pk2Ni gikymk (t) andyi(x; v1; : : : ; v) = 24 Xk=1 kx� vik2kx� vkk2!1=(m�1)35�1 (3.18)for all m > 1.In equilibrium, the luster enters vis will be given by vi = Px xzi(x)Px zi(x) . In ase ofSSOM1, vi is given by vi = PxPk2Ni xgikyk(x)PxPk2Ni gikyk(x) ;for all i = 1; 2; : : : ; . In ase of SSOM2, vi is given byvi = PxPk2Ni xgikymk (x)PxPk2Ni gikymk (x) ;1Note that the index of vi, yi and zi will be hanged to (i; j) in ase the map is de�ned as a twodimensional mesh and and N(i;j) = f(i; j); (i� 1; j � 1); (i; j � 1); (i� 1; j)g18



Chapter 3 Chapterfor all i = 1; 2; : : : ; . Either SSOM1 or SSOM2 an be treated as a generalized modelof CL and SOM. It an transform to any one of them by modifying the parameter� (or m) and reduing the size of neighborhood to singleton, i.e. Ni = fig. Forlarity, we assume that gij = 1 if ji � jj � 1. Without loss of generality, we disusshow SSOM1 an hange to other algorithms. If � > 0 and Ni = fig, it reduesto MLCL. If � = 0+ and Ni = fig, it redues to ompetitive learning. If � = 0+and Ni = fi � 1; i; i+ 1g, it redues to SOM. Similar disussion on the relationshipbetween SSOM2 and other algorithms an follow the same way.As in the ase of SOM, a omplete theoretial analysis on the above algorithms,SSOM1 and SSOM2, is very diÆult. Therefore the topologial ordering propertyan only be demonstrated by the simulation results as given in the next setion.3.4 Simulation ResultsThe �rst example demonstrates the apability of SSOM in handling one dimensionaldata. The matrix G(t) is de�ned as: G(t) = (gij(t))�, wheregij(t) = 8><>: 1 if i = j.�(t) if ji� jj = 1.0 otherwise. (3.19)while in the seond example, two dimensional data is handled. The matrix G =(gij;rs)�  is de�ned as follows:gij;rs = 8><>: 1 if ij = rs:�(t) 8rs 2 Nijnfijg:0 otherwise: (3.20)3.4.1 One dimensional map under uniform distributionIn this example, the SSOM onsists of �ve weight vetors. The input data is uniformlydistributed on [0; 1℄. Initially, the weight vetors are in random position within [0; 1℄.For all t > 0, �(t) in equation (3.19) is set to be a onstant. �(t) is set to be 0.01.As the results of SSOM1 and SSOM2 are similar exept that the training time isdi�erent, only the results obtained by algorithm SSOM1 are displayed in Figure(3.3).From the �gures, we an make the following observations: (i)As �(t) dereases, thespread of jv1(1)� v5(1)j will inrease. (ii)When �(t) � 0:5, it is possible to obtainordered map within two thousand times of iteration even the initial map is not inorder. (iii)As �(t) dereases, the time to reah ordering beomes longer. (iv)As �(t)dereases, the utuation of vis also dereases. (v)When �(t) < 0:5, no ordering mapan be obtained within two thousand times of iteration.19
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Figure 3.5: The evolution of the SSOM1 under uniform distribution. (a) The mapis randomly initialized and � = 0:02. (b) and () indiate the map formed after 104and 1:5�104 iteration respetively. The ordered map is formed after 2�104 iterationand remained unhanged afterward.an be formed after 20000 iteration. Figure(3.5) displays the map strutures at the 0,10000, 15000 and 20000 iterations. For the ase of SSOM2, the results are displayedin Figure(3.6). The map strutures formed at 0, 20000, 60000 and 100000 are shown.Two observations an be noted from the above experiment: (i)The onvergenerate of SSOM1 is faster than that of SSOM2. From the experiment, the time on-sumed by SSOM2 is 5 times the time onsumed by SSOM1. (ii)The size of the mapgenerated by SSOM1 is larger than the one generated by SSOM2.3.5 ConlusionIn summary, this hapter presents two algorithms for Soft Self Organizing Map anddemonstrates their ordering properties using three simulation examples. They areinspired by the ordering property manifested by Self-Organizing Map (SOM) and thesoft ompetition nature of Maximum Likelihood Competitive Learning (MLCL) andFuzzy Competitive Learning (FCL). By studying the mathematial formulations of22
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Chapter 3 Chapterompetitive learning and SOM, a ue for the formation of neighborhood preservedmap is suggested. Using this ue, MLCL and FCL are used to derived two SOM-likealgorithms: SSOM1 and SSOM2. Simulation results based on one dimension andtwo dimension data are provided to illustrate their ordering properties.Although SSOM1 and SSOM2 show ordering properties, there is still diÆultyin using SSOM1. It is found that there is no simple method to tune the value of� . We have arried out a number of simulations with di�erent values of � . It wasfound that SSOM1 annot generate topologial map one � is greater than 0.15. Inase of SSOM2, we have set m = 1:5 and m = 3. It was found that topologialmap still an be generated. Furthermore, there is no analytial proof for the orderingand onvergene of both algorithms exept that the neighborhood set os redued tosingleton, i.e. MLCL and FCL respetively.
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Chapter 4Appliation to Unover VowelRelationshipIn the last hapter, we have derived two soft versions for Self-Organizing Map (SOM),alled SSOM1 and SSOM2, and demonstrated its ordering property through simula-tions. Due to the ordering property manifested by SSOM1 and SSOM2, SSOM1 andSSO2 are likely applied to reveal the topologial struture of a set of data, stritlythe vowel data. In our preliminary study, it is found that not both SSOM1 andSSOM2 an unover the neighborhood relationship among di�erent lasses of vowelprovided by Peterson and Barney1. The algorithm of SSOM1 is not feasible to do so.So, in this hapter, our prinipal onern is akin to the implementation of SSOM2to unover the vowel relationship. The following setions are devoted to present thedetail of this appliation. In the �rst setion, the experimental set up inluding thenetwork struture, training proedure and relationship onstrution sheme will beeluidated in setion two. Then the results of the experiment will be given in setionthree. In whih, the reason why SSOM1 is not appropriate to be implemrnted willbe explained. In setion four, the onlusion will be presented.4.1 Experiment Set UpPeterson-Barney vowel database is used as the training set. The database onsistsof a digitized version of the �rst and seond formant frequenies of ten vowels formultiple male and female speakers. As in [33℄ and [31℄, the �rst and seond formantfrequenies are used for the experiments. It is remarked that our prinipal onern isto unover the vowel relationship.1It is a benhmark database whih is loated in the UCI mahine learning repository.25



Chapter 4 Chapter4.1.1 Network strutureThe struture of the network is similar to the ounter-propagation-network (CPN)[14℄. Figure(4.1) shows the network struture for this experiment. It onsists ofthree layers: input, hidden and output. There are two units in the input layer,hundred units in the hidden layer and ten units in the output layer. The hiddenunits are onstruted as a ten by ten 2D mesh. The input-hidden weights, vis, aredetermined by the algorithm of SSOM2 (or SOM), i.e. equation (3.17). The hidden-output weights are determined by the method of minimum square error whih will beeluidated shortly. x x x x6 66 6 6 6����� XXXXXXXXXXXXXy�������������: AAAAK������3 PPPPPPPPPPi����������1 QQQQQQk6 HiddenInputOutputx
o1 o2 o10okWvijzijFigure 4.1: The network for the experiment. It is a three layer network with two inputnodes, one hundred hidden node and ten output node. The input-hidden weights, vijs,are determined by using either SOM or SSOM2 while the hidden-output weights,W , are determined by using the method of minimum square error. Here, i; j 2f1; 2; : : : ; 10g.4.1.2 Training proedureThe training of this network is divided into two phases: (i) input-hidden weightevaluation and (ii) hidden-output weight evaluation. Denote x 2 R2 be the inputdata, z(i;j) 2 R be the output of ijth hidden unit and v(i;j) 2 R2 be the input-hiddenweight. In the �rst phase, the value of v(i;j) are evaluated based on the algorithm ofSSOM2 (or SOM). For simpliity, �(t) = 0:1 and N(i;j) = f(i; j); (i� 1; j � 1); (i; j �1); (i�1; j)g at the �rst 152000 iterations. After that, �(t) = 0:01 and N(i;j) = f(i; j)gfor another 152000 iterations. One the �rst phase training is �nished, the vowel datahave been partitioned into hundred lusters.Then N(i;j) = f(i; j)g and the values of vij are frozen. (At that time, if a voweldata x is fed to the input, eah of the hidden units will output a value, zij. In ase26



Chapter 4 Chapterof SSOM2, zij(x) 2 [0; 1℄. In ase of SOM, zij(x) 2 f0; 1g. In either ase, we anobserved that Pi;j zij(x) = 1.) Suppose that the total number of output node, , isten, we denote O = (o1 : : : o)T 2 R10 be the output of the network,W be the hidden-output weight matrix, Z = (z11z12 : : : z)T and O1 = (10 : : : 0)T , O2 = (01 : : : 0)T , : : :,O10 = (00 : : : 1)T be the output of network orresponding to the ten lasses. In theseond phase, eah of vowel data is fed to input, the values of zijs are evaluated andoutput from the hidden layer to the output layer. The output of the ten output units,oks, are ompared with the target values. The error is bakpropagated to modify thehidden-output weights. Suppose that the square error ontributed by data x is givenby ex = kOx�WZ(x)k2, thus the total square error isPx kOx�WZ(x)k2. Therefore,using the method of minimum square error, W an be determined using the followingformulae: W =  Xx ZT (x)Z(x)!�1  Xx ZT (x)Ox! :4.1.3 Relationship Constrution ShemeUsing the aforementioned network struture and training steps, we obtain a vowellassi�er. Based on this lassi�er, the following heuristi steps are taken to reveal thevowel relationship: (i)The hidden-output weight is set to be one if it is larger than athreshold. Otherwise, it is set to be zero. (ii)The hidden unit is assigned to be lassi if the weight onneting it to the ith output node is one. (iii)If there is a hiddenunit whih is assigned to more than one lass, set threshold to a larger value andrepeat the �rst two steps. If eah hidden unit is assigned to at most one lass, thengo to next step. (iv)Class i and lass j are neighborhood in the data spae if theyare neighborhood in the organizing map.4.2 ResultsFigure(4.2) and (4.3) display the lustering results of SSOM2 and SOM after the�rst phase training. The input data are normalized. The irles are orrespondingto the loation of the luster enters while the edges onneting irles indiate theneighborhood struture of the hidden units. In order to label the hidden units, weneed to know the hidden-output weight values.4.2.1 Hidden-unit labeling for SSOM2Figure(4.4) shows the mesh plot of the weight values onneting the hidden units tothe �rst output unit2. It is found that large weight values are usually loalized in asmall region. The same property exists in the weights onneting the hidden units2For the rest of the other mesh plots are shown in Appendix C.27



Chapter 4 Chapterto other output units. Then following the hidden-unit labeling sheme (step(i) andstep(ii) in the relationship onstrution sheme), the labeling LSSOM2 of the hiddenunits are: LSSOM2 = 26666666666666666664 9 9 9 � � � � 1 1 1� � 9 � � 10 2 2 � 17 8 8 � � � � 2 2 17 7 8 8 � 10 3 � 2 �7 7 5 10 � � � � 2 1� � 5 � � � 3 3 1 1� � � � 4 4 � 3 2 16 6 � 5 � 4 � 3 � 2� � � 5 5 4 4 � 3 �6 6 6 5 � 4 4 4 3 �
37777777777777777775 : (4.1)Here the threshold is set to be one. The interpretation of this matrix is as following.Consider the element in the third olumn forth row, the value is 8. This means thatthe luster represented by v(3;4) is belongs to the 8th vowel. If the element is a dash,it means that the orresponding luster is unlassi�ed.4.2.2 Hidden-unit labeling for SOMFigure(4.5) shows the weight values onneting the hidden units to the �rst outputunit. Similar to the ase of SSOM2, it is found that the weight values whih aregreater than zeros are usually loalized in a small region. Then following the samehidden-unit labeling sheme and the threshold is set to be 0.7, the labeling LSOM ofthe hidden units are:LSOM = 26666666666666666664 6 6 6 � � 7 7 7 � 96 6 6 � � � 8 8 9 9� � � 5 5 � 8 8 � 95 5 � � � 10 � � � 95 � 4 4 10 10 10 � � �� � 4 4 � � � 2 2 �� 4 4 4 3 � 2 2 2 14 4 � � 3 � � 2 1 14 4 3 3 3 3 2 2 1 14 4 3 3 � � 2 2 1 1
37777777777777777775 : (4.2)Similarly, the value of eah of the element indiates the lass of the orrespondingluster belongs to. Based on the labeling matrix obtained previously, we an obtain28



Chapter 4 Chapterthe relational matrix RSSOM2 and RSOM as following:RSSOM2 = 26666666666666666664 1 1 0 0 0 0 0 0 0 01 1 1 0 0 0 0 0 0 10 1 1 1 0 0 0 0 0 10 0 1 1 1 0 0 0 0 00 0 0 1 1 1 0 1 0 10 0 0 0 1 1 0 0 0 00 0 0 0 0 0 1 1 0 00 0 0 0 1 0 1 1 1 10 0 0 0 0 0 0 1 1 00 1 1 0 1 0 0 1 0 1
37777777777777777775 ;RSOM = 26666666666666666664 1 1 0 0 0 0 0 0 0 01 1 1 0 0 0 0 0 0 10 1 1 1 0 0 0 0 0 00 0 1 1 1 0 0 0 0 10 0 0 1 1 1 0 0 0 10 0 0 0 1 1 0 0 0 00 0 0 0 0 0 1 1 1 00 0 0 0 0 0 1 1 1 10 0 0 0 0 0 1 1 1 00 1 0 1 1 0 0 1 0 1
37777777777777777775 :These matrix indiate the neighborhood relationship between di�erent vowels. If thevalue of the ijth element is equal to one, then i lass and j lass are neighborhood.If the value is zero, then they are not neighborhood.4.3 ConlusionIn summary, this hapter has presented a simplemethod of unovering the relationshipamongst lusters of vowel data. Furthermore, as the ordered map (the hidden layer)is prede�ned as a lower dimensional mesh, the relationship obtained manifests alower dimension relationship between luster. Although our prinipal onern is notto onstrut a vowel lassi�er with very high lassi�ation rate, it is worthwhile topoint out that the rate of orret lassi�ation of SSOM2 and SOM are 0.76 and0.76 respetively whih are far below the performane of using MLCL as indiated in[33℄. The reason for this poor performane is remained to be investigated. Finally,it should note that the idea expressed in this hapter an atually be applied tothose luster based fuzzy model identi�ation tehniques [41, 5℄. In partiular, ifthe lustering tehnique is FCL (or FCM [2℄) based, SSOM2 an diretly applied. Inase other lustering tehnique is implemented, equation (3.17) needed to be modi�edaordingly. 29



Chapter 4 Chapter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Chapter 5Appliation to vowel datatransmissionIn this hapter, we further apply these algorithms in the transmission of vowel dataunder a noisy hannel. The quantizer odebook is generated by using SSOM1 andSSOM2 and embedded into modulation system. The overall system performane ofusing SSOM1 and SSOM2 in transmitting Peterson-Barney vowel data are omparedwith that of using SOM, in the sense of data reonstrution error. Simulation resultsindiate that (i)in higher hannel noise level, the reonstrution error ommitted byusing SSOM1 is smaller; (ii) while in lower hannel noise level, the error ommittedby using SOM will be smaller. In the next setion, the data transmission problemand the motivation of using soft self-organizing map in generating odebook will beeluidated. Then the simulation and the main results will be desribed in setion twoand three. The onlusion will be presented in setion four.5.1 IntrodutionTo build a transmission system, the following steps are usually undertaken to transmitand reeive a bath of data [40℄: (Quantization and Enoding) A vetor quantizer isdesigned to divide the data spae into a number of partitions, P1; : : : ;P. Eah ofthese partitions is represented by a representative vetor, v1; : : : ; v. One a data xis going to be sent, the quantizer will lassify x into one of these partitions basedon nearest neighbor sheme: If vi is the losest representative vetor to x, x 2 Piand the data x is enoded by symbol i. (Modulation) The ode of the data x ispassed to the modulator. The modulator then generates and transmits a waveforms(t) to the ommuniation hannel, usually noisy. (Demodulation and Deoding) Inthe destination side, the reeiver demodulates the ontaminated signal s(t) + n(t)and gives out a ode. Based on this ode, the approximation of data x, v̂(x) isreonstruted. Figure(5.1) shows the blok diagram of a simple transmission system.In traditional approah, the design of the vetor quantizer is independent of the34



Chapter 5 Chapter����- - ?- - -x v(x) n(t)s(t) ŝ(t) v̂(x)QuantizationandEnoding Modulation(QAM) DemodulationandDeoding+Figure 5.1: The blok diagram of a simple transmission system.design of the modulator in suh transmission system. Reently, Leung [25℄ has putthem as a whole for onsideration: the vetor quantizer is generated by using Self-Organizing Map (SOM) while the modulator is designed based on quadrature ampli-tude modulation (QAM). In this hapter, we follow the same idea as suggested byhim to design the transmission system. Apart from using SOM to train the quantizer,we apply two algorithms of soft SOM to build suh quantizer. And their performaneare evaluated.The reason why we follow Leung's idea an be explained as following. Considerthat the QAM is a 16-ary with waveforms de�ned by sij(t) = aios!t + ajsin!t,where ai = 1:5 � (i � 1) and ! is the arrier frequeny. The quantizer onsistsof sixteen odevetors, fv11; v12; : : : ; v44g, whih are generated by using SOM. Whilethis quantizer is implemented in QAM, the following odevetor-waveform assignment(CWA) is de�ned: vij 7! sij. Usually, we also denote sij as a two dimensional vetorin the signal spae: sij = (ai; aj). In sequel, if vij and vrs are neighborhood in thesense of SOM, sij and srs are neighborhood in the signal spae. Consequently, if xis lassi�ed as ijth partition and being transmitted by the waveform sij = (ai; aj)to a noisy hannel, the reonstruted odevetor at the destination will probably beneighborhood of v̂ij aording to the fat that the reeived waveform should not be toofar from sij. As a result, the distane between x and v̂ij should not be large. Hene thereonstrution error will be smaller. On the ontrary, in ase SOM is not applied, `sijand srs are neighborhood' ould not imply `vij and vrs are neighborhood'. So, the errorontributed by kx� v̂ijk will probably be large. Therefore, the total reonstrutionerror using non-map type training algorithm, Frequeny sensitive ompetitive learning(FSCL) for instane, will be large [25℄.Although Leung has shown promising result, we would like to further redue thereonstrution error by substituting the algorithms of SSOM1 and SSOM2 to SOM inthe generation of odebook for QAM. This substitution is motivated by three urrentresults : In [50℄, Yair et.al. showed that better odebook an be aomplished by usingsoft ompetition (i.e. Maximum Likelihood Competitive Learning (MLCL) ). In [33℄,Nowlan applied MLCL to lassify vowel data and found that the mislassi�ation rateis far below than using other neural network approah inluding SOM. Similar resultwas laimed by Chung and Lee [7℄. They applied Fuzzy Competitive Learning (FCL)35
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Figure 5.2: The loation of the waveforms are de�ned regularly in the signal spae.Eah solid irle represents one waveform.to lassify vowel data and found that the misslassi�ation rate is lower than that ofLVQ and FSCL. Based on their results, it is reasonable to indue that using the softboundary tehnique (MLCL or FCL) in lustering or lustering based lassi�ationmay ahieve better performane. In onlusion, the ombination of soft ompetitionmehanism with topologial ordering mehanism may improve the performane ofdata transmission under noise hannel.5.2 Simulation5.2.1 SetupAs SSOM1, SSOM2 and SOM an luster data in an ordered fashion, three di�erentodebooks are generated by using SSOM1, SSOM2 and SOM respetively. Half ofthe database is used for training. Eah of these odebooks ontains 100 odeve-tors. Eah organized map is de�ned as 10 by 10 mesh. We denote the odevetorsby v11; v12; : : : ; v10;10. The QAM is designed as 100-ary. The waveforms are de�nedregularly in the signal spae: 8i; j = 1; 2; : : : ; 10; sij(t) = aios!t + ajsin!t, whereai = 4:5 � (i � 1). The CWA is simply de�ned by assoiating sij to vij. For in-stane, to transmit the odevetor v23, the waveform 3:5os!t + 2:5sin!t will besent, Figure(5.2) shows the loations of the waveforms in the signal spae.36



Chapter 5 Chapter5.2.2 Noise model and demodulation shemeWithout loss of generality, the hannel noise is modeled as a two-dimensional additivewhite Gaussian noise (AWGN), i.e. n = (n1; n2), where Efn1(t)g = Efn2(t)g = 0and Efn21(t)g = Efn22(t)g = �2. Here � is the standard deviation of the hannel noisein eah dimension. When a data x is transmitted to the destination, the followingsteps will be simulated: (i)x 7! vij(x) (x is quantized to one of the odevetors inthe odebook.), (ii)vij 7! sij(t) (The orresponding waveform will be transmitted.),(iii)sij 7! s = sij + (n1; n2) (AWGN is added to the transmitted waveform.) and(iv)s 7! v̂ij (The reeived waveform is demodulated1.).5.2.3 Performane indexTo evaluate the performane of the three algorithms in data transmission, the follow-ing performane index is onsidered:E1 = 1N NXi=1 kv̂(xi)� xik2;where N is the total number of training data. With referene to Figure(5.1), v̂(xi) isthe output signal after demodulation and deoding. xi is the input to the quantizerand v(xi) is the input to the modulator. The former index measures the mean squarereonstrution error. Smaller the valuer of E1, the better the transmission system.5.2.4 Control experiment: random oding shemeIn order to demonstrate the advantage of topologial order. A ontrol experimentis arried out. The set up is the same as above exept that the CWA is de�nedarbitrary. We all it random oding sheme (RC). In suh ase, the neighborhoodpreservation property is eased. If the quantized vetor v23 and v24 are fed to theenoder onseutively, the outome will no more be (2; 3) and (2; 4). Instead, they maybe (5; 9) and (1; 10) whih are depended on de�nition of the one to one orresponding.5.3 ResultsTo larify the disussion, the resultant odebooks generated by SSOM1, SSOM2 andSOM are displayed in Figure(5.3). Remark that the maps obtained are di�erent fromthose displayed in the last hapter sine the size of the training set is just in sizeompared with the experiment arried in the last hapter. The loations of the small1Remind that srs an be written as (ar ; as). The demodulation sheme is de�ned as following:If ks � ŝijk � ks � srsk for all r; s = 1; 2; : : : ; 10, the orresponding v̂ij will be treated as thereonstrution of x. 37
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Figure 5.3: The resultant maps of SSOM1(left), SSOM2(middle) and SOM(right)after training.irles are orresponding to the loations of the odevetors. The edges indiate theneighborhood relationship between odevetors, whih are de�ned a priori. The dotsare orresponding to the loations of the vowel data. We set the standard deviation ofthe hannel to 29 di�erent values: 0:0; 0:1; 0:2; : : : 2:0 and : 3; 4; : : : 10. Twenty-ninesets of experiments are then arried out. The resultant E1 are plotted against thehannel noise standard deviation in Figure(5.4). The numerial data of tabulated inthe following tables, Table 5.1 to Table 5.2.5.3.1 Null hannel noise (� = 0)While the hannel noise is null, the reonstrution error is purely quantization error. Itis found that the quantization error ommitted by SSOM1 is the largest: E1 = 0:0479.The quantization error generated by using SOM is the smallest, E1 = 0:03.5.3.2 Small hannel noise (0 < � � 1)For the ase that ordered map is implemented as the quantizer, Figure(5.4), it isexperimented that the reonstrution error of the system is dominated by the quan-tization error when the hannel noise level is low, i.e. � � 1. For the ase that theordering topology is eased the situation is the similar but the reonstrution erroris dominated by the quantization error only when � � 0:35. In summary, when thehannel noise is small, the order of the reonstrution error E1 is thatE1(SOM) < E1(SSOM2) < E1(SSOM1) < E1(RC);when RC stands for random oding sheme.5.3.3 Large hannel noise (1 � � � 7)When the standard deviation of the hannel noise is between 1 to roughly 7, theperformane of ordered map is still better than random oding:E1(SSOM1) < E1(SSOM2) < E1(SOM) < E1(RC):38
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Figure 5.4: The performane of transmission system against hannel noise. Thehorizontal axis is orresponding to hannel noise variane while the verital axis isorresponding to the average mean square error, E1. The results obtained by usingSOM are indiated by line (1). The results obtained by using SSOM1 are indiatedby line (3). The results obtained by using SSOM2 are indiated by line (2). Thesolid lines are orresponding to the ase when the odevetor waveform assignmentfollows neighborhood preservation sheme. While the dash lines are orresponding tothe ase when the odevetor waveform assignment is random.39



Chapter 5 Chapter5.3.4 Very large hannel noise (� > 7)When the hannel noise is very large, it is found that the mean square error obtainedby all three algorithms are similar. While their results are ompared with randomoding sheme, it is found that the error obtained are larger. A possible reason forthis aspet is due to the loations of the odevetors. However, very large hannelnoise seems to be infeasible in real situation. This results are just for referene.5.4 ConlusionIn summary, we have presented one important appliation of the Soft SOM in thishapter. It is to implement Soft SOM as the quantizer in the data ommuniationsystem. Combine the QAM modulation tehnique, it is demonstrated that the reon-strution error an largely be redued when the hannel noise level is low. Besides,it is found that overall system performane is less noise sensitive. For example, if weset E1 = 0:1 as a referene limit, it is found that the hannel noise tolerated by usingrandom ode tehnique is less than 0.3. In ase of ordered map tehnique, it inreasesto a value larger than one. Moreover, when the hannel noise is very large, i.e. largerthan 7, it is observed that all three ordering tehnique annot help to redue thereonstrution error due to hannel noise.
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Chapter 5 ChapterS.D. SOM SSOM2 SSOM10.0000 0.0300 0.0357 0.04790.1000 0.0300 0.0357 0.04790.2000 0.0312 0.0368 0.04870.3000 0.0384 0.0438 0.05420.4000 0.0491 0.0527 0.06170.5000 0.0579 0.0604 0.06850.6000 0.0658 0.0678 0.07460.7000 0.0736 0.0733 0.08000.8000 0.0807 0.0800 0.08530.9000 0.0878 0.0859 0.08991.0000 0.0940 0.0918 0.09451.1000 0.1005 0.0976 0.09981.2000 0.1073 0.1032 0.10451.3000 0.1133 0.1089 0.10911.4000 0.1207 0.1151 0.11401.5000 0.1274 0.1207 0.11781.6000 0.1338 0.1253 0.12241.7000 0.1409 0.1317 0.12601.8000 0.1461 0.1371 0.13051.9000 0.1524 0.1420 0.13542.0000 0.1591 0.1475 0.13923.0000 0.2156 0.1965 0.17844.0000 0.2614 0.2353 0.21215.0000 0.2981 0.2673 0.24096.0000 0.3292 0.2934 0.26177.0000 0.3491 0.3113 0.28098.0000 0.3695 0.3277 0.29579.0000 0.3835 0.3402 0.308610.0000 0.3945 0.3487 0.3167Table 5.1: The performane of transmission system. The results are obtained byusing SSOM1, SSOM2 and SOM. The performane index E1.41



Chapter 5 ChapterS.D. SOM SSOM2 SSOM10.0000 0.0300 0.0357 0.04790.1000 0.0300 0.0357 0.04790.2000 0.0366 0.0425 0.05340.3000 0.0794 0.0861 0.08880.4000 0.1373 0.1460 0.13510.5000 0.1833 0.1905 0.17100.6000 0.2191 0.2240 0.19940.7000 0.2431 0.2473 0.21970.8000 0.2638 0.2659 0.23390.9000 0.2776 0.2775 0.24861.0000 0.2888 0.2868 0.25751.1000 0.3005 0.2957 0.26441.2000 0.3069 0.3018 0.27281.3000 0.3138 0.3060 0.27841.4000 0.3198 0.3107 0.28321.5000 0.3242 0.3107 0.28691.6000 0.3272 0.3143 0.29041.7000 0.3327 0.3163 0.29491.8000 0.3345 0.3165 0.29631.9000 0.3351 0.3190 0.29862.0000 0.3384 0.3206 0.29963.0000 0.3499 0.3287 0.31014.0000 0.3564 0.3315 0.31135.0000 0.3605 0.3323 0.31056.0000 0.3624 0.3340 0.31027.0000 0.3636 0.3353 0.31068.0000 0.3652 0.3376 0.31119.0000 0.3679 0.3362 0.311510.0000 0.3673 0.3379 0.3114Table 5.2: The performane of transmission system in the sense of mean square error.The results are obtained by using random oding tehnique. The performane indexE1. 42



Chapter 6Convergene AnalysisThis hapter disusses ertain theoretial results on the onvergene of the ompetitivelearning, soft ompetitive learning, SOM and Soft SOM. The tehnique is based onthe appliation of Kushner-Clark Lemma and the Lyapunov indiret method. The�rst setion states the Kushner-Clark Lemma. The onvergene onditions of Jou'salgorithm are presented in seond setion. For our best knowledge, no researher hasproven these onditions yet. In setion 3, we extend the result obtained in setion 2to provide an alternative proof on the onvergene of ompetitive learning. Setion4 presents one of the main results of this thesis: the onvergene of SSOM. Basedon the same approah as setion 3, we extend the result in setion 4 to prove theonvergene of SOM whih is presented in setion 5.6.1 Kushner and Clark LemmaThe following Lemma is adopted from [23℄. For the sake of appliation, some irrelevantterms and onditions are ignored in order to simplify the onvergene proof. To seethe ompleted version of the Lemma and its proof, please refer to [23℄.Lemma 1 (Theorem 2.3.1 of [23℄) Let fMtg be given byMt+1 =Mt + �th(Mt) + �t�t:And assume thatKC1 h(:) is ontinuous Rn valued funtion on Rn.KC2 �t is a sequene of positive real numbers suh that Pt �t =1 and Pt �2t <1.KC3 f�tg is a sequene of Rr valued random variables and suh that for eah Æ > 0limt!1P (supm�t j mXi=t �i�i j� Æ) = 0;43



Chapter 6 ChapterSuppose that fMtg is bounded with probability one. Let M0 be a loally asymptotiallystable solution to _M = h(M);with domain of attration DA(M0). Then if A � DA(M0) suh that Mt 2 A, we haveMt !M0 as n!1. 2 2 26.2 Condition for the Convergene of Jou's Algo-rithmTheorem 3 The onvergene of Jou's fuzzy ompetitive learning algorithm, (3.6) and(3.7), is almost sure.(Proof) We assume that all vi are bounded. Consider equations: (3.6) and (3.7), theassoiated di�erent equation is that�Jm�vi = �2E[ymi (x)(x� vi(t))℄: (6.1)And it is just the ase that dvidt = ��Jm�vi :This is a desent algorithm whih dJmdt � 0. Aording to Lyapunov indiret method,Jm is the Lyapunov funtion and there exists Ds = fV j8 V 2 [0; 1℄n; �Jm�V = 0g, whereV = (v1; v2; : : : ; v)T .Next, it is going to heked that (3.6) satis�es ondition KC1 to KC3 of Kushnerand Clark Lemma. Denote h(V ) = (h1(V ); h2(V ); : : : ; h(V ))T , wherehi(V ) = �2E[ymi (x)(x� vi(t))℄: (6.2)Moreover, let us denote � = (�1; �2; : : : ; �)T , where�i(V; x) = �2ymi (x)(x� vi(t))� hi(V ): (6.3)Sine we an �x the �(t) aording to A.2, for instanePk �2k <1 andP1k=1 �k =1,and then hek that h(V ) is ontinuous funtion. The major proof is A.3. From (6.3),we an de�ne a stohasti proess fS�g by�Xi=n�i�(V; x(i)):44



Chapter 6 ChapterObviously, E[S�+1℄ = S�. fS�g is a Martingale Proess. Based on Martingale In-equality [9℄, P (sup��n j �Xi=n�(i)�(V; x(i))j � ") � lim�!1 EjS�j2"2 ;for all " > 0. As h(V ) and M are bounded, �(V; x) is bounded. Hene,P (sup��n j �Xi=n�(i)�(V; x(i))j � ") � k3P1i=n �i2"2 ;where k3 is a onstant. Moreover, P� �2� <1 implies thatlimn!1 1Xk=n�2k = 0:Therefore, limn!1P (sup��n j �Xi=n�(i)�(V; x(i))j � ") � limn!1 k3P1i=n �2i"2 :implies that limn!1P (sup��n j �Xi=n�(i)�(V; x(i))j � ") = 0:It satis�es A.3. Aording to Kushner and Clark Lemma, it an be onluded thatthe onvergene of FCL is almost sure. Besides, limn!1 V (n) 2 Ds, where Ds is thestable invariant set. 2Corollary 2 The onvergene ondition for the Jou's fuzzy ompetitive learning al-gorithm is that� Pk �2k <1 and� P1k=1 �k =1.In [6℄ and [16℄, the authors did not prove the onvergene of FCL is almost sure.Hene, the ondition on the step size is not provided. They only set the step size,�(t), equal to a small onstant whih annot guarantee that the onvergene is almostsure. 45



Chapter 6 Chapter6.3 Alternative Proof on the Convergene of Com-petitive LearningUsing the above theorems, it is possible to extend the result to prove that the onver-gene of ompetitive learning is almost sure. The mehanism of ompetitive learningis stated as (2.1) by setting NI = fIg. In suh ase,dV (t)dt = g(V (t)); (6.4)where gi(V (t)) = R
i(x� vi)f(x)dx. From (6.2),limm!1+ h(V (t);m) = g(V (t)): (6.5)Theorem 4 One the assumption of Lemma 1 are satis�ed, the onvergene of (6.4)is almost sure.(Proof) In the same approah as Lemma 1, the only need to prove is to show that(6.4) is stable. So what we need to prove is thatlimm!1+ Jm(V )is the Lyapunov funtion of (6.4). Aording to (6.5),lim�t!0 limm!1+ Vh(t+�t) = lim�t!0Vg(t+�t);where Vh(s) and Vg(s) are the solutions of Jou's algorithm and CL with initial on-ditions Vh(t) = Vg(t). Moreover, as Jm(V ) is ontinuos for all m > 1,lim�t!0 limm!1+ Jm(Vh(t+�t)) = lim�t!0Jm(Vg(t+�t));and lim�t!0 limm!1+ Jm(Vh(t+�t)) = limm!1+ lim�t!0Jm(Vh(t+�t))Henelim�t!0 limm!1+ [Jm(Vg(t+�t)� Jm(Vg(t))℄ = limm!1+ lim�t!0 [Jm(Vh(t+�t)� Jm(Vh(t))℄ :So that,lim�t!0 limm!1+ [Jm(Vg(t+�t)� Jm(Vg(t))℄�t = limm!1+ lim�t!0 [Jm(Vh(t+�t)� Jm(Vh(t))℄�t< 0: (6.6)Hene ddt limm!1+ Jm(Vg(t)) < 0:The system (6.4) is stable and the onvergene of ompetitive learning is almost sure.And the proof is ompleted. 246



Chapter 6 Chapter6.4 Convergene of Soft SOMThe proof of onvergene of soft SOM is based on the appliation of Kushner-ClarkLemma (Lemma 1) and the following Lemma.Lemma 2 Consider a stable gradient system,� �J�V = ddtV (t) = h(V (t)); (6.7)where J is the lyapunov funtion of the system. The perturbated system is given byddtV (t) = h(V (t)) + �(t)P (V (t)): (6.8)If (i) limt!1 �(t) = 0 for all t > t0, and (ii) kP (V (t))k <1 then (6.8) an onvergeto stable state.(Proof) Let e(t) be the di�erene of the stable system and the perturbated system,e(t) is given by ke(t)k = k Z tt0 �(s)P (V (s))dsk:Sine �(t) > 0 and P (V (t)) is bounded,ke(t)k < M Z tt0 �(s)dswhere M = maxkP (V (t))k.dJdt = �J�V dVdt= �hT (V ) (h(V ) + �(t)P (V ))= �hT (V )h(V )� �(t)hT(V )P (V ) (6.9)as t!1, �(t)! zero. Hene dJdt < 0. As (6.7) is stable, (6.8) is also a stable systemas t0 is suÆient large. And the proof is ompleted. 2 22Now, the mehanism of SSOM2 an be de�ned as following:vi(t+ 1) = vi(t) + �(t)24ymi (x;V (t)) + �(t) Xk2Ninfigymk (x;V (t))35 (x� vi(t)); (6.10)where V (t) = (v1(t); : : : ; v(t))T , �(t) satis�es the assumptions of Lemma 1 and �(t)satis�es the assumptions of 2. 47



Chapter 6 ChapterCorollary 3 The onvergene of SSOM2 (6.10) is almost sure if �(t) and �(t) satisfythe assumptions of Lemma 1 and Lemma 2 respetively.(Proof) Denote h(V (t)) = (h1(V (t)); : : : ; h(V (t)))Tand P (V (t)) = (p1(V (t)); : : : ; p(V (t)))T ;where hi(V (t)) = ymi (x;V (t))(x� vi(t))and pi(V (t)) = Xk2Ninfigymk (x;V (t))(x� vi(t)):Based on Lemma 2, ddtV (t) = h(V (t)) + �(t)P (V (t))is a stable system as t is suÆiently large. Then using Lemma 1, SSOM1 onvergesalmost sure. The proof is ompleted. 2In the same manner, if yi(x) is de�ned as the way in Nowlan's MLCL, the meh-anism SSOM1 an be written as thatvi(t+ 1) = vi(t) + �(t)24yi(x;V (t)) + �(t) Xk2Ninfigyk(x;V (t))35 (x� vi(t)); (6.11)the onvergene is again almost sure.Corollary 4 The onvergene of SSOM1 (6.11) is almost sure if �(t) and �(t) satisfythe assumptions of 2 and Lemma 1 respetively. 26.5 Convergene of SOMAs m ! 1+, (6.10) redues to the algorithm of SOM. Hene, the onvergene ofSOM an be proven using the same approah as in the proof of ompetitive learning.Without loss of generality, the onvergene property of SOM is stated below withoutproof.Corollary 5 The onvergene of SOM, where �(t) and �(t) satisfy the assumptionsof Lemma 2 and Lemma 1 respetively, is almost sure. 248



Chapter 7ConlusionWe have presented a softing version of SOM and demonstrated the ordering propertythrough a number of simulations and appliations. As SSOM is an extension of SOMand soft ompetition (MLCL and FCL), the algorithms of SOM, MLCL and FCLwere studied. (Note that the motive of using FCL is due to its soft ompetitionnature but not its fuzzy bakground.) Based on the relationship between SOM andompetitive learning, a simple sheme of modi�ation of MLCL and FCL is proposedto form SOM-like MLCL (SSOM1) and SOM-like FCL (SSOM2).The appliation of SSOM in luster analysis has been presented. It is shown thatSSOM1is unable to reveal the intrinsi struture of a bath of data although MLCLitself is outperformed in vowel data lassi�ation. On the other hand, although SOMis poorly performed in vowel data lassi�ation, SOM manifests two advantages: (i)The values of hidden-output weight are between zero and one. (ii) Loalization e�etis shown in the hidden-output weights whih an help to sketh the neighborhoodrelationship amongst lusters of labeled data.SSOM is also applied to redue the hannel noise e�et in data ommuniation.The method of the ombination of topologial map and QAM in data transmissionhas been proposed by C.S.Leung [24℄ [25℄. Here, we follow the steps Leung proposed.It is found that SSOM1 is better noise tolerated than SSOM2 and SOM when thehannel noise level is high. When the hannel noise level is low, SOM is the best.Note that the performane of SOM, SSOM1 and SSOM2 rely on the shapes of theorganized maps. The results reported in this thesis is just an example.Apart from the development of the model SSOM, this thesis provides ertaintheoretial results supplementary to the model of SOM. In the Appendix A, we followthe approah of Bouton and Pages [4℄ to prove that the onvergene of 1D SOM isalmost sure even if the neighborhood set size is not �nite. Besides, an energy funtionis onstruted for the 1D SOM when the input data distribution is uniform. Hene,the onvergene of 1D SOM is globally almost sure if the input data distribution isuniform. 49



Chapter 7 ChapterThe onvergene of higher dimension SOM, SSOM, FCL and CL has been dis-ussed in hapter six. Denote �(k) to be the step size, we proved that if P1k=1 �(k) =1 and P1k=1 �2(k) < 1, then the onvergene of FCL and CL are globally almostsure. In ase of SOM and SSOM, we prove that the onvergene are loally almostsure.7.1 Limitations of SSOMThere are three limitations in the appliation of SSOM in lustering:� Universal Approximation In Chapter four, although the apability of SSOMin revealing the topologial relationship has been demonstrated, an assumptionon the approximation apability has been made. We assume that the hybridnetwork shown in Figure(4.1) is universal approximators. In fat, this assump-tion an only be valid for the ases when SSOM1 and SOM are implemented asthe input-hidden layer. For SSOM1, the hybrid network behaves the same asRadial Basis Funtion net. The output is the summation of radial basis fun-tion (3.5). Hene the universal approximation property is guarantee [47℄. ForSOM, as the output of eah of the hidden unit is retangular, so it is possibleto prove the universal approximation property using the same tehnique as in[47℄. As a result, both SSOM1 and SOM implemented hybrid networks areuniversal approximators. However, in so far, there is no proof on the universalapproximation property of using (3.7) as basis funtion, for the best knowledgeof the author. The onlusion that we made in Chapter four is therefore basedon the assumption that the hybrid network, shown in Figure(4.1), implementedby SSOM2 an be an universal approximator.� Ordering Property In this thesis, we have not presented any theoretial proofon the ordering property of SSOM and SOM. The ordering property is solelydemonstrated by simulation examples and appliation examples. Be aware thatall the examples shown are in the dimension of two.� Computational Speed As the ompetition mehanism is soft, the time on-sumed for building a map is muh longer than using the onvention winner-take-all rule. The reason an be oneived as following. Suppose the map sizeis n� n and eight-neighbor is implemented. In ase of SOM, ignoring the timefor �nding the winner and the identi�ation of neighborhood, the number ofnode to be updated is nine. Assume that the NIF is a step funtion with valueone, no more mathematial operation. In ase of SSOM, the number of node tobe updated is n�n. For eah of the node, eight addition-operation are required.As a result, 8n2 extra addition-operation are needed whih make the trainingtime for SSOM is muh longer than SOM.50



Appendix Chapter7.2 Further ResearhAording to the last setion, it is obvious that one possible further researh is to do abit theoretial analysis on the property of SSOM. Besides, using SSOM in onstrutionof relational matrix, we have to de�ne the training in two-phases fashion. The hidden-output weights are determined after the lustering is �nished. It omes out a problemwhen the number of data is very large. In this ase, an on-line training seems to beneessary.

51



Appendix AProof of Corollary 1Essentially, this Appendix is devoted to the proof of Corollary 1. The proof of Corol-lary is in fat an impliation of Corollary 1. The proof of Corollary 1 is divided intothree setions, from the seond setion to the forth setion aording to the distribu-tion disussed: uniform, logonave and loglinear. When the input data distributionis uniform, an energy funtion an be onstruted by using Krasovskii method toshow that the onvergene is global. The extension on the reent results are listedfollowing for larity:� Extension of Bouton-Pages results [4℄ [8℄ on the onvergene of 1-D Map to thease when the size of neighborhood is any large (Corollary 1).� Simplifying the proof of Bouton-Pages Theorem [4℄ on the log-onave inputdistribution ase by introduing the Trushkin Lemma [43℄ (Corollary 1).� Extension of Bouton-Pages [4℄ result on uniform input distribution by on-strution an objetive funtion using Krasovskii method [18℄. Hene, the globalonvergene of SOM an be guaranteed.This Appendix is omposed of four setions. In the �rst setion, the mean updateof the SOM mehanism is derived. Following the same tehnique as in Bouton-Pages paper [4℄, the onvergene proof on the uniform, logonave and loglinear inputdistribution ases are presented in setion two. In setion two, two new results arealso presented as well: (i) the size of neighborhood an be any large and (ii) theonvergene of one dimensional SOM is globally almost sure. The ase of logonaveinput distribution and loglinear distribution are proven in setion three and fourrespetively.A.1 Mean Average UpdateSine input x is a random variable, the updating of V (t) is indeed a stohasti reur-sive algorithm. Suppose that the distribution of x is f(x), the mean average update52



Appendix A Chapteris that E[V (t+ 1)℄ = V (t) + �(t) Z 10 �(x; V )[xu� V (t)℄f(x)dx;where �(x;M) = Xk=1�k(x(t))�k:Here �k(x(t)) is an indiator funtion de�ned as�k(x(t)) = ( 1 if kx(t)� vk(t)k = minikx(t)� vi(t)k0 otherwise :Sine [0; 1℄ = Sk=1 
k,E[V (t+ 1)℄ = V (t) + �(t) Xk=1 Z
k �k[xu� V (t)℄f(x)dx; (A.1)where f(x) is the probability density funtion of x. And the algorithm of SOM analso be rewritten asV (t+ 1) = V (t) + �(t)[h(V (t))� �(V (t); x(t))℄; (A.2)where h(V ) = Xk=1 Z
k �k[xu� V (t)℄f(x)dx (A.3)and �(V (t); x(t)) = �(x; V )[x(t)u� V (t)℄� Xk=1 Z
k �k[xu� V (t)℄f(x)dx: (A.4)Furthermore, denote h(V ) = (h1(V ); h2(V ); : : : ; h(V ))T whereh1(V ) = �0 Z
1(x� v1)f(x)dx+ �1 Z
2(x� v1)f(x)dx+ : : : (A.5)+ �l Z
l+1(x� v1)f(x)dxh2(V ) = �1 Z
1(x� v2)f(x)dx+ �0 Z
2(x� v2)f(x)dx+ : : : (A.6)+ �l Z
l+2(x� v2)f(x)dx: : :53



Appendix A Chapterhi(V ) = �l Z
i�l(x� vi)f(x)dx + : : :+ �1 Z
i�1(x� vi)f(x)dx (A.7)+ �0 Z
i(x� vi)f(x)dx+ �1 Z
i+1(x� vi)f(x)dx+ : : :+ �l Z
i+l(x� vi)f(x)dx: : :h(V ) = �l Z
�l(x� v)f(x)dx+ �l�1 Z
�2(x� v)f(x)dx+ : : : (A.8)+ �0 Z
(x� v)f(x)dx:Hene h(V ) an be rewritten ash(V ) = (�0��1)h(0)(V )+(�1��2)h(1)(V )+: : :+(�l�1��l)h(l�1)(V )+�lh(l)(V ); (A.9)where h(k)(V ) = (h(k)1 (V ); h(k)2 (V ); : : : ; h(k) (V ))T for all 1 � k � l, andhi(k)(V ) = 8>>>>>>>>>><>>>>>>>>>>: R vi+k+vi+k+120 (x� vi)f(x)dx 81 � i < k + 1R vi+k+vi+k+12vi�k+vi�k�12 (x� vi)f(x)dx 8k + 1 � i � � k � 1R 1vi�k+vi�k�12 (x� vi)f(x)dx 8� k � 1 < i �  : (A.10)We obtain the assoiated di�erential equationddtV = h(V ): (A.11)for SOM algorithm and the invariant set DC = fV j8V 2 DA; h(V ) = 0g.A.2 Case 1: Uniform DistributionSubstitute f(x) = 1 into (A.10), we geth(0)(V ) = �18�2666666664 (v1 + v2)(v2 � 3v1)(v1 + v3)(v1 � 2v2 + v3)(v2 + v4)(v2 � 2v3 + v4): : :(v�2 + v)(v�2 � 2v�1 + v)(v�1 + v)(2 + v�1 � 3v) 3777777775 : (A.12)54



Appendix A ChapterWhen k = 1; 2; : : : ; l,h(k)i (V ) = �18� (vi+k + vi+k+1 � 4vi) (vi+k + vi+k+1) (A.13)for 1 � i � k; h(k)i (V ) = �18� (vi+k + vi+k+1 � vi�k�1 � vi�k) (A.14)� (vi+k + vi+k+1 � 4vi + vi�k�1 + vi�k)for k + 1 � i �  � k � 1 andh(k)i (V ) = �18� (2� vi�k�1 � vi�k) (2 � 4vi + vi�k�1 + vi�k) (A.15)for � k � i � n. Reall thath(V ) = lXk=1(�k�1 � �k)h(k)(V ):Taking partial derivative of (A.13) to (A.15), it an no diÆult to hek that �h(k)(V )�Vis negative de�nite whenever �i � �i+1 for all 0 � i < l and the fat that81 � i � k qi+k+1 � qi�k > qi+k+1 � vi8k+ 1 � i � � k � 1 qi+k+1 � qi�k = (qi+k+1 � vi) + (vi � qi�k)8� k � i �  qi+k+1 � qi�k > (vi � qi�k); (A.16)for all 0 � k � l. Hene �h(V )�V is stritly negative de�nite whenever l > 0. Let usonstrut an salar funtion J(V ) = hT (V )h(V ). Obviously, it is greater than zeroand J(V ) = 0 when h(V ) = 0. Taking the derivative of J(V ) with respet to t,ddtJ(V ) = hT (V )24 �h(V )�V !T +  �h(V )�V !35h(V ) (A.17)Sine �h(V )�V is stritly negative de�nite, ddtJ(V ) � 0 and equality holds if and onlyif h(V ) = 0. Therefore it an be onluded that J(V ) is a Lyapunov funtion for(A.11). In other word, (A.11) is a gradient system minimizing J(V ) when f(x) = 1.Similar to ase 1, there exists Ds � DC suh that limt!1 V (t) = V � where V � 2 Ds �DC . Furthermore, Ds is asymptotially stable in large. Using the same argument asBouton and Page, the onvergene of SOM is globally almost sure in the sense ofKushner and Clark. And the proof is ompleted. 2The onstrution of J(V ) is atually based on Krasovskii method [18℄. Otherapproahs to the proof on this ase have been done by a number of researhers [4℄ [8℄[21℄ [28℄ but all of them only show that the stability is loal. Moreover, they assumethat �i = 1 for all i = 0; 1; : : : ; l� 1 exept [28℄. In [28℄, they prove only that �0 > �1and �i = 0 for all i � 2. 55



Appendix A ChapterA.3 Case 2: Logonave DistributionTo visualize the proof, we onsider a smaller size map where  = 5. Hene,h(V ) = (h1(V ); h2(V ); h3(V ); h4(V ); h5(V ))T ; (A.18)where hi(V ) = Z
i(x� vi)f(x)dx; (A.19)for all i = 1; 2; 3; 4; 5: Reall that 
1 = h0; v1+v22 �,
k = hvk�1+vk2 ; vk+vk+12 � for all2 � k � � 1 and 
 = hv�1+v2 ; 1i. Heneh1 = h1(v1; v2; v3);h2 = h2(v2; v3; v4);h3 = h3(v1; v2; v3; v4; v5);h4 = h4(v2; v3; v4);and h5 = h5(v3; v4; v5):Taking the partial derivative of equation(A.18) with respet to V , we get the Jaobianmatrix �h�V =  �hi�vj!5�5= 266666664 �h1�v1 �h1�v2 �h1�v3 0 00 �h2�v2 �h2�v3 �h2�v4 0�h3�v1 �h3�v2 �h3�v3 �h3�v4 �h3�v50 �h4�v2 �h4�v3 �h4�v4 00 0 �h5�v3 �h5�v4 �h5�v5 377777775 (A.20)where �h1�v1 = � Z (v2+v3)=20 p (x) dx�h1�v2 = �h1�v3 = 12 �v2 + v32 � v1� p�v2 + v32 ��h2�v2 = � Z (v3+v4)=20 p (x) dx�h2�v3 = �h2�v4 = 12 �v3 + v42 � v2� p�v3 + v42 �56



Appendix A Chapter�h3�v1 = �h3�v2 = 12 �v1 + v22 � v3� p�v1 + v22 ��h3�v3 = � Z (v4+v5)=2(v1+v2)=2 p (x) dx�h3�v4 = �h3�v5 = 12 �v4 + v52 � v3� p�v4 + v52 ��h4�v2 = �h4�v3 = 12 �v2 + v32 � v4� p�v2 + v32 ��h4�v4 = � Z 1(v2+v3)=2 p (x) dx�h5�v3 = �h5�v4 = 12 �v3 + v42 � v5� p�v3 + v42 ��h5�v5 = � Z 1(v3+v4)=2 p (x) dxTo justify the stability of the equilibrium points, we put M0 into the Jaobian matrixat those equilibrium points, �h�V . Aording to Trushkin Lemma (Theorem 5), it anbe easily shown that �h�V is stritly diagonal dominant matrix with negative diago-nal elements. Based on the Gershgorin's Theorem (see setion 7.3 of [12℄), it anbe shown that all the eigenvalues of �h�V are stritly in the negative omplex plane.Therefore, it an onlude that all the equilibrium points are asymptotially stableby using Lyapunov linearization method [18℄. Hene the proof is ompleted. 2Without loss of generality, the proof an be extended to NI in any size by using thefollowing Trushkin Lemma [43℄:Theorem 5 (Trushkin Lemma[43℄) If a ontinuous funtion f(x) is de�ned on alosed interval [a; b℄, where either �1 � a < b < +1 or �1 < a < b � +1,f(x) > 0 for every x 2 (a; b), f(�1) = f(+1) = 0 andZ0 = Z ba f(x)dx < +1;Z1 = Z ba xf(x)dx < +1;then if log f(x) is a onave funtion on the interval (a; b) thenZ0 > f(a)(Z1=Z0 � a) + f(b)(b� Z1=Z0):57



Appendix A ChapterA.4 Case 3: Loglinear DistributionWhile the distribution is loglinear, only loal stability is ahieved. The proof isaomplished by substitution f(x) = 0esxinto equation (A.11), where 0 = hR 10 exp(sx)dxi�1 and s 6= 0. For simpliity, we onlyprove the ase that  = 5 and l = 1. However, the proof an easily be extendedto whatever  > 0 and l > 1. Before analysis the behavior of (A.11) for loglineardistribution, let us dedue several equations whih are useful for the proof. First ofall, onsider that h(a; b; v) = o Z ba (x� v) exp(sx)dx: (A.21)Note that (A.21) is hi if we put a = qi�k, b = qi+k+1 and v = vi. Di�erentiate (A.21)with respet to v, a and b, �h�v = os (exp(sa)� exp(sb)) ;�h�a = �o(a� v) exp(sa);and �h�b = o(b� v) exp(sb):Integrating (A.21) by part and set h(a; b; v) = 0, the solution, v, is given byv = b exp(sb)� a exp(sa)exp(sb)� exp(sa) � 1s : (A.22)With the above equalities, we an proeed to the proof. In order to illustrate learlythe step of proof, we set  = 5 and 0 < v1(0) < v2(0) < v3(0) < v4(0) < v5(0) < 1,_v1 = 0 Z q20 (x� v1) exp(sx)dx;_v2 = 0 Z q30 (x� v2) exp(sx)dx;_v3 = 0 Z q4q1 (x� v3) exp(sx)dx;_v4 = 0 Z 1q2 (x� v4) exp(sx)dx;_v5 = 0 Z 1q3 (x� v5) exp(sx)dx:58



Appendix A ChapterThe Jaobian matrix at the equilibrium point, V0, is that�h�V jV=V0 = 266666664 �h1�v1 �h1�v2 �h1�v3 0 00 �h2�v2 �h2�v3 �h2�v4 0�h3�v1 �h3�v2 �h3�v3 �h3�v4 �h3�v50 �h4�v2 �h4�v3 �h4�v4 00 0 �h5�v3 �h5�v4 �h5�v5 377777775v=v0where �h1�v1 = exp(sq0)� exp(sq2)s ;�h1�v2 = �h1�v3 = 12(q2 � v1) exp(sq2);�h2�v2 = exp(sq0)� exp(sq3)s ;�h2�v3 = �h2�v4 = 12(q3 � v2) exp(sq3);�h3�v1 = �h3�v2 = �12(q1 � v3) exp(sq1);�h3�v3 = exp(sq1)� exp(sq4)s ;�h3�v4 = �h3�v5 = 12(q4 � v2) exp(sq4);�h4�v2 = �h4�v3 = �12(q2 � v4) exp(sq2);�h4�v4 = exp(sq2)� exp(sq5)s ;�h5�v3 = �h5�v4 = �12(q3 � v5) exp(sq3);�h5�v5 = exp(sq3)� exp(sq5)s :Aording to Theorem 1, 0 < v1(t) < v2(t) < v3(t) < v4(t) < v5(t) < 1 for all t � 0.As s 6= 0, it is found that �hi�vi < 0 for all 1 � i � 5 and �hi�vj � 0, where i 6= j. Inpartiular, the matrix is a band matrix whih looks like26666664 � + + 0 00 � + + 0+ + � + +0 + + � 00 0 + + � 37777775 :59



Appendix A ChapterWhere '-' denotes the element is negative while '+' denotes a positive element. It anthen show that the sum of eah row is negative. It is stated as following lemma.Lemma 5: If f(x) is loglinear, then P5j=1 �hi�vj < 0 for all 1 � i � 5.(Proof) Before proeed to the proof of Lemma 5, we need the following three Lemma.Lemma A1: ey � 1 � y � 0 for all y 2 (�1;+1). Equality holds if and only ify = 0.(Proof) Set f(y) = ey�1�y, the derivative of f(y) with respet to y is that dfdy = ey�1.Sine dfdy = 0 if and only if y = 0. As dfdy > 0, f(0) is a loal minimum. Hene it isglobal minimum. As a result, f(y) � 0 for all y and f(y) = 0 if and only if y = 0.Hene the proof is ompleted. 2Lemma A2: For all k 6= 0 and a 2 (0; 1℄,g1(a) = 1 � 2ekak + aeka � 1 < 0:(Proof) Rewrite g1, we obtain thatg1(a) = (1� 2eka)(eka � 1) + kak(eka � 1) :First we onsider the ase k > 0. Under this ase, k(eka � 1) > 0 for all a 2 (0; 1℄.Aording to Lemma A1,(1� 2eka)(eka � 1) + ka = �(eka � 1)2 � eka(eka � 1) + ka< �(eka � 1)2 � ekaka+ ka= �(eka � 1)2 � (eka � 1)ka= �(eka � 1)(eka � 1 + ka)< 0: (A.23)Hene g1(a) < 0 if k > 0. Next we onsider k < 0. Similar, we get that k(eka�1) > 0for all a 2 (0; 1℄. Again, aording to Lemma A1,(1� 2eka)(eka � 1) + ka < (1� 2eka)(eka � 1) + (eka � 1)= 2(1 � eka)(eka � 1)< 0; (A.24)60



Appendix A Chapterfor all a 6= 0. Therefore g1(a) < 0 for all a 2 (0; 1℄. The proof is ompleted. 2Lemma A3: For all k 6= 0 and 0 < a < b < 1,g2(a; b) = (a� b)ek(a+b)ekb � eka � ekbk + 2ekak < 0:(Proof) Similar to the proof of Lemma A2, we onsider two ases, k > 0 and k < 0.After manipulation on g2(a; b), we get thatg2(a; b) = �k(b� a)ek(a+b) + eka(ekb � eka)k(ekb � eka) � ekb � ekak= �ek(a+b)k(ekb � eka) nek(a�b) � 1 + k(b� a)o� ekb � ekak : (A.25)As b > a > 0 and from Lemma A1, g2(a; b) < 0 for all k > 0. Next, we onsider thease that k < 0. When k < 0, ek(a+b) > 0. k(ekb � eka) > 0 and ekb�ekak wheneverb > a. Aording to Lemma A1, ek(a�b) � 1 + k(b � a) > 0. Therefore, g2(a; b) < 0when k > 0. As a result, g2(a; b) < 0 for all k 6= 0 and the proof is ompleted. 2(Proof of Lemma 5) Adding all the elements within eah row, and put the value ofv1; : : : ; v5 derived from (A.22), we get the following equalities.5Xj=1 �h1�vj = esq0 � esq2s � (q2 � v1)esq2= 1� 2esq2s + q2esq2 � 1 (A.26)5Xj=1 �h2�vj = esq0 � esq3s � (q3 � v2)esq3= 1� 2esq3s + q3esq3 � 1 (A.27)5Xj=1 �h3�vj = esq1 � esq4s + (q1 � v3)esq1 � (q4 � v3)esq4= 2s(esq1 � esq4) (A.28)61



Appendix A Chapter5Xj=1 �h4�vj = esq2 � esq5s + (q2 � v4)esq2= (q2 � q5)es(q5+q2)esq5 � esq2 � esq5s + 2esq2s (A.29)5Xj=1 �h5�vj = esq3 � esq5s + (q3 � v5)esq3= (q3 � q5)es(q5+q3)esq5 � esq3 � esq5s + 2esq3s (A.30)Aording to Lemma A2 and A3, 5Xj=1 �h1�vj < 0;5Xj=1 �h2�vj < 0;5Xj=1 �h4�vj < 0;and 5Xj=1 �h5�vj < 0:Moreover, (esq1 � esq4) > 0 if s < 0 and (esq1 � esq4) < 0 if s > 0. P5j=1 �h3�vj < 0.Hene, 5Xj=1 �hi�vj < 0for all 1 � i � 5 if f(x) is loglinear and the proof is ompleted.The general ase of Lemma 5 is stated as following lemma.Lemma 5': If f(x) is loglinear, then Pj=1 �hi�vj < 0 for all 1 � i � .In addition to the fat that the diagonal elements of the matrix are negative, it isonluded that all the eigenvalues of Jaobian matrix �h(V )�V are loated in the negativehalf plane. So, the equilibrium of (A.11) is again asymptotially stable. Hene theproof of Corollary 1 is ompleted. 62



Appendix BDi�erent Senses of neighborhoodReently, many researhers have tried to explore the idea of neighborhood interationto other lustering algorithm. As a result, they brought out di�erent de�nitions ofneighborhood and neighborhood interating funtions (NIF) other than Kohonen'soriginal de�nition. As the model disussed in this thesis applies the onept of neigh-borhood interation, it is neessary to larify what sense of neighborhood is beingapplied. In general, the senses of neighborhood an be divided into two lasses:stati and dynami.B.1 Stati neighborhood: Kohonen's senseIt is the simplest sense of neighborhood whih is de�ned by T.Kohonen for his SOMmodel. This de�nition an be stated as follows. For simpliity, only 1D Map will beonsidered but it does not loss the generality.De�nition 1 (Kohonen [21℄) The neighborhood interating set (NIS) is de�ned asNI = fI � 1; I; I + 1g for I is not at the boundary. While I = 1, NI = f1; 2g. WhileI = N , NI = fN � 1; Ng. The NIF, �i(k) is de�ned as follows:�i(k) = ( 1 if ji� kj � 10 otherwise: (B.1)Apart from �xing the funtion as a step funtion, Kohonen also de�ned the NIF inGaussian shape:De�nition 2 (Kohonen [21℄) The NIS is de�ned as De�nition 1 but the NIF, �i(k)is de�ned by �i(k) = exp(�(i� k)2).In both of the above de�nitions, their ommon feature is that their de�nitions on theneighborhood interating set are independent of the Eulidean distane between theinput vetor x and the weight vetor. 63



Appendix B ChapterB.2 Dynami neighborhoodUsing above de�nitions, some researhers �nd that that stati neighborhood is notexible enough to form a good data manifold for some speial type of input data setsuh as sphere data. Therefore some researhers attempted to de�ne neighborhoodin a dynami sense [3℄ [29℄ [32℄. In these ases, the neighborhood set of a SOM areupdated after a number of training yles.B.2.1 Mou-Yeung De�nitionIn [32℄, the neighborhood set is update after every predetermined number of iterations.The neighborhood relationship is onstruted using the following de�nition:De�nition 3 (Mou and Yeung [32℄) Node i and node j are neighborhood if andonly if kvi � vjk2 < kvi � vkk2 + kvk � vjk2, for all k 6= i; j. And the NIF �i(k) isde�ned by �i(k) = ( 1 i and k are neighbor0 otherwise: (B.2)Instead of de�ning the neighborhood in term of the distane amongst vis,B.2.2 Martinetz et al. De�nitionBezdek et al. [3℄ and Martinetz et al. [29℄ de�ned the neighborhood set in term ofdi�erene between the loation of input x and the loation of weight vetors vis. Theidea is that. One a data vetor x is presented, the winner is the one losest to x, saynode I. Then the �rst neighborhood of node I is the seond losest to x. Then theseond neighborhood of node I is the third losest and et. Under suh irumstane,eah neighbor of I will be marked with a value alled neighborhood ranking value.The de�nition of neighborhood ranking is de�ned as following:De�nition 4 (Neural Gas [29℄) Consider that v�1 be the vetor being losest tox, then the neighborhood set is de�ned as fv�1; v�2; : : : ; v�g, where v�2 is the se-ond losest to x. The neighborhood ranking value is de�ned as a funtion of �i,�i(�i(x; V )) = e��i=�.As �i is a funtion of x and V , �i is also a funtion of x and V . Besides, �i < �j ifi > j. If kx� vik ! 1, �i is still non-zero.B.2.3 Tsao-Bezdek-Pal De�nitionSimilarly, Tsao et.al. [44℄ de�ned the neighborhood sense in the same manner:64



Appendix B ChapterDe�nition 5 (Tsao-Bezdek-Pal [44℄) Consider that v�1 be the vetor being losestto x, then the neighborhood set is de�ned as fv�1; v�2 ; : : : ; v�g. The NIF is de�nedas a funtion of �i, �i(�k) = ( 1 If k = 1.� otherwise, (B.3)where � is a number smaller than 1.In order to visualize the similarity and di�erene among all these de�nitions of neigh-borhood, let us have a simple example.B.3 ExampleSuppose that the a 1D map onsists of six nodes, Figure B.1. The input data x isindiated by the blak solid irle while vis are indiated by hollow irles. In thisexample, v4 is obviously the losest to x. hene, no matter using whih de�nition, node4 is the winner. However, based on di�erent senses of neighborhood, the neighborhoodset of node 4 are di�erent.In the sense of Kohonen, N4 = f3; 4; 5g. In the sense of Mou-Yeung, N4 = f2; 4; 5g.In the sense of Neural Gas and Tsao-Bezdek-Pal, N4 = f4; 2; 5; 6; 1; 3g, where theloation reets the ranking. But, due to their di�erent in the de�nitions of NIF, thevalues of �i(:) are di�erent. The values are listed on the table.h hh hh hx v2 v3v4v5 v6xv1 Figure B.1: An example of 1D Map.De�nition I �1 �2 �3 �4 �5 �6Def. 1 4 0 0 1 1 1 0Def. 2 4 e�9 e�4 e�1 1 e�1 e�4Def. 3 4 0 1 0 1 1 0Def. 4 4 e�4 e�1 e�5 1 e�2 e�3Def. 5 4 � � � 1 � �Table B.1: De�nition of NIF �i(x) when x is presented. � is a small number.To ontrast the di�erent between di�erent de�nitions, the neighborhood interat-ing values are shown in Figure(B.2). 65
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Appendix B ChapterB.4 DisussionAtually, there are many ways to ombine the onept of neighborhood interation tothe algorithms of MaximumLikelihood Competitive Learning and Fuzzy CompetitiveLearning. Figure B.3 indiates some possible extensions. However, not all of themare onsidered in this thesis in order to implement the softing version of SOM.
MLCLFCLCLSOMSOMHardBezdek Def.2 Def.4SSOMSSOMSSOMSSOMDef.1 Def.3 fIgNeuralGasMou-Yeung

RBF Figure B.3: The suggested ombinations.The reasons an be explained as following. The senses of Mou-Yeung and NeuralGas are not onsidered sine both senses of neighborhood are de�ned in a dynamiway so that in some ases the global information of neighborhood may be lost. Forexample, under Mou-Yeung's de�nition, the map has to be onstruted time aftertime. There will be a serious problem when the data set onsists of two isolatedlusters whih are separated far apart: The map will be separated into two. In thisase, it annot identify the neighborhood relationship between lusters. Under NeuralGas's de�nition, the situation is even worst sine the neighborhood relationship istotally lost. Besides, the ompuatational ost on the onstrution of neighborhoodsets for eah of the neuron is also very high. So, in the design of , we de�ne the senseof neighborhood as one of the Kohonen's de�nition, Def.1.67
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Appendix DQuadrature Amplitude ModulationQuadrature amplitude modulation (QAM) is one of the tehnique for multisymboltransmission. In one of the simulated experiment, this modulation tehnique is om-bined with the lustering algorithm proposed { the Soft Self Organizing Map { todemonstrate the gain due to topologial order. Here we give only a very brief intro-dution to QAM. For further detail, please refers to [40℄.D.1 Amplitude ModulationQAM is essentially an extension of amplitude modulation (AM) whih is used inradio broadasting. The priniple an be desribed as following. Suppose that thebroadast station would like to transmit a speeh signal, say s(t), to the audiene.Based on amplitude modulation tehnique, the broadast signal will be formed bymultiplying the speeh signal with a arrier wave, say (t) = sin(wt), in the wayas that s(t)(t). In the reeiver side, this speeh signal is reonstruted by using therelation s(t) = RT s(t)(t)(t)dt. Figure(D.1) show a simple example. The speehsignal is low frequeny sinusoidal funtion. It is modulated through a high frequenyarrier wave. The resultant broadast signal is shown in Figure(D.1).D.2 QAMQAM extends the idea of amplitude modulation and provides a simple modulationmethod for the transmission of digital signal. Imagine that a sequene of binarysignal, say 00101101, is going to be sent out. We an treat this sequene in the sameway as speeh. Then using the amplitude modulation tehnique to form the broadastsignal. Suppose the arrier wave is also (t) = sin(200t), the modulation steps anbe desribed as following:� f0 0 1 0 1 1 0 1g ! s(t) = f�1 � 1 1 � 1 1 1 � 1 1g:,74



Appendix D Chapter
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

(a) Carrier Wave

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

(b) Speech

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

0

2

(c) Transmitted SignalFigure D.1: A simple example showing the idea of amplitude modulation: (a) thearrier wave (t) = sin(200t), (b) the speeh signal s(t) = sin(20t) and () thebroadast signal (2 + sin(20t))sin(200t).
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Appendix D Chapter� the amplitude of the broadast signal is f1 1 3 1 3 3 1 3g.Obviously, it is a Bi-level amplitude modulation sine eah digit an represent twopossible ases only. Figure(D.2) shows the waveforms of the orresponding signalsduring modulation.
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Appendix D Chapterwe obtain the waveforms as Figure(D.3).An alternative is to modulate the signal based on QAM. Figure(D.4) shows thestruture of a QAM transmitter.
"!# "!# hh "!# xx -.���� 6?- +��ai oswt

sinwt QAMoutputBu�erandEnoder biBinaryinput
Figure D.4: Simple diagram of a QAM transmitter.Instead of using single sinusoidal wave as the arrier wave, the arrier wave of QAMis omposed of two orthogonal sinusoidal waves, oswt and sinwt. The broadastsignal is then the superposition of two modulated sinusoidal waves, aioswt+bisinwt.Similar to 4-level method, we assign eah of the four possible signal ombinations byan enoding sheme:� 00! (a1 = �1; b1 = �1),� 01! (a1 = �1; b1 = +1),� 10! (a1 = +1; b1 = �1),� 11! (a1 = +1; b1 = +1).Figure(D.5) shows the orresponding waveforms.It is useful to represent enoded signal in a two-dimensional diagram by loat-ing the various points (ai; bi). The signal points are said to be represent a signalonstellation. Figure(D.6) shows the signal onstellations of the above QAM.Suppose that ai and bi an be assigned to be either one of f�1:5 �0:5 +0:5 +1:5g,we an design a 16-symbol QAM onstellation, Figure(D.7).As the loations of the waveforms are in regular mesh, it is possible to assignthese waveforms to a organizing map whih is de�ned in the same mesh struture.Figure(D.8) shows the idea of this assignment. This assignment method is the waythat we apply to vowel data transmission.78
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Appendix D Chapterx x x xxxxxxxx x xxxxFigure D.7: The signal onstellation of the 16-symbol QAM sheme.

Input Data Space

Signal SpaceFigure D.8: The idea of odevetor waveform assignment.80
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