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Abstra
tThis thesis presents two algorithms for soft Self-Organizing Map (SSOM) 
alledSSOM1 and SSOM2. Their 
onstru
tions are motivated by the ordering propertymanifested by Self-Organizing Map (SOM) and the nature of soft 
ompetition mani-fested by Maximum Likelihood Competitive Learning (MLCL) and Fuzzy Competi-tive Learning (FCL). By studying the relationship between the algorithm of 
ompet-itive learning and SOM, a me
hanism for ordered map formation is proposed. Basedon the introdu
tion of su
h me
hanism, the idea of neighborhood intera
tion, thealgorithms of MLCL and FCL are modi�ed to form SOM-like algorithms: SSOM1and SSOM2.These algorithms (SSOM1 and SSOM2) in addition with SOM are then appliedto solve two problems in
luding (i) un
overing the neighborhood amongst di�erentvowels and (ii)minimizing the 
hannel noise e�e
t for vowel data transmission. It isfound that SSOM1 is not feasible to 
onstru
t the 
luster relationship while SOMand SSOM2 
an 
onstru
t su
h relationship based on a simple heuristi
 labelings
heme. In the problem of vowel data transmission, it is experimented that theperforman
e of SSOM1 and SSOM2, in the sense of quantization error and the
hanges of quantization error with respe
t to 
hannel noise varian
e, are 
omparableto that of using SOM.Moreover, this thesis provides some results on the 
onvergen
e analysis on thethree algorithms dis
ussed. In parti
ular, the proof on the 
onvergen
e of the onedimensional SOM will be proven. It is shown that the 
onvergen
e 
an be lo
allyalmost sure even if the neighborhood size is not �nite. Furthermore, if the input datais uniformly distributed, an energy fun
tion 
an be de�ned. Equivalent the energyfun
tion to Lyapunov fun
tion, the 
onvergen
e of SOM is proven to be globallyalmost sure.
iii
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Chapter 1Introdu
tionThe prin
ipal obje
tive of this thesis is to 
onstru
t two algorithms 
alled Soft Self-Organizing Map I (SSOM1) and Soft Self-Organizing Map II (SSOM2). They 
angenerate soft-
ompetition-based neighborhood preserved map. In sequel, the algo-rithms are applied to un
over the relationship amongst di�erent vowels and minimizethe 
hannel noise e�e
t in vowel data transmission. In this 
hapter, we will mainlypresent the behind motivation of this thesis and the 
ontributions of this thesis.Four se
tions are in
luded in this 
hapter. In the �rst se
tion, the motivation willbe presented. Then, the methodology of the 
onstru
tion of su
h SSOM algorithmwillbe dis
ussed in se
tion two with remarks on 
ertain similar approa
hes. To 
larify the
ontribution of the thesis, se
tion three 
on
isely lists out all the new results obtainedin
luding new algorithms, possible appli
ations and theoreti
al supplement. Finally,we outline the thesis in se
tion four.1.1 MotivationSelf-Organizing Map (SOM) is an unsupervised learning algorithm resembling thestru
ture and learning of sensory maps in the mammalian brain due to its mani-festation of neighborhood preserved map and its ve
tor quantization ability. It wasproposed early by Willshaw and Malsburg in a somewhat di�erent stru
ture [48, 49℄.Lately, Kohonen proposed the 
urrent algorithm and applied it to engineering prob-lems su
h as spee
h re
ognition [20℄ and the 
onstru
tion of semanti
 map [37℄. Re-
ently, SOM has even been applied to many other areas in
luding motor 
ontrol [38℄,traveling salesman problem [1℄, 
hannel noise redu
tion [25℄ and et
. Nowlan andJou proposed two soft 
ompetition1 algorithms: Maximum Likelihood CompetitiveLearning (MLCL) [33℄ and Fuzzy Competitive Learning (FCL) [16℄. The former onerepresents an algorithm of neural network while the latter one represents an algorithm1Here and after, ea
h time we use the term soft 
ompetition, we a
tually refer to MLCL andFCL. 1



Chapter 1 Chapterof fuzzy 
lustering2. Although MLCL and FCL are from two rather di�erent areas,their me
hanism share one 
ommon property: the boundaries of the resultant 
lustersare "soft" in nature.The advantage of soft boundary 
an be illustrated by some of re
ent papers.In [33℄, Nowlan applied MLCL to 
lassify vowel data and demonstrated that the
orre
t 
lassi�
ation ratio attended by MLCL was higher than that from SOM. In[50℄ Yair et.al. applied this algorithm3 to generate 
odebook for Gauss-Markov data.Similarly, in [7℄, Chung and Lee applied FCL to vowel data 
lassi�
ation and foundthat the performan
e of FCL in vowel data 
lassi�
ation was better than 
ompetitivelearning and Learning Ve
tor Quantization. Therefore, it is spe
ulated that the goodresults indi
ated in these papers are essentially due to the soft boundary nature of the
lustering algorithms utilized. However, as we mentioned previously, there are someproblems whi
h 
annot be solved by soft 
ompetition, for instan
e, 
onstru
tion ofsemanti
 map for synta
ti
 analysis [37℄ and the minimization of 
hannel noise e�e
tin image transmission [25℄ as they needs topologi
al preserved map.As both soft 
ompetition algorithms and SOM have their own 
ontributions, it isinteresting to ask whether we 
an merge them together or not. Thus the resultantalgorithm 
an possess all the good features from both soft 
ompetition and SOM. Inthe rest of the thesis, the merging algorithm will be presented.1.2 Idea of SSOMTo a

omplished su
h merging algorithm, there are two possible approa
hes. The�rst approa
h is to extend the algorithms of MLCL and FCL to SOM-like algorithmsby introdu
ing the pro
ess of neighborhood intera
tion. The method is as follows:We �rst examine the me
hanism of SOM and 
ompetitive learning and �gure outhow 
ompetitive learning 
an be extended to SOM. Based on this 
ue, we extend thealgorithms of MLCL and FCL in su
h a way as that of 
ompetitive learning do4.The se
ond approa
h is to extend the me
hanism of SOM by modifying the 
om-petition me
hanism to soft 
ompetition. The method is as follows: We �rst �gure outthe 
ompetition me
hanism in the algorithm of SOM. Then we repla
e this 
ompeti-tion algorithm by soft 
ompetition algorithm and keep the neighborhood intera
tionme
hanism un
hange.Though these two approa
hes seem distin
t, their resultant methodologies are the2It is remarked that the reason why FCL is being 
onsidered in this thesis is not due to its softboundary nature.3In [50℄, they 
alled MLCL as soft 
ompetition.4In fa
t, there is an alternative method to realize su
h idea. It is 
ame from Elasti
 net. Themethod 
an be treated as a regularization problem sin
e the obje
tive fun
tion 
onsists of a term
orresponding to the obje
tive fun
tion of MLCL and another term 
orresponding to the distan
ebetween neighborhood neurons. Along the same line, we 
an extend any other 
lustering algorithmin the same way as long as obje
tive fun
tion for the 
lustering algorithm exists.2



Chapter 1 Chaptersame: to merge the algorithm of SOM with soft 
ompetition, stri
tly speaking, tomerge the algorithm of SOM with MLCL and FCL.1.3 Other Approa
hesIn the re
ent years, many resear
hers have proposed di�erent approa
hes to mergetopologi
al order and soft 
ompetition. Durbin et.al. [10℄ proposed a model 
alledElasti
 network to solve TSP. On
e the training is �nished, elasti
 net manifeststopologi
al ordered property. Pal et.al. [34℄ proposed a 
lassi�er whi
h used Self-Organizing Map (SOM) as part of the network stru
ture. The proposed 
lassi�erwas similar to 
ounter-propagation network proposed by He
ht-Nielsen [14℄. Mitraet.al. [30℄ proposed a self-organizing fuzzy 
lassi�er (SOFC) whi
h is similar to thealgorithm of SOM. SOFC is responsible to 
lassify the bat
h of data into 
lusters andusing the topologi
al ordering property to reveal the neighborhood stru
ture amongst
lusters. Pham et.al. [35℄ and Vuorimaa [46℄ de�ned a SOM-based training pro
edureto obtain the 
luster 
enters. Then, based on the result obtained after the �rst phase,they 
onstru
t the fuzzy sets.Pal et.al. and Mitra et.al. in
rease the number of fan-in by a fa
tor of three inorder to in
orporate the 
on
ept of linguisti
 variable. Although the stru
ture 
anbe revealed using their approa
hes, the stru
ture 
annot re
e
t to the original inputdata spa
e. The algorithms of Pham et.al. and Vuorimaa are too heuristi
. In su
h
ase, they are diÆ
ult to be analyzed and evaluated. Amongst all, only elasti
 netdoes not su�er from their problems. Besides, Yullie has provided a vigorous analysison the statisti
-me
hani
al property to elasti
 net. However, the usefulness of thismethod is in so far restri
ted to one-dimensional map.1.4 Contribution of the ThesisA

ording to the previous dis
ussion, hopefully, SSOM should be able to reveal theneighborhood relationship amongst 
lusters (due to soft 
ompetition). Furthermore,SSOM 
an be applied to data transmission with the aid of ordering property. Fortu-nately, it does. In addition with other supplementary results, below lists the 
ontri-bution of the thesis:1. Development of SSOM(a) SSOM1 and SSOM2 are 
onstru
ted.(b) Ordering property of both models are demonstrated by simulation.(
) Convergen
e property of both models are proven using the te
hnique ofsto
hasti
 approximation and perturbation method.2. Theoreti
al supplement to SOM3



Chapter 1 Chapter(a) Following the approa
h of Bouton and Pages [4℄, the 
onvergen
e of 1DSOM is proven to be almost sure even if the neighborhood set size is not�nite.(b) Applying Krasovskii method [18℄, an energy fun
tion is 
onstru
ted forthe 1D SOM when the input data distribution is uniform. Hen
e, the
onvergen
e of 1D SOM under su
h 
onditions is globally almost sure.3. Theoreti
al supplement to FCL and CL(a) Applying the te
hnique of sto
hasti
 approximation, the suÆ
ient 
ondi-tion ensuring the 
onvergen
e of FCL is globally almost sure is derived.4. Appli
ation of SSOM(a) SSOM is applied to 
onstru
t the neighborhood relationships amongst 
lus-ters.(b) SSOM is applied to data transmission.1.5 Outline of ThesisThis thesis is organized into seven 
hapters and four Appendi
es. This 
hapterpresents the motivation and the basi
 ideas of SSOM. In 
hapter two, the me
h-anism and properties of SOM will be presented. The me
hanisms of 
ompetitivelearning, soft 
ompetitive learning and algorithms of soft SOM will be elu
idated in
hapter three. The ordering property of SSOM is demonstrated by several simulationexamples. Then, SSOM is applied to solve two problems. In 
hapter four, SSOM isapplied to reveal the relationship amongst 
lusters. In 
hapter �ve, SSOM is 
om-bined with quadrature amplitude modulation (QAM) s
heme to transmit vowel data.Preliminary theoreti
al study on the 
onvergen
e of SSOM, SOM, CL and FCL willbe presented in 
hapter six. Then 
on
lusion follows in 
hapter seven. Appendix Aprovides the proof of Corollary 1 and 2, whi
h are stated in Chapter 2. Appendix Bdis
usses di�erent sense of neighborhood whi
h 
an help to understand the de�nitionof SSOM. Appendix C in
ludes some �gures supplemented to the results dis
ussed in
hapter four. Appendix D gives a brief review on QAM.
4



Chapter 2Self-Organizing MapThis 
hapter reviews the model of SOM. The 
onvergen
e and ordering propertieswill be dis
ussed based on several illustrative examples. Mathemati
al dis
ussion onthe 
onvergen
e property will be presented in Chapter 7 and Appendix A1. Afteran introdu
tion given in the �rst se
tion. The me
hanism of SOM will brie
y bedes
ribed in se
tion two. Then, in se
tion three, a some examples are provided toillustrate the behavior and the properties of SOM. The purpose of these three se
tionsis to visualize the me
hanism of SOM. Se
tion four and se
tion �ve summarize 
urrentresults on the 
onvergen
e, ordering and 
ost fun
tion of SOM. Finally, a 
on
lusionwill be presented in se
tion six.2.1 Introdu
tionAs eviden
e from neural s
ien
e [17℄, human brain exhibits topologi
al ordered mapin a number of pla
e in the 
erebral 
ortex su
h as retinotopi
 map in the visual
ortex, somatotopi
 neural map in the somatosensory 
ortex, tonotopi
 neural mapand motor map. A

ording to the property of topologi
al ordering, resear
hers haveproposed many di�erent models to mimi
 su
h neural maps. Willshaw and Von derMalsburg �rst proposed a model of retinotopi
 map [48℄, [49℄ and demonstrated theordering property through simulations. Sin
e then, many other models have also beenproposed to a

omplish su
h MAP [19℄ [27℄ and [45℄. Self-Organizing Map (SOM) isone of the simpliest model and widely applied2. However, there are limitations in theappli
ation of SOM: there is no 
omplete analysis on the 
onvergen
e and orderingproperties of SOM. Besides, in so far, there is no energy fun
tion has been proven tobe its 
ost fun
tion. Therefore, it be
omes not so possible to evaluate the performan
eof SOM analyti
ally based on the 
riteria mean square error. The following se
tionswill be devoted to the des
ription of the model of SOM and its properties. Certainly,1In Chapter 7, the lo
al 
onvergen
e proof on higher dimensional map is shown. In Appendix A,the 
onvergen
e of one dimensional map is elu
idated.2See [38℄ and the referen
e listed. 5



Chapter 2 Chapternot all of them, 
odeve
tor density for instan
e, will be dis
ussed due to the s
opeof this thesis. Only some of the 
ru
ial property related to the development of SoftSelf-Organizing Map will be introdu
ed.2.2 Algorithm of SOMGenerally, SOM is a two layered neural network. Ea
h of the nodes in the in-put layer re
eives input signal and transmits to the se
ond layer through weights(synapses). Suppose there are s input nodes, we denote the input data by x =(xi; x2; : : : ; xs)T 2 Rs and the values of weights 
onne
ting input to ith output nodeby vi = (vi1; vi2; : : : ; vis)T 2 Rs. Ea
h of the node in the se
ond layer 
olle
ts allthe signal fed from the �rst layer and output a signal, say yi. Consider there are 
neurons at the output layer. They are indexed by 1; 2; ::; 
. On
e the x is fed to thenetwork, ea
h of the output nodes will give out a signal either one or zero dependedon the Eu
lidean distan
e between x and vi:yi = ( 1 if kx� vik � kx� vjk for all i 6= j.0 otherwise.Unless the data is equal distan
e from two weights ve
tor, there is one and only oneoutput node will give out one. So, this me
hanism is also 
alled winner-take-all. Theoutput one node will be 
alled the winner.While the SOM is in learning, the weight ve
tors will be modi�ed a

ording tothese output values. The learning me
hanism 
an be summarized in the followingfour steps [21℄:Step 1 Sele
t randomly one sample, x, from the stationary sample spa
e, f(x).Step 2 Evaluate the winning output neuron, Ith output node, by evaluating kx �vIk = minikx� vikStep 3 Modify the weight ve
tors byvi(t+ 1) = ( vi(t) + �(t)Ai(t)[x(t)� vi(t)℄ if i 2 NIvi(t) otherwise (2.1)Step 4 Goto Step 1.Here NI in (2.1) is a set whi
h de�nes the weight ve
tors to be updated. Ai(t) is as
alar fun
tion of time and ji� Ij. It determines the relative update step size for theith weight ve
tor. �(t) is the updating step size. Usually, Ai is a de
reasing fun
tionof ji � Ij and �(t) de
reases to zero as t ! 1. Adopted from [51℄, NI is 
alled theneighborhood intera
ting set (NIS). and Ai(t) is 
alled the neighborhood intera
tingfun
tion. 6



Chapter 2 ChapterExample 1 Consider that there are six output nodes. Their 
orresponding weight ve
torsare denoted by v1; v2; v3; v4; v5; v6. We 
an de�ne the NIS and NIF as the following: N1 =f1; 2g; N2 = f1; 2; 3g;N3 = f2; 3; 4g;N4 = f3; 4; 5g; N5 = f4; 5; 6g; N6 = f5; 6g and Ai = 1.Example 2 Consider the output nodes are arranged as a two dimensional mesh. Thewinner node is denoted by IJ. The NIS 
an be de�ned as thatNIJ = I � 1; J � 1 I � 1; J I � 1; J + 1I; J � 1 I; J I; J + 1I + 1; J � 1 I + 1; J I + 1; J + 1and the NIF 
an be de�ned as thatAi(t) = ( �0(t) if i = I�1(t) if i 2 NI � fIg. (2.2)If the map is three by three, the NIF 
an be written by�0(t) �1(t) 0�1(t) �1(t) 00 0 0 �1(t) �0(t) �1(t)�1(t) �1(t) �1(t)0 0 0 0 �1(t) �0(t)0 �1(t) �1(t)0 0 0�1(t) �1(t) 0�0(t) �1(t) 0�1(t) �1(t) 0 �1(t) �1(t) �1(t)�1(t) �0(t) �1(t)�1(t) �1(t) �1(t) 0 �1(t) �1(t)0 �1(t) �0(t)0 �1(t) �1(t)0 0 0�1(t) �1(t) 0�0(t) �1(t) 0 0 0 0�1(t) �1(t) �1(t)�1(t) �0(t) �1(t) 0 0 00 �1(t) �1(t)0 �1(t) �0(t)Ignoring the boundary nodes, the inner node is surrounded by eight neighboring nodes.Therefore, this type of NIS is 
alled eight-neighbor type.2.3 Illustrative ExampleFor 
larity, here gives a simple example to illustrate the me
hanism of SOM learningand to des
ribe its properties numeri
ally and graphi
ally. The SOM is 
onstitutedby one input node and �ve output nodes. The weights are denoted by v1; v2; v3; v4 andv5. The input sample set 
onsists of two elements f0:25; 0:75g. The probability massfun
tion is given by f(0:25) = f(0:75) = 0:5. Initially, the weight values are set asfollowing: v1(0) = 0:5, v2(0) = 0:1, v3(0) = 0:7, v4(0) = 0:3 and v5(0) = 0:9. The stepsize �(t) = 0:1. The NIF, Ai = 1 and the NIS are de�ned as f1; 2g, f1; 2; 3g, f2; 3; 4g,f3; 4; 5g and f4; 5g respe
tively. The values of vis in the �rst �fteen iterations aretabulated in Table 2.1. The �rst 
olumn indi
ates the number of iterations. These
ond 
olumn indi
ates the winning node at the 
orresponding step. The input to7



Chapter 2 Chapterthe SOM is shown in the third 
olumn. The values of vis are indi
ated from the 4th
olumn to 8th 
olumn. In the �rst iteration, the element x = 0:25 is sele
ted. Atthat time, v4(0) is the 
losest weight ve
tor. Hen
e, node four is the winner node.In sequel, v3; v4 and v5 are 
hanging a

ording to Step 3. Graphi
ally, these updatemanifests two phenomena simultaneously: (i)the input x attra
ts the winner and itsneighborhood to move towards itself and (ii)the winner and its neighborhood aregetting 
loser. Figure(2.1a) plots the values of vis in the �rst �fteen iterations. As v4and v5 are neighbor, they tend to getting 
loser. Similar situation happens to v1, v2and v3. Winner Input v1 v2 v3 v4 v50 - - 0.5000 0.1000 0.7000 0.3000 0.90001 4 0.2500 0.5000 0.1000 0.6550 0.2950 0.83502 5 0.7500 0.5000 0.1000 0.6550 0.3405 0.82653 5 0.7500 0.5000 0.1000 0.6550 0.3814 0.81884 5 0.7500 0.5000 0.1000 0.6550 0.4183 0.81205 5 0.7500 0.5000 0.1000 0.6550 0.4515 0.80586 2 0.2500 0.4750 0.1150 0.6145 0.4515 0.80587 2 0.2500 0.4525 0.1285 0.5780 0.4515 0.80588 5 0.7500 0.4525 0.1285 0.5780 0.4813 0.80029 2 0.2500 0.4322 0.1406 0.5452 0.4813 0.800210 5 0.7500 0.4322 0.1406 0.5452 0.5082 0.795211 2 0.2500 0.4140 0.1516 0.5157 0.5082 0.795212 2 0.2500 0.3976 0.1614 0.4891 0.5082 0.795213 5 0.7500 0.3976 0.1614 0.4891 0.5324 0.790714 2 0.2500 0.3829 0.1703 0.4652 0.5324 0.790715 5 0.7500 0.3829 0.1703 0.4652 0.5541 0.7866Table 2.1: The 
hanging of the vis value in the �rst �fteen iterations.Repeating the steps for several hundreds of iterations, v4 and v5 merge togetherat 0:75. The v1; v2 and v3 merge together at the value 0:25. As a result, topologi
alorder is formed sin
e v1 = v2 = v3 < v4 = v5. However, when the learning steps arerepeated until the 646th iteration, it is found v3 gets out from the value 0:25 andin
reases to about 0:5, Figure(2.1b).If the value of � is 
hanged to a smaller value, the resultant vis are di�eren
e.Figure(2.2) shows the 
ases when � = 0:05 and � = 0:01 respe
tively. It is foundthat ordering 
ease in the former 
ase while the ordering preservation is manifestedin the latter 
ase.In all three 
ases, ordering property is manifested. However, it is not always the
ase. For instan
e, Figure(2.3) shows one 
ase where ordering property is 
eased.8
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(a) (b)Figure 2.1: The 
hanging of the weight values for the illustrative example. Theverti
al axis indi
ates the value of the weight while the horizontal axis indi
ates thenumber of training step. In (a) and (b), �(t) is set to a 
onstant value 0.1. Theweight values at the �rst �fteen iterations are shown in (a). (b) shows the 
hangingof weight values within 1500 iterations.
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hanging of the weight values for the illustrative example. Theverti
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ates the value of the weight while the horizontal axis indi
ates thenumber of training step. In (a) �(t) is set to a 
onstant value 0.05. In (b), �(t) = 0:01.9
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hanging of the weight values for the illustrative example. Theverti
al axis indi
ates the value of the weight while the horizontal axis indi
ates thenumber of training step. In (a) �(t) is set to a 
onstant value 0.01. In (b), �(t) = 0:1.Noting that the initial 
onditions of vis are di�erent.Here, NIS and NIF are de�ned in the same way as above. The data set is the same.But the initial 
ondition is di�erent. Figure(2.3a) shows the 
ase when �(t) = 0:01.Figure(2.3b) shows the 
ase when �(t) = 0:1.A

ording to these examples, four observations 
an be noted: (1)If the network pa-rameters and initial 
onditions are set appropriately, topologi
al map 
an be formed.(2)SOM 
an 
onverge to a stationary state. (3)There are more than one station-ary state that SOM 
an be rea
h. (4)Larger step size 
an enhan
e the formation oftopologi
al map.2.4 Property of SOM2.4.1 Convergen
e propertyAlthough the me
hanism of SOM is very simple, there is no proof on the 
onvergen
eproperty ex
ept on 
ertain simple 
ases [4℄ [8℄ [11℄ [21℄ [22℄ [28℄ [36℄ [42℄ [51℄.Ritter and S
hulten treated it as a Markovian pro
ess. They derived Fokker-Plan
k approximated equation for SOM and arrived with an approximated equationfor the mean average update [36℄. Hen
e they showed that SOM 
an 
onverge tostationary state.Theorem 1 (Ritter and S
hulten [36℄) Suppose that �0(t) = �1(t) = 1 for allt and V � be an asymptoti
 equilibrium state, then the ne
essary and suÆ
ient 
on-ditions for the lo
al 
onvergen
e of SOM are: (i) limt!1 R t0 �(s)ds = 1 and (ii)limt!1 �(t) = 0. 10



Chapter 2 Chapter222Others applied the so-
alled Gladyshev Theorem to show that the 
onvergen
e of1D or 2D SOM is lo
ally almost sure if the input distribution is uniform [8℄ [22℄ [28℄[51℄.Re
ently, Bouton et.al. [4℄ proved that the 
onvergen
e of SOM, under nonuniformdistribution, is almost sure.Theorem 2 (Bouton and Pages [4℄ [8℄) Consider 1-D SOM whi
h �0(t) = �1(t) =1 for all t, the 
onvergen
e is lo
ally almost sure if either� the distribution of the data is uniform, i.e. f(x) = 1� the distribution of the data is log
on
ave or� the distribution of the data is loglinear.And �(t) should satis�es that P1t=0 �(t) =1 and P1t=0 �2(t) <1. 222Following the same idea as Bouton et.al. we 
an extend the 
onvergen
e proofto the 
ase that the NIF is de
reasing outward and the size of NIS is any large. Asthe proof is lengthy, the 
orollary is stated below while the proof is presented inAppendix.Corollary 1 Consider 1-D SOM whi
h �0 � : : : � �l � 0 for all t, where l > 1the 
onvergen
e is almost sure if �(t) satis�es the 
onditions of Theorem 2 and theinput distribution is either uniform, log
on
ave or loglinear. Furthermore, if the inputdistribution is uniform, the 
onvergen
e is globally almost sure. 22.4.2 Topologi
al OrderOne promising property of SOM is that SOM 
an organize to an ordered map whi
hreveals the intrinsi
 relationship amongst the training 
lusters. It has been demon-strated by hte illustrative example. However, the analysis on this property, in so far,is restri
ted to one-dimensional map. One 
riti
al reason is due to the la
king offormal de�ntion of "order" in higher dimensional map.11



Chapter 2 Chapter2.4.3 Obje
tive Fun
tion of SOMBesides the la
king of formal de�nition of "order", SOM is su�ered from the la
k ofobje
tive fun
tion. So that, on one hand, the performan
e of SOM is hard to 
omparedwith other algorithms analyti
ally. On the other hand, it reveals one reason why the
onvergen
e proof of SOM is not yet 
ompleted. Anyway, there are two spe
ial 
asesunder whi
h we 
an de�ne the obje
tive fun
tion for SOM.Firstly, suppose the �0(t) = 1 and �1(t)! 0 for all k 6= 0, the obje
tive fun
tionof self organizing map 
an be de�ned byJ = 
Xk=1 Xx2
k kx� vkk2f(x)dx: (2.3)It is just the same as the obje
tive fun
tion of LBG [26℄ or 
ompetitive learning[15℄, if the NIF is de
reasing to zero. That is to say, one spe
ial 
ase of SOM 
anbe treated as LSE-based algorithm. However, when the NIF is not de
reasing, it isdiÆ
ult to 
onstru
t su
h an obje
tive fun
tion. Tolat [42℄ tried to de�ne neuronalenergy fun
tion, whi
h is tried to generalize the proof to high dimension. However,the energy fun
tions are not the true energy fun
tions. So, it 
annot re
e
t the trueme
hanism of SOM. Re
ently, Erwin et.al. [11℄ 
laimed that the global obje
tivefun
tion for SOM does not exist.Se
ondly, 
onsider an one dimensional SOM. If (a) the input data is s
alar andthe distribution is uniform and (b) �0 � : : : � �l � 0 where l > 1, thenJ = 
Xi=1 hi(v1; : : : ; v
)2 (2.4)is the obje
t fun
tion, whereh1(v1; : : : ; v
) = Z
1(x� v1)f(x)dx+ Z
2(x� v1)f(x)dx+ : : : (2.5)+ Z
l+1 (x� v1)f(x)dxh2(v1; : : : ; v
) = Z
1(x� v2)f(x)dx+ Z
2(x� v2)f(x)dx+ : : : (2.6)+ Z
l+2 (x� v2)f(x)dx: : :hi(v1; : : : ; v
) = Z
i�l(x� vi)f(x)dx+ : : :+ Z
i�1(x� vi)f(x)dx (2.7)12



Chapter 2 Chapter+ Z
i(x� vi)f(x)dx+ Z
i+1(x� vi)f(x)dx+ : : :+ Z
i+l(x� vi)f(x)dx: : :h
(v1; : : : ; v
) = Z

�l(x� v
)f(x)dx+ : : :+ Z

(x� v
)f(x)dx; (2.8)where 
i = fxjkx�vik � mink 6=i kx�vkkg. The derivation of su
h obje
tive fun
tionis in the proof of the 
ase 1 of 
orollary 1. The idea of proof is based on Krasovskiimethod [18℄. The derivation of su
h obje
tive fun
tion is given in Appendix A. Asenergy fun
tion 
an be de�ned, the 
onvergen
e of SOM de�ned in this 
ase 
an beproven to be almost sure.2.5 Con
lusionIn this 
hapter, we have brie
y reviewed the model of SOM. Its network stru
tureand its learning me
hanism. To 
larify the me
hanism, a simple example is given.Moreover, these examples illustrate the ordering and 
onvergen
e behavior of SOM.Some theoreti
al results on these issues are dis
ussed as well. In summary, SOM is asimple neural network model and it resembles the map property of 
erebral 
ortex inour brain. However, it su�ers from the la
k of 
ompleted analyti
al proof on ea
h ofits properties in
luding 
onvergen
e and ordering.Even though, we have added on some new results on both the 
onvergen
e proofand obje
tive fun
tion for SOM, there are lot of work have to be done to a

omplisha 
omplete theoreti
al analysis and to explore the topologi
al ordering property toother models.
13



Chapter 3Algorithms for Soft Self-OrganizingMapThis 
hapter presents two algorithms for Soft Self Organizing Map and demonstratestheir ordering properties using three simulation examples. In the �rst se
tion, theme
hanisms of 
ompetitive learning, Maximum Likelihood Competitive Learning andFuzzy Competitive Learning will be des
ribed. Then, the relationship between thealgorithms of SOM and simple 
ompetitive learning will be dis
ussed in se
tion three.It aims at of indi
ating a 
ue explaining why SOM 
an generate neighborhood pre-served map but 
ompetitive learning 
annot. Using this 
ue, MLCL and FCL areextended to two soft algorithms of SOM: SSOM1 and SSOM2. These algorithmswill be presented in se
tion four. In se
tion �ve, simulation results are providedto illustrate the ordering properties of both algorithms. Hen
e a 
on
lusion will bepresented in se
tion six.3.1 Competitive Learning and Soft CompetitiveLearningThe proposing of 
ompetitive learning 
an be tra
ed ba
k to the time when FrankRosenblatt invented Per
eptron. In [39℄, Rosenblatt proposed a 
lass of Per
eptronmodel to explain the information pro
essing and storage in our brain. One model
alled 
-per
eptron is exa
tly the modern time 
ompetitive learning algorithm [15℄.Brie
y, the me
hanism of 
ompetitive learning 
an be des
ribed using Figure(3.1).Suppose that there are 
 neurons in the output layer. The output of the neuronsare denoted by y1; : : : ; y
. Ea
h neurons re
eives signal from the input layer. Theresponse of the neuron is de�ned byyi(t) = ( 1 if kx(t)� vi(t)k � mink 6=i kx(t)� vk(t)k0 otherwise. (3.1)14



Chapter 3 Chapter����������������h hh�������������������� DDDDDDDDDD6 6 6 6viy1 y2 yi y

XFigure 3.1: Stru
ture of 
ompetitive learning.The learning of the weights, vi is de�ned byvi(t+ 1) = vi(t) + �(t)yi(t)(x(t)� vi(t)); (3.2)where �(t) satis�es the 
onditions: R10 �(t)dt =1 and R10 �2(t)dt <1.Suppose that the pdf of x is denoted by f(x), the obje
tive fun
tion of 
ompetitivelearning is given by J = 
Xi=1 Z
i kx� vik2f(x)dx; (3.3)where 
i = fx : kx� vik < mink 6=i kx� vkkg. Hen
e, 
ompetitive learning is just theon-line 
omplement of LBG algorithm [26℄.In 
ompetitive learning, it 
an 
on
eive that the response of neuron is a 
hara
-teristi
 fun
tion indi
ating the degree of winning of that neuron in the 
ompetition.If the neuron is winner, its degree will be one. If it is loser, the degree will bezero. In another words, ea
h neuron 
an only either be winner or loser. The de
isionwhether the neuron is winner or not is hard de
ision and the 
ompetition is 
alledhard de
ision.Instead of de�ning the 
ompetition in a hard way, Nowlan and Jou re
ently pro-posed algorithms whi
h are in
orporated with the 
on
ept of soft 
ompetition:� vi(t+ 1) = vi(t) + �(t)yi(x(t)� vi(t)); (3.4)where yi(x; vi; v2; : : : ; v
) = exp(�kx� vik2=t)P
k=1 exp(�kx� vkk2=t) (3.5)and t > 0; 15



Chapter 3 Chapter� vi(t+ 1) = vi(t) + �(t)ymi (x� vi(t)) (3.6)where yi(x; v1; : : : ; v
) = 24 
Xk=1 kx� vik2kx� vkk2!1=(m�1)35�1 (3.7)and m > 1.The former algorithm is Nowlan's maximum likelihood 
ompetitive learning whilethe latter one is Jou's fuzzy 
ompetitive learning. Their algorithm share one 
ommonfeature. There is no absolute winner or loser. Ea
h neuron is winner. The valueof the 
hara
teristi
 fun
tion is not binary but any value between zero and one, i.e.yi 2 [0; 1℄. Essentially, their algorithms 
an be written in the following general form:yi = yi(x; vi; v2; : : : ; v
);vi(t+ 1) = vi(t) + �(t)F (yi(t))(x(t)� vi(t)); (3.8)where F (yi(t)) is a monotone in
reasing fun
tion de�ned on [0; 1℄ and �(t) satis�esthe 
onditions, R10 �(t)dt = 1 and R10 �2(t)dt < 1. Then, in 
ase of Nowlan'salgorithm, F (yi) = yi. In 
ase of Jou's algorithm, F (yi) = ymi .Intuitively, as their algorithms are di�erent, both algorithms minimize di�erentobje
tive fun
tion ex
ept at the limiting 
ase when m = 1+ and t = 0+. In 
ase ofNowlan's algorithm, the obje
tive fun
tion is de�ned byJt = � Z log " 
Xi=1 exp ��kx� vik2=t�# f(x)dx: (3.9)In 
ase of Jou's algorithm, the obje
tive fun
tion is de�ned byJm = 
Xi=1 Z 24 
Xk=1 kx� vik2kx� vkk2! 1m�135�m kx� vik2f(x)dx: (3.10)3.2 How does SOM generate ordered map?In order to modify MLCL and FCL we need to understand how SOM generatesordered map. In sequel, we may �nd out some 
ues so that we 
an modify thealgorithms of Nowlan and Jou in su
h a way. Ignoring the 
onditions of �(t), thealgorithms of SOM and CL are given as follows: Without loss of generality, we 
onsiderthe SOM a one dimensional map and suppose that x; vi 2 Rn, yi 2 R. For SOM,vi(t+ 1) = ( vi(t) + �(t)[x(t)� vi(t)℄ if i 2 NIvi(t) otherwise (3.11)16



Chapter 3 Chapterand for CL, vi(t+ 1) = ( vi(t) + �(t)[x(t)� vi(t)℄ if i = Ivi(t) otherwise; (3.12)where I is de�ned by I = argminifkx(t)�vi(t)kg, NI is the neighborhood intera
tingset. For example, N1 = f1; 2g, N2 = f1; 2; 3g, N3 = f2; 3; 4g and so on. If we de�neyi(t) as that yi(t) = ( 1 if kx(t)� vi(t)k � mink 6=i kx(t)� vk(t)k0 otherwise, (3.13)we 
an re-formulate the me
hanism of SOM and CL in the following way:vi(t+ 1) = vi(t) + �(t)[x(t)� vi(t)℄zi(t); (3.14)where zi(t) = Pk2Ni yk(t).Thus if Ni = fig, (3.14) redu
es to CL. If Ni = fi � 1; i; i + 1g, then (3.14)redu
es to SOM. Therefore, we 
an de�ne a three-layered network to mimi
 SOM,Figure(3.2), with the �rst two layers 
onstituting the 
ompetitive learning network.Between the yi layer and zi layer, the asso
iated weights are not fully 
onne
ted butpartially 
onne
ted. The value of ea
h weight 
onne
tion is one. Certainly, it doesnot mean that SOM is a three-layered network.If gij denotes the value of the weight 
onne
ting yi and zj, gij = 1 if ji � jj � 1and zero otherwise, then the 
ue that makes SOM generate ordered map 
an be
on
eived as the existen
e of the asso
iated weights, the gijs, 
onne
ting y-layer andz-layer. Using this 
ue, we 
an imagine that the ordering map 
an still be generatedif the lower layer is repla
ed by MLCL or FCL instead. This is the idea that will beelu
idated in the rest of the paper.t t t tt t t tt t t6���6��I ���6���6��I��I66y1 y2 y3 y4z1 z2 z3 z4x CL SOMFigure 3.2: Network stru
ture of SOM.It is worthy to note that although our dis
ussion 
on
ern solely on the one dimen-sional map and the value of the weights asso
iating y-z layers is one, the prin
iplestill holds for the 
ase when the map is a higher dimensional map and the value ofthe weights are de
reasing outward, i.e. gii � gi;i�1 � gi;i�2 and so on.17



Chapter 3 Chapter3.3 Algorithms of Soft SOMA

ording to our preliminary analysis, it is found that the formation of topologi
almap is due to the existen
e of asso
iation between the y-layer and z-layer. Thatis, from the de�nition of gij , we 
an extend the algorithms of MLCL and FCL toSSOM1 and SSOM2. Again, without loss of generality, we assume that the SSOM1and SSOM2 are one dimensional map1. Assuming that G(t) = (gij)
�
 is a toeplitzmatrix satisfying the 
ondition g1i � g1j for all i � j, their learning algorithms 
anbe stated as shown below:SSOM 1 For all i = 1; 2; : : : ; 
,vi(t+ 1) = vi(t) + �(t)[x(t)� vi(t)℄zi(t); (3.15)where zi(t) = Pk2Ni gikyk(t) andyi = exp(�kx� vik2=� )P
k=1 exp(�kx� vkk2=� ) (3.16)for all � > 0.SSOM 2 For all i = 1; 2; : : : ; 
,vi(t+ 1) = vi(t) + �(t)[x(t)� vi(t)℄zi(t); (3.17)where zi(t) = Pk2Ni gikymk (t) andyi(x; v1; : : : ; v
) = 24 
Xk=1 kx� vik2kx� vkk2!1=(m�1)35�1 (3.18)for all m > 1.In equilibrium, the 
luster 
enters vis will be given by vi = Px xzi(x)Px zi(x) . In 
ase ofSSOM1, vi is given by vi = PxPk2Ni xgikyk(x)PxPk2Ni gikyk(x) ;for all i = 1; 2; : : : ; 
. In 
ase of SSOM2, vi is given byvi = PxPk2Ni xgikymk (x)PxPk2Ni gikymk (x) ;1Note that the index of vi, yi and zi will be 
hanged to (i; j) in 
ase the map is de�ned as a twodimensional mesh and and N(i;j) = f(i; j); (i� 1; j � 1); (i; j � 1); (i� 1; j)g18



Chapter 3 Chapterfor all i = 1; 2; : : : ; 
. Either SSOM1 or SSOM2 
an be treated as a generalized modelof CL and SOM. It 
an transform to any one of them by modifying the parameter� (or m) and redu
ing the size of neighborhood to singleton, i.e. Ni = fig. For
larity, we assume that gij = 1 if ji � jj � 1. Without loss of generality, we dis
usshow SSOM1 
an 
hange to other algorithms. If � > 0 and Ni = fig, it redu
esto MLCL. If � = 0+ and Ni = fig, it redu
es to 
ompetitive learning. If � = 0+and Ni = fi � 1; i; i+ 1g, it redu
es to SOM. Similar dis
ussion on the relationshipbetween SSOM2 and other algorithms 
an follow the same way.As in the 
ase of SOM, a 
omplete theoreti
al analysis on the above algorithms,SSOM1 and SSOM2, is very diÆ
ult. Therefore the topologi
al ordering property
an only be demonstrated by the simulation results as given in the next se
tion.3.4 Simulation ResultsThe �rst example demonstrates the 
apability of SSOM in handling one dimensionaldata. The matrix G(t) is de�ned as: G(t) = (gij(t))
�
, wheregij(t) = 8><>: 1 if i = j.�(t) if ji� jj = 1.0 otherwise. (3.19)while in the se
ond example, two dimensional data is handled. The matrix G =(gij;rs)

� 

 is de�ned as follows:gij;rs = 8><>: 1 if ij = rs:�(t) 8rs 2 Nijnfijg:0 otherwise: (3.20)3.4.1 One dimensional map under uniform distributionIn this example, the SSOM 
onsists of �ve weight ve
tors. The input data is uniformlydistributed on [0; 1℄. Initially, the weight ve
tors are in random position within [0; 1℄.For all t > 0, �(t) in equation (3.19) is set to be a 
onstant. �(t) is set to be 0.01.As the results of SSOM1 and SSOM2 are similar ex
ept that the training time isdi�erent, only the results obtained by algorithm SSOM1 are displayed in Figure(3.3).From the �gures, we 
an make the following observations: (i)As �(t) de
reases, thespread of jv1(1)� v5(1)j will in
rease. (ii)When �(t) � 0:5, it is possible to obtainordered map within two thousand times of iteration even the initial map is not inorder. (iii)As �(t) de
reases, the time to rea
h ordering be
omes longer. (iv)As �(t)de
reases, the 
u
tuation of vis also de
reases. (v)When �(t) < 0:5, no ordering map
an be obtained within two thousand times of iteration.19
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(f)Figure 3.3: The plots of 
hange of vi of the SSOM1 under uniform distribution. �(t)is set to be a 
onstant during ea
h run. The horizontal axis indi
ates the number ofiteration while the verti
al axis indi
ates the value of ea
h of vi. (a) �(t) = 1, (b)�(t) = 0:75, (
) �(t) = 0:5, (d) �(t) = 0:25, (e) �(t) = 0:1 and (f) �(t) = 0. The valueof vis are set to be: v1(0) = 0:5, v2(0) = 0:9, v3(0) = 0:2, v4(0) = 0:4 and v5(0) = 0:1.
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(e)Figure 3.4: The plots of 
hange of vi of the SSOM1 under Gaussian distribution,where mean is 0.5 and varian
e is 0.1. �(t) is set to be a 
onstant during ea
h run.(a) �(t) = 1, (b) �(t) = 0:75, (
) �(t) = 0:5, (d) �(t) = 0:25, (e) �(t) = 0:1 and(f) �(t) = 0.The value of vis are set to be: v1(0) = 0:5, v2(0) = 0:9, v3(0) = 0:2,v4(0) = 0:4 and v5(0) = 0:1. The horizontal axis is 
orresponding to the number ofiteration while the verti
al axis is 
orresponding to the weight value.3.4.2 One dimensional map under Gaussian distributionIn this example, the setting of the parameters are the same as last example ex
eptthat the input data is in Gaussian distribution. The mean of the distribution is0.5 while the varian
e is 0.1. The results are shown in Figure(3.4). It is observedthat when � > 0:5, SSOM1 
an 
onverge to an ordered map within 2000 time ofiterations. Besides, the weight values get 
loser if � is set larger. Worthy noting that,when � = 0, the resultant weight values is similar to the �rst simulation example.3.4.3 Two dimensional map in a unit squareIn this example, a 6 by 6 SSOM are initialized randomly inside a unit square. Theinput data is distributed uniformly inside the unit square. 8-neighbor type is used.�(t) in (3.20) is set to be 1 and �(t) is 0.05. For the 
ase of SSOM1, the ordered map21
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Figure 3.5: The evolution of the SSOM1 under uniform distribution. (a) The mapis randomly initialized and � = 0:02. (b) and (
) indi
ate the map formed after 104and 1:5�104 iteration respe
tively. The ordered map is formed after 2�104 iterationand remained un
hanged afterward.
an be formed after 20000 iteration. Figure(3.5) displays the map stru
tures at the 0,10000, 15000 and 20000 iterations. For the 
ase of SSOM2, the results are displayedin Figure(3.6). The map stru
tures formed at 0, 20000, 60000 and 100000 are shown.Two observations 
an be noted from the above experiment: (i)The 
onvergen
erate of SSOM1 is faster than that of SSOM2. From the experiment, the time 
on-sumed by SSOM2 is 5 times the time 
onsumed by SSOM1. (ii)The size of the mapgenerated by SSOM1 is larger than the one generated by SSOM2.3.5 Con
lusionIn summary, this 
hapter presents two algorithms for Soft Self Organizing Map anddemonstrates their ordering properties using three simulation examples. They areinspired by the ordering property manifested by Self-Organizing Map (SOM) and thesoft 
ompetition nature of Maximum Likelihood Competitive Learning (MLCL) andFuzzy Competitive Learning (FCL). By studying the mathemati
al formulations of22
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Figure 3.6: The evolution of the SSOM2 under uniform distribution. The neighbor-hood used is the eight neighbor type. Initially, the map is randomly initialized, (a).(b) and (
) indi
ate the resultant shape of the map after 2�104 and 6�104 iterationrespe
tively. The ordered map is formed after 10 � 104 iteration. And the shape ofthe map remains un
hanged afterward.
23



Chapter 3 Chapter
ompetitive learning and SOM, a 
ue for the formation of neighborhood preservedmap is suggested. Using this 
ue, MLCL and FCL are used to derived two SOM-likealgorithms: SSOM1 and SSOM2. Simulation results based on one dimension andtwo dimension data are provided to illustrate their ordering properties.Although SSOM1 and SSOM2 show ordering properties, there is still diÆ
ultyin using SSOM1. It is found that there is no simple method to tune the value of� . We have 
arried out a number of simulations with di�erent values of � . It wasfound that SSOM1 
annot generate topologi
al map on
e � is greater than 0.15. In
ase of SSOM2, we have set m = 1:5 and m = 3. It was found that topologi
almap still 
an be generated. Furthermore, there is no analyti
al proof for the orderingand 
onvergen
e of both algorithms ex
ept that the neighborhood set os redu
ed tosingleton, i.e. MLCL and FCL respe
tively.

24



Chapter 4Appli
ation to Un
over VowelRelationshipIn the last 
hapter, we have derived two soft versions for Self-Organizing Map (SOM),
alled SSOM1 and SSOM2, and demonstrated its ordering property through simula-tions. Due to the ordering property manifested by SSOM1 and SSOM2, SSOM1 andSSO2 are likely applied to reveal the topologi
al stru
ture of a set of data, stri
tlythe vowel data. In our preliminary study, it is found that not both SSOM1 andSSOM2 
an un
over the neighborhood relationship among di�erent 
lasses of vowelprovided by Peterson and Barney1. The algorithm of SSOM1 is not feasible to do so.So, in this 
hapter, our prin
ipal 
on
ern is akin to the implementation of SSOM2to un
over the vowel relationship. The following se
tions are devoted to present thedetail of this appli
ation. In the �rst se
tion, the experimental set up in
luding thenetwork stru
ture, training pro
edure and relationship 
onstru
tion s
heme will beelu
idated in se
tion two. Then the results of the experiment will be given in se
tionthree. In whi
h, the reason why SSOM1 is not appropriate to be implemrnted willbe explained. In se
tion four, the 
on
lusion will be presented.4.1 Experiment Set UpPeterson-Barney vowel database is used as the training set. The database 
onsistsof a digitized version of the �rst and se
ond formant frequen
ies of ten vowels formultiple male and female speakers. As in [33℄ and [31℄, the �rst and se
ond formantfrequen
ies are used for the experiments. It is remarked that our prin
ipal 
on
ern isto un
over the vowel relationship.1It is a ben
hmark database whi
h is lo
ated in the UCI ma
hine learning repository.25



Chapter 4 Chapter4.1.1 Network stru
tureThe stru
ture of the network is similar to the 
ounter-propagation-network (CPN)[14℄. Figure(4.1) shows the network stru
ture for this experiment. It 
onsists ofthree layers: input, hidden and output. There are two units in the input layer,hundred units in the hidden layer and ten units in the output layer. The hiddenunits are 
onstru
ted as a ten by ten 2D mesh. The input-hidden weights, vis, aredetermined by the algorithm of SSOM2 (or SOM), i.e. equation (3.17). The hidden-output weights are determined by the method of minimum square error whi
h will beelu
idated shortly. x x x x6 66 6 6 6����� XXXXXXXXXXXXXy�������������: AAAAK������3 PPPPPPPPPPi����������1 QQQQQQk6 HiddenInputOutputx
o1 o2 o10okWvijzijFigure 4.1: The network for the experiment. It is a three layer network with two inputnodes, one hundred hidden node and ten output node. The input-hidden weights, vijs,are determined by using either SOM or SSOM2 while the hidden-output weights,W , are determined by using the method of minimum square error. Here, i; j 2f1; 2; : : : ; 10g.4.1.2 Training pro
edureThe training of this network is divided into two phases: (i) input-hidden weightevaluation and (ii) hidden-output weight evaluation. Denote x 2 R2 be the inputdata, z(i;j) 2 R be the output of ijth hidden unit and v(i;j) 2 R2 be the input-hiddenweight. In the �rst phase, the value of v(i;j) are evaluated based on the algorithm ofSSOM2 (or SOM). For simpli
ity, �(t) = 0:1 and N(i;j) = f(i; j); (i� 1; j � 1); (i; j �1); (i�1; j)g at the �rst 152000 iterations. After that, �(t) = 0:01 and N(i;j) = f(i; j)gfor another 152000 iterations. On
e the �rst phase training is �nished, the vowel datahave been partitioned into hundred 
lusters.Then N(i;j) = f(i; j)g and the values of vij are frozen. (At that time, if a voweldata x is fed to the input, ea
h of the hidden units will output a value, zij. In 
ase26



Chapter 4 Chapterof SSOM2, zij(x) 2 [0; 1℄. In 
ase of SOM, zij(x) 2 f0; 1g. In either 
ase, we 
anobserved that Pi;j zij(x) = 1.) Suppose that the total number of output node, 
, isten, we denote O = (o1 : : : o
)T 2 R10 be the output of the network,W be the hidden-output weight matrix, Z = (z11z12 : : : z

)T and O1 = (10 : : : 0)T , O2 = (01 : : : 0)T , : : :,O10 = (00 : : : 1)T be the output of network 
orresponding to the ten 
lasses. In these
ond phase, ea
h of vowel data is fed to input, the values of zijs are evaluated andoutput from the hidden layer to the output layer. The output of the ten output units,oks, are 
ompared with the target values. The error is ba
kpropagated to modify thehidden-output weights. Suppose that the square error 
ontributed by data x is givenby ex = kOx�WZ(x)k2, thus the total square error isPx kOx�WZ(x)k2. Therefore,using the method of minimum square error, W 
an be determined using the followingformulae: W =  Xx ZT (x)Z(x)!�1  Xx ZT (x)Ox! :4.1.3 Relationship Constru
tion S
hemeUsing the aforementioned network stru
ture and training steps, we obtain a vowel
lassi�er. Based on this 
lassi�er, the following heuristi
 steps are taken to reveal thevowel relationship: (i)The hidden-output weight is set to be one if it is larger than athreshold. Otherwise, it is set to be zero. (ii)The hidden unit is assigned to be 
lassi if the weight 
onne
ting it to the ith output node is one. (iii)If there is a hiddenunit whi
h is assigned to more than one 
lass, set threshold to a larger value andrepeat the �rst two steps. If ea
h hidden unit is assigned to at most one 
lass, thengo to next step. (iv)Class i and 
lass j are neighborhood in the data spa
e if theyare neighborhood in the organizing map.4.2 ResultsFigure(4.2) and (4.3) display the 
lustering results of SSOM2 and SOM after the�rst phase training. The input data are normalized. The 
ir
les are 
orrespondingto the lo
ation of the 
luster 
enters while the edges 
onne
ting 
ir
les indi
ate theneighborhood stru
ture of the hidden units. In order to label the hidden units, weneed to know the hidden-output weight values.4.2.1 Hidden-unit labeling for SSOM2Figure(4.4) shows the mesh plot of the weight values 
onne
ting the hidden units tothe �rst output unit2. It is found that large weight values are usually lo
alized in asmall region. The same property exists in the weights 
onne
ting the hidden units2For the rest of the other mesh plots are shown in Appendix C.27



Chapter 4 Chapterto other output units. Then following the hidden-unit labeling s
heme (step(i) andstep(ii) in the relationship 
onstru
tion s
heme), the labeling LSSOM2 of the hiddenunits are: LSSOM2 = 26666666666666666664 9 9 9 � � � � 1 1 1� � 9 � � 10 2 2 � 17 8 8 � � � � 2 2 17 7 8 8 � 10 3 � 2 �7 7 5 10 � � � � 2 1� � 5 � � � 3 3 1 1� � � � 4 4 � 3 2 16 6 � 5 � 4 � 3 � 2� � � 5 5 4 4 � 3 �6 6 6 5 � 4 4 4 3 �
37777777777777777775 : (4.1)Here the threshold is set to be one. The interpretation of this matrix is as following.Consider the element in the third 
olumn forth row, the value is 8. This means thatthe 
luster represented by v(3;4) is belongs to the 8th vowel. If the element is a dash,it means that the 
orresponding 
luster is un
lassi�ed.4.2.2 Hidden-unit labeling for SOMFigure(4.5) shows the weight values 
onne
ting the hidden units to the �rst outputunit. Similar to the 
ase of SSOM2, it is found that the weight values whi
h aregreater than zeros are usually lo
alized in a small region. Then following the samehidden-unit labeling s
heme and the threshold is set to be 0.7, the labeling LSOM ofthe hidden units are:LSOM = 26666666666666666664 6 6 6 � � 7 7 7 � 96 6 6 � � � 8 8 9 9� � � 5 5 � 8 8 � 95 5 � � � 10 � � � 95 � 4 4 10 10 10 � � �� � 4 4 � � � 2 2 �� 4 4 4 3 � 2 2 2 14 4 � � 3 � � 2 1 14 4 3 3 3 3 2 2 1 14 4 3 3 � � 2 2 1 1
37777777777777777775 : (4.2)Similarly, the value of ea
h of the element indi
ates the 
lass of the 
orresponding
luster belongs to. Based on the labeling matrix obtained previously, we 
an obtain28



Chapter 4 Chapterthe relational matrix RSSOM2 and RSOM as following:RSSOM2 = 26666666666666666664 1 1 0 0 0 0 0 0 0 01 1 1 0 0 0 0 0 0 10 1 1 1 0 0 0 0 0 10 0 1 1 1 0 0 0 0 00 0 0 1 1 1 0 1 0 10 0 0 0 1 1 0 0 0 00 0 0 0 0 0 1 1 0 00 0 0 0 1 0 1 1 1 10 0 0 0 0 0 0 1 1 00 1 1 0 1 0 0 1 0 1
37777777777777777775 ;RSOM = 26666666666666666664 1 1 0 0 0 0 0 0 0 01 1 1 0 0 0 0 0 0 10 1 1 1 0 0 0 0 0 00 0 1 1 1 0 0 0 0 10 0 0 1 1 1 0 0 0 10 0 0 0 1 1 0 0 0 00 0 0 0 0 0 1 1 1 00 0 0 0 0 0 1 1 1 10 0 0 0 0 0 1 1 1 00 1 0 1 1 0 0 1 0 1
37777777777777777775 :These matrix indi
ate the neighborhood relationship between di�erent vowels. If thevalue of the ijth element is equal to one, then i 
lass and j 
lass are neighborhood.If the value is zero, then they are not neighborhood.4.3 Con
lusionIn summary, this 
hapter has presented a simplemethod of un
overing the relationshipamongst 
lusters of vowel data. Furthermore, as the ordered map (the hidden layer)is prede�ned as a lower dimensional mesh, the relationship obtained manifests alower dimension relationship between 
luster. Although our prin
ipal 
on
ern is notto 
onstru
t a vowel 
lassi�er with very high 
lassi�
ation rate, it is worthwhile topoint out that the rate of 
orre
t 
lassi�
ation of SSOM2 and SOM are 0.76 and0.76 respe
tively whi
h are far below the performan
e of using MLCL as indi
ated in[33℄. The reason for this poor performan
e is remained to be investigated. Finally,it should note that the idea expressed in this 
hapter 
an a
tually be applied tothose 
luster based fuzzy model identi�
ation te
hniques [41, 5℄. In parti
ular, ifthe 
lustering te
hnique is FCL (or FCM [2℄) based, SSOM2 
an dire
tly applied. In
ase other 
lustering te
hnique is implemented, equation (3.17) needed to be modi�eda

ordingly. 29
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Figure 4.2: The resultant of SSOM2 after training. The 
ir
les are 
orresponding tothe lo
ation of vij. The edges 
onne
ting two 
ir
les indi
ate that the 
orrespondingnodes are neighborhood in the hidden layer. Observed that there are some edges
rossing over. So, the resultant map is not a ni
e topologi
al map.
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Figure 4.3: The resultant of SOM after training. The 
ir
les are 
orresponding tothe lo
ation of vij. The edge 
onne
ting two 
ir
les indi
ate that the 
orrespondingnodes are neighborhood in the hidden layer. Observed that there is no edges 
rossingover in the resultant map.
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Figure 4.4: The mesh plot of the weights 
onne
tion the hundred hidden unit to the�rst output using SSOM2 as input-hidden layer.
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Figure 4.5: The mesh plot of the weights 
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tion the hundred hidden unit to the�rst output using SOM as input-hidden layer.
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Chapter 5Appli
ation to vowel datatransmissionIn this 
hapter, we further apply these algorithms in the transmission of vowel dataunder a noisy 
hannel. The quantizer 
odebook is generated by using SSOM1 andSSOM2 and embedded into modulation system. The overall system performan
e ofusing SSOM1 and SSOM2 in transmitting Peterson-Barney vowel data are 
omparedwith that of using SOM, in the sense of data re
onstru
tion error. Simulation resultsindi
ate that (i)in higher 
hannel noise level, the re
onstru
tion error 
ommitted byusing SSOM1 is smaller; (ii) while in lower 
hannel noise level, the error 
ommittedby using SOM will be smaller. In the next se
tion, the data transmission problemand the motivation of using soft self-organizing map in generating 
odebook will beelu
idated. Then the simulation and the main results will be des
ribed in se
tion twoand three. The 
on
lusion will be presented in se
tion four.5.1 Introdu
tionTo build a transmission system, the following steps are usually undertaken to transmitand re
eive a bat
h of data [40℄: (Quantization and En
oding) A ve
tor quantizer isdesigned to divide the data spa
e into a number of partitions, P1; : : : ;P
. Ea
h ofthese partitions is represented by a representative ve
tor, v1; : : : ; v
. On
e a data xis going to be sent, the quantizer will 
lassify x into one of these partitions basedon nearest neighbor s
heme: If vi is the 
losest representative ve
tor to x, x 2 Piand the data x is en
oded by symbol i. (Modulation) The 
ode of the data x ispassed to the modulator. The modulator then generates and transmits a waveforms(t) to the 
ommuni
ation 
hannel, usually noisy. (Demodulation and De
oding) Inthe destination side, the re
eiver demodulates the 
ontaminated signal s(t) + n(t)and gives out a 
ode. Based on this 
ode, the approximation of data x, v̂(x) isre
onstru
ted. Figure(5.1) shows the blo
k diagram of a simple transmission system.In traditional approa
h, the design of the ve
tor quantizer is independent of the34



Chapter 5 Chapter����- - ?- - -x v(x) n(t)s(t) ŝ(t) v̂(x)QuantizationandEn
oding Modulation(QAM) DemodulationandDe
oding+Figure 5.1: The blo
k diagram of a simple transmission system.design of the modulator in su
h transmission system. Re
ently, Leung [25℄ has putthem as a whole for 
onsideration: the ve
tor quantizer is generated by using Self-Organizing Map (SOM) while the modulator is designed based on quadrature ampli-tude modulation (QAM). In this 
hapter, we follow the same idea as suggested byhim to design the transmission system. Apart from using SOM to train the quantizer,we apply two algorithms of soft SOM to build su
h quantizer. And their performan
eare evaluated.The reason why we follow Leung's idea 
an be explained as following. Considerthat the QAM is a 16-ary with waveforms de�ned by sij(t) = ai
os!
t + ajsin!
t,where ai = 1:5 � (i � 1) and !
 is the 
arrier frequen
y. The quantizer 
onsistsof sixteen 
odeve
tors, fv11; v12; : : : ; v44g, whi
h are generated by using SOM. Whilethis quantizer is implemented in QAM, the following 
odeve
tor-waveform assignment(CWA) is de�ned: vij 7! sij. Usually, we also denote sij as a two dimensional ve
torin the signal spa
e: sij = (ai; aj). In sequel, if vij and vrs are neighborhood in thesense of SOM, sij and srs are neighborhood in the signal spa
e. Consequently, if xis 
lassi�ed as ijth partition and being transmitted by the waveform sij = (ai; aj)to a noisy 
hannel, the re
onstru
ted 
odeve
tor at the destination will probably beneighborhood of v̂ij a

ording to the fa
t that the re
eived waveform should not be toofar from sij. As a result, the distan
e between x and v̂ij should not be large. Hen
e there
onstru
tion error will be smaller. On the 
ontrary, in 
ase SOM is not applied, `sijand srs are neighborhood' 
ould not imply `vij and vrs are neighborhood'. So, the error
ontributed by kx� v̂ijk will probably be large. Therefore, the total re
onstru
tionerror using non-map type training algorithm, Frequen
y sensitive 
ompetitive learning(FSCL) for instan
e, will be large [25℄.Although Leung has shown promising result, we would like to further redu
e there
onstru
tion error by substituting the algorithms of SSOM1 and SSOM2 to SOM inthe generation of 
odebook for QAM. This substitution is motivated by three 
urrentresults : In [50℄, Yair et.al. showed that better 
odebook 
an be a

omplished by usingsoft 
ompetition (i.e. Maximum Likelihood Competitive Learning (MLCL) ). In [33℄,Nowlan applied MLCL to 
lassify vowel data and found that the mis
lassi�
ation rateis far below than using other neural network approa
h in
luding SOM. Similar resultwas 
laimed by Chung and Lee [7℄. They applied Fuzzy Competitive Learning (FCL)35
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Figure 5.2: The lo
ation of the waveforms are de�ned regularly in the signal spa
e.Ea
h solid 
ir
le represents one waveform.to 
lassify vowel data and found that the miss
lassi�
ation rate is lower than that ofLVQ and FSCL. Based on their results, it is reasonable to indu
e that using the softboundary te
hnique (MLCL or FCL) in 
lustering or 
lustering based 
lassi�
ationmay a
hieve better performan
e. In 
on
lusion, the 
ombination of soft 
ompetitionme
hanism with topologi
al ordering me
hanism may improve the performan
e ofdata transmission under noise 
hannel.5.2 Simulation5.2.1 SetupAs SSOM1, SSOM2 and SOM 
an 
luster data in an ordered fashion, three di�erent
odebooks are generated by using SSOM1, SSOM2 and SOM respe
tively. Half ofthe database is used for training. Ea
h of these 
odebooks 
ontains 100 
odeve
-tors. Ea
h organized map is de�ned as 10 by 10 mesh. We denote the 
odeve
torsby v11; v12; : : : ; v10;10. The QAM is designed as 100-ary. The waveforms are de�nedregularly in the signal spa
e: 8i; j = 1; 2; : : : ; 10; sij(t) = ai
os!
t + ajsin!
t, whereai = 4:5 � (i � 1). The CWA is simply de�ned by asso
iating sij to vij. For in-stan
e, to transmit the 
odeve
tor v23, the waveform 3:5
os!
t + 2:5sin!
t will besent, Figure(5.2) shows the lo
ations of the waveforms in the signal spa
e.36



Chapter 5 Chapter5.2.2 Noise model and demodulation s
hemeWithout loss of generality, the 
hannel noise is modeled as a two-dimensional additivewhite Gaussian noise (AWGN), i.e. n = (n1; n2), where Efn1(t)g = Efn2(t)g = 0and Efn21(t)g = Efn22(t)g = �2. Here � is the standard deviation of the 
hannel noisein ea
h dimension. When a data x is transmitted to the destination, the followingsteps will be simulated: (i)x 7! vij(x) (x is quantized to one of the 
odeve
tors inthe 
odebook.), (ii)vij 7! sij(t) (The 
orresponding waveform will be transmitted.),(iii)sij 7! s = sij + (n1; n2) (AWGN is added to the transmitted waveform.) and(iv)s 7! v̂ij (The re
eived waveform is demodulated1.).5.2.3 Performan
e indexTo evaluate the performan
e of the three algorithms in data transmission, the follow-ing performan
e index is 
onsidered:E1 = 1N NXi=1 kv̂(xi)� xik2;where N is the total number of training data. With referen
e to Figure(5.1), v̂(xi) isthe output signal after demodulation and de
oding. xi is the input to the quantizerand v(xi) is the input to the modulator. The former index measures the mean squarere
onstru
tion error. Smaller the valuer of E1, the better the transmission system.5.2.4 Control experiment: random 
oding s
hemeIn order to demonstrate the advantage of topologi
al order. A 
ontrol experimentis 
arried out. The set up is the same as above ex
ept that the CWA is de�nedarbitrary. We 
all it random 
oding s
heme (RC). In su
h 
ase, the neighborhoodpreservation property is 
eased. If the quantized ve
tor v23 and v24 are fed to theen
oder 
onse
utively, the out
ome will no more be (2; 3) and (2; 4). Instead, they maybe (5; 9) and (1; 10) whi
h are depended on de�nition of the one to one 
orresponding.5.3 ResultsTo 
larify the dis
ussion, the resultant 
odebooks generated by SSOM1, SSOM2 andSOM are displayed in Figure(5.3). Remark that the maps obtained are di�erent fromthose displayed in the last 
hapter sin
e the size of the training set is just in size
ompared with the experiment 
arried in the last 
hapter. The lo
ations of the small1Remind that srs 
an be written as (ar ; as). The demodulation s
heme is de�ned as following:If ks � ŝijk � ks � srsk for all r; s = 1; 2; : : : ; 10, the 
orresponding v̂ij will be treated as there
onstru
tion of x. 37
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Figure 5.3: The resultant maps of SSOM1(left), SSOM2(middle) and SOM(right)after training.
ir
les are 
orresponding to the lo
ations of the 
odeve
tors. The edges indi
ate theneighborhood relationship between 
odeve
tors, whi
h are de�ned a priori. The dotsare 
orresponding to the lo
ations of the vowel data. We set the standard deviation ofthe 
hannel to 29 di�erent values: 0:0; 0:1; 0:2; : : : 2:0 and : 3; 4; : : : 10. Twenty-ninesets of experiments are then 
arried out. The resultant E1 are plotted against the
hannel noise standard deviation in Figure(5.4). The numeri
al data of tabulated inthe following tables, Table 5.1 to Table 5.2.5.3.1 Null 
hannel noise (� = 0)While the 
hannel noise is null, the re
onstru
tion error is purely quantization error. Itis found that the quantization error 
ommitted by SSOM1 is the largest: E1 = 0:0479.The quantization error generated by using SOM is the smallest, E1 = 0:03.5.3.2 Small 
hannel noise (0 < � � 1)For the 
ase that ordered map is implemented as the quantizer, Figure(5.4), it isexperimented that the re
onstru
tion error of the system is dominated by the quan-tization error when the 
hannel noise level is low, i.e. � � 1. For the 
ase that theordering topology is 
eased the situation is the similar but the re
onstru
tion erroris dominated by the quantization error only when � � 0:35. In summary, when the
hannel noise is small, the order of the re
onstru
tion error E1 is thatE1(SOM) < E1(SSOM2) < E1(SSOM1) < E1(RC);when RC stands for random 
oding s
heme.5.3.3 Large 
hannel noise (1 � � � 7)When the standard deviation of the 
hannel noise is between 1 to roughly 7, theperforman
e of ordered map is still better than random 
oding:E1(SSOM1) < E1(SSOM2) < E1(SOM) < E1(RC):38
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Figure 5.4: The performan
e of transmission system against 
hannel noise. Thehorizontal axis is 
orresponding to 
hannel noise varian
e while the verit
al axis is
orresponding to the average mean square error, E1. The results obtained by usingSOM are indi
ated by line (1). The results obtained by using SSOM1 are indi
atedby line (3). The results obtained by using SSOM2 are indi
ated by line (2). Thesolid lines are 
orresponding to the 
ase when the 
odeve
tor waveform assignmentfollows neighborhood preservation s
heme. While the dash lines are 
orresponding tothe 
ase when the 
odeve
tor waveform assignment is random.39



Chapter 5 Chapter5.3.4 Very large 
hannel noise (� > 7)When the 
hannel noise is very large, it is found that the mean square error obtainedby all three algorithms are similar. While their results are 
ompared with random
oding s
heme, it is found that the error obtained are larger. A possible reason forthis aspe
t is due to the lo
ations of the 
odeve
tors. However, very large 
hannelnoise seems to be infeasible in real situation. This results are just for referen
e.5.4 Con
lusionIn summary, we have presented one important appli
ation of the Soft SOM in this
hapter. It is to implement Soft SOM as the quantizer in the data 
ommuni
ationsystem. Combine the QAM modulation te
hnique, it is demonstrated that the re
on-stru
tion error 
an largely be redu
ed when the 
hannel noise level is low. Besides,it is found that overall system performan
e is less noise sensitive. For example, if weset E1 = 0:1 as a referen
e limit, it is found that the 
hannel noise tolerated by usingrandom 
ode te
hnique is less than 0.3. In 
ase of ordered map te
hnique, it in
reasesto a value larger than one. Moreover, when the 
hannel noise is very large, i.e. largerthan 7, it is observed that all three ordering te
hnique 
annot help to redu
e there
onstru
tion error due to 
hannel noise.

40



Chapter 5 ChapterS.D. SOM SSOM2 SSOM10.0000 0.0300 0.0357 0.04790.1000 0.0300 0.0357 0.04790.2000 0.0312 0.0368 0.04870.3000 0.0384 0.0438 0.05420.4000 0.0491 0.0527 0.06170.5000 0.0579 0.0604 0.06850.6000 0.0658 0.0678 0.07460.7000 0.0736 0.0733 0.08000.8000 0.0807 0.0800 0.08530.9000 0.0878 0.0859 0.08991.0000 0.0940 0.0918 0.09451.1000 0.1005 0.0976 0.09981.2000 0.1073 0.1032 0.10451.3000 0.1133 0.1089 0.10911.4000 0.1207 0.1151 0.11401.5000 0.1274 0.1207 0.11781.6000 0.1338 0.1253 0.12241.7000 0.1409 0.1317 0.12601.8000 0.1461 0.1371 0.13051.9000 0.1524 0.1420 0.13542.0000 0.1591 0.1475 0.13923.0000 0.2156 0.1965 0.17844.0000 0.2614 0.2353 0.21215.0000 0.2981 0.2673 0.24096.0000 0.3292 0.2934 0.26177.0000 0.3491 0.3113 0.28098.0000 0.3695 0.3277 0.29579.0000 0.3835 0.3402 0.308610.0000 0.3945 0.3487 0.3167Table 5.1: The performan
e of transmission system. The results are obtained byusing SSOM1, SSOM2 and SOM. The performan
e index E1.41



Chapter 5 ChapterS.D. SOM SSOM2 SSOM10.0000 0.0300 0.0357 0.04790.1000 0.0300 0.0357 0.04790.2000 0.0366 0.0425 0.05340.3000 0.0794 0.0861 0.08880.4000 0.1373 0.1460 0.13510.5000 0.1833 0.1905 0.17100.6000 0.2191 0.2240 0.19940.7000 0.2431 0.2473 0.21970.8000 0.2638 0.2659 0.23390.9000 0.2776 0.2775 0.24861.0000 0.2888 0.2868 0.25751.1000 0.3005 0.2957 0.26441.2000 0.3069 0.3018 0.27281.3000 0.3138 0.3060 0.27841.4000 0.3198 0.3107 0.28321.5000 0.3242 0.3107 0.28691.6000 0.3272 0.3143 0.29041.7000 0.3327 0.3163 0.29491.8000 0.3345 0.3165 0.29631.9000 0.3351 0.3190 0.29862.0000 0.3384 0.3206 0.29963.0000 0.3499 0.3287 0.31014.0000 0.3564 0.3315 0.31135.0000 0.3605 0.3323 0.31056.0000 0.3624 0.3340 0.31027.0000 0.3636 0.3353 0.31068.0000 0.3652 0.3376 0.31119.0000 0.3679 0.3362 0.311510.0000 0.3673 0.3379 0.3114Table 5.2: The performan
e of transmission system in the sense of mean square error.The results are obtained by using random 
oding te
hnique. The performan
e indexE1. 42



Chapter 6Convergen
e AnalysisThis 
hapter dis
usses 
ertain theoreti
al results on the 
onvergen
e of the 
ompetitivelearning, soft 
ompetitive learning, SOM and Soft SOM. The te
hnique is based onthe appli
ation of Kushner-Clark Lemma and the Lyapunov indire
t method. The�rst se
tion states the Kushner-Clark Lemma. The 
onvergen
e 
onditions of Jou'salgorithm are presented in se
ond se
tion. For our best knowledge, no resear
her hasproven these 
onditions yet. In se
tion 3, we extend the result obtained in se
tion 2to provide an alternative proof on the 
onvergen
e of 
ompetitive learning. Se
tion4 presents one of the main results of this thesis: the 
onvergen
e of SSOM. Basedon the same approa
h as se
tion 3, we extend the result in se
tion 4 to prove the
onvergen
e of SOM whi
h is presented in se
tion 5.6.1 Kushner and Clark LemmaThe following Lemma is adopted from [23℄. For the sake of appli
ation, some irrelevantterms and 
onditions are ignored in order to simplify the 
onvergen
e proof. To seethe 
ompleted version of the Lemma and its proof, please refer to [23℄.Lemma 1 (Theorem 2.3.1 of [23℄) Let fMtg be given byMt+1 =Mt + �th(Mt) + �t�t:And assume thatKC1 h(:) is 
ontinuous Rn valued fun
tion on Rn.KC2 �t is a sequen
e of positive real numbers su
h that Pt �t =1 and Pt �2t <1.KC3 f�tg is a sequen
e of Rr valued random variables and su
h that for ea
h Æ > 0limt!1P (supm�t j mXi=t �i�i j� Æ) = 0;43



Chapter 6 ChapterSuppose that fMtg is bounded with probability one. Let M0 be a lo
ally asymptoti
allystable solution to _M = h(M);with domain of attra
tion DA(M0). Then if A � DA(M0) su
h that Mt 2 A, we haveMt !M0 as n!1. 2 2 26.2 Condition for the Convergen
e of Jou's Algo-rithmTheorem 3 The 
onvergen
e of Jou's fuzzy 
ompetitive learning algorithm, (3.6) and(3.7), is almost sure.(Proof) We assume that all vi are bounded. Consider equations: (3.6) and (3.7), theasso
iated di�erent equation is that�Jm�vi = �2E[ymi (x)(x� vi(t))℄: (6.1)And it is just the 
ase that dvidt = ��Jm�vi :This is a des
ent algorithm whi
h dJmdt � 0. A

ording to Lyapunov indire
t method,Jm is the Lyapunov fun
tion and there exists Ds = fV j8 V 2 [0; 1℄n; �Jm�V = 0g, whereV = (v1; v2; : : : ; v
)T .Next, it is going to 
he
ked that (3.6) satis�es 
ondition KC1 to KC3 of Kushnerand Clark Lemma. Denote h(V ) = (h1(V ); h2(V ); : : : ; h
(V ))T , wherehi(V ) = �2E[ymi (x)(x� vi(t))℄: (6.2)Moreover, let us denote � = (�1; �2; : : : ; �
)T , where�i(V; x) = �2ymi (x)(x� vi(t))� hi(V ): (6.3)Sin
e we 
an �x the �(t) a

ording to A.2, for instan
ePk �2k <1 andP1k=1 �k =1,and then 
he
k that h(V ) is 
ontinuous fun
tion. The major proof is A.3. From (6.3),we 
an de�ne a sto
hasti
 pro
ess fS�g by�Xi=n�i�(V; x(i)):44



Chapter 6 ChapterObviously, E[S�+1℄ = S�. fS�g is a Martingale Pro
ess. Based on Martingale In-equality [9℄, P (sup��n j �Xi=n�(i)�(V; x(i))j � ") � lim�!1 EjS�j2"2 ;for all " > 0. As h(V ) and M are bounded, �(V; x) is bounded. Hen
e,P (sup��n j �Xi=n�(i)�(V; x(i))j � ") � k3P1i=n �i2"2 ;where k3 is a 
onstant. Moreover, P� �2� <1 implies thatlimn!1 1Xk=n�2k = 0:Therefore, limn!1P (sup��n j �Xi=n�(i)�(V; x(i))j � ") � limn!1 k3P1i=n �2i"2 :implies that limn!1P (sup��n j �Xi=n�(i)�(V; x(i))j � ") = 0:It satis�es A.3. A

ording to Kushner and Clark Lemma, it 
an be 
on
luded thatthe 
onvergen
e of FCL is almost sure. Besides, limn!1 V (n) 2 Ds, where Ds is thestable invariant set. 2Corollary 2 The 
onvergen
e 
ondition for the Jou's fuzzy 
ompetitive learning al-gorithm is that� Pk �2k <1 and� P1k=1 �k =1.In [6℄ and [16℄, the authors did not prove the 
onvergen
e of FCL is almost sure.Hen
e, the 
ondition on the step size is not provided. They only set the step size,�(t), equal to a small 
onstant whi
h 
annot guarantee that the 
onvergen
e is almostsure. 45



Chapter 6 Chapter6.3 Alternative Proof on the Convergen
e of Com-petitive LearningUsing the above theorems, it is possible to extend the result to prove that the 
onver-gen
e of 
ompetitive learning is almost sure. The me
hanism of 
ompetitive learningis stated as (2.1) by setting NI = fIg. In su
h 
ase,dV (t)dt = g(V (t)); (6.4)where gi(V (t)) = R
i(x� vi)f(x)dx. From (6.2),limm!1+ h(V (t);m) = g(V (t)): (6.5)Theorem 4 On
e the assumption of Lemma 1 are satis�ed, the 
onvergen
e of (6.4)is almost sure.(Proof) In the same approa
h as Lemma 1, the only need to prove is to show that(6.4) is stable. So what we need to prove is thatlimm!1+ Jm(V )is the Lyapunov fun
tion of (6.4). A

ording to (6.5),lim�t!0 limm!1+ Vh(t+�t) = lim�t!0Vg(t+�t);where Vh(s) and Vg(s) are the solutions of Jou's algorithm and CL with initial 
on-ditions Vh(t) = Vg(t). Moreover, as Jm(V ) is 
ontinuos for all m > 1,lim�t!0 limm!1+ Jm(Vh(t+�t)) = lim�t!0Jm(Vg(t+�t));and lim�t!0 limm!1+ Jm(Vh(t+�t)) = limm!1+ lim�t!0Jm(Vh(t+�t))Hen
elim�t!0 limm!1+ [Jm(Vg(t+�t)� Jm(Vg(t))℄ = limm!1+ lim�t!0 [Jm(Vh(t+�t)� Jm(Vh(t))℄ :So that,lim�t!0 limm!1+ [Jm(Vg(t+�t)� Jm(Vg(t))℄�t = limm!1+ lim�t!0 [Jm(Vh(t+�t)� Jm(Vh(t))℄�t< 0: (6.6)Hen
e ddt limm!1+ Jm(Vg(t)) < 0:The system (6.4) is stable and the 
onvergen
e of 
ompetitive learning is almost sure.And the proof is 
ompleted. 246



Chapter 6 Chapter6.4 Convergen
e of Soft SOMThe proof of 
onvergen
e of soft SOM is based on the appli
ation of Kushner-ClarkLemma (Lemma 1) and the following Lemma.Lemma 2 Consider a stable gradient system,� �J�V = ddtV (t) = h(V (t)); (6.7)where J is the lyapunov fun
tion of the system. The perturbated system is given byddtV (t) = h(V (t)) + �(t)P (V (t)): (6.8)If (i) limt!1 �(t) = 0 for all t > t0, and (ii) kP (V (t))k <1 then (6.8) 
an 
onvergeto stable state.(Proof) Let e(t) be the di�eren
e of the stable system and the perturbated system,e(t) is given by ke(t)k = k Z tt0 �(s)P (V (s))dsk:Sin
e �(t) > 0 and P (V (t)) is bounded,ke(t)k < M Z tt0 �(s)dswhere M = maxkP (V (t))k.dJdt = �J�V dVdt= �hT (V ) (h(V ) + �(t)P (V ))= �hT (V )h(V )� �(t)hT(V )P (V ) (6.9)as t!1, �(t)! zero. Hen
e dJdt < 0. As (6.7) is stable, (6.8) is also a stable systemas t0 is suÆ
ient large. And the proof is 
ompleted. 2 22Now, the me
hanism of SSOM2 
an be de�ned as following:vi(t+ 1) = vi(t) + �(t)24ymi (x;V (t)) + �(t) Xk2Ninfigymk (x;V (t))35 (x� vi(t)); (6.10)where V (t) = (v1(t); : : : ; v
(t))T , �(t) satis�es the assumptions of Lemma 1 and �(t)satis�es the assumptions of 2. 47



Chapter 6 ChapterCorollary 3 The 
onvergen
e of SSOM2 (6.10) is almost sure if �(t) and �(t) satisfythe assumptions of Lemma 1 and Lemma 2 respe
tively.(Proof) Denote h(V (t)) = (h1(V (t)); : : : ; h
(V (t)))Tand P (V (t)) = (p1(V (t)); : : : ; p
(V (t)))T ;where hi(V (t)) = ymi (x;V (t))(x� vi(t))and pi(V (t)) = Xk2Ninfigymk (x;V (t))(x� vi(t)):Based on Lemma 2, ddtV (t) = h(V (t)) + �(t)P (V (t))is a stable system as t is suÆ
iently large. Then using Lemma 1, SSOM1 
onvergesalmost sure. The proof is 
ompleted. 2In the same manner, if yi(x) is de�ned as the way in Nowlan's MLCL, the me
h-anism SSOM1 
an be written as thatvi(t+ 1) = vi(t) + �(t)24yi(x;V (t)) + �(t) Xk2Ninfigyk(x;V (t))35 (x� vi(t)); (6.11)the 
onvergen
e is again almost sure.Corollary 4 The 
onvergen
e of SSOM1 (6.11) is almost sure if �(t) and �(t) satisfythe assumptions of 2 and Lemma 1 respe
tively. 26.5 Convergen
e of SOMAs m ! 1+, (6.10) redu
es to the algorithm of SOM. Hen
e, the 
onvergen
e ofSOM 
an be proven using the same approa
h as in the proof of 
ompetitive learning.Without loss of generality, the 
onvergen
e property of SOM is stated below withoutproof.Corollary 5 The 
onvergen
e of SOM, where �(t) and �(t) satisfy the assumptionsof Lemma 2 and Lemma 1 respe
tively, is almost sure. 248



Chapter 7Con
lusionWe have presented a softing version of SOM and demonstrated the ordering propertythrough a number of simulations and appli
ations. As SSOM is an extension of SOMand soft 
ompetition (MLCL and FCL), the algorithms of SOM, MLCL and FCLwere studied. (Note that the motive of using FCL is due to its soft 
ompetitionnature but not its fuzzy ba
kground.) Based on the relationship between SOM and
ompetitive learning, a simple s
heme of modi�
ation of MLCL and FCL is proposedto form SOM-like MLCL (SSOM1) and SOM-like FCL (SSOM2).The appli
ation of SSOM in 
luster analysis has been presented. It is shown thatSSOM1is unable to reveal the intrinsi
 stru
ture of a bat
h of data although MLCLitself is outperformed in vowel data 
lassi�
ation. On the other hand, although SOMis poorly performed in vowel data 
lassi�
ation, SOM manifests two advantages: (i)The values of hidden-output weight are between zero and one. (ii) Lo
alization e�e
tis shown in the hidden-output weights whi
h 
an help to sket
h the neighborhoodrelationship amongst 
lusters of labeled data.SSOM is also applied to redu
e the 
hannel noise e�e
t in data 
ommuni
ation.The method of the 
ombination of topologi
al map and QAM in data transmissionhas been proposed by C.S.Leung [24℄ [25℄. Here, we follow the steps Leung proposed.It is found that SSOM1 is better noise tolerated than SSOM2 and SOM when the
hannel noise level is high. When the 
hannel noise level is low, SOM is the best.Note that the performan
e of SOM, SSOM1 and SSOM2 rely on the shapes of theorganized maps. The results reported in this thesis is just an example.Apart from the development of the model SSOM, this thesis provides 
ertaintheoreti
al results supplementary to the model of SOM. In the Appendix A, we followthe approa
h of Bouton and Pages [4℄ to prove that the 
onvergen
e of 1D SOM isalmost sure even if the neighborhood set size is not �nite. Besides, an energy fun
tionis 
onstru
ted for the 1D SOM when the input data distribution is uniform. Hen
e,the 
onvergen
e of 1D SOM is globally almost sure if the input data distribution isuniform. 49



Chapter 7 ChapterThe 
onvergen
e of higher dimension SOM, SSOM, FCL and CL has been dis-
ussed in 
hapter six. Denote �(k) to be the step size, we proved that if P1k=1 �(k) =1 and P1k=1 �2(k) < 1, then the 
onvergen
e of FCL and CL are globally almostsure. In 
ase of SOM and SSOM, we prove that the 
onvergen
e are lo
ally almostsure.7.1 Limitations of SSOMThere are three limitations in the appli
ation of SSOM in 
lustering:� Universal Approximation In Chapter four, although the 
apability of SSOMin revealing the topologi
al relationship has been demonstrated, an assumptionon the approximation 
apability has been made. We assume that the hybridnetwork shown in Figure(4.1) is universal approximators. In fa
t, this assump-tion 
an only be valid for the 
ases when SSOM1 and SOM are implemented asthe input-hidden layer. For SSOM1, the hybrid network behaves the same asRadial Basis Fun
tion net. The output is the summation of radial basis fun
-tion (3.5). Hen
e the universal approximation property is guarantee [47℄. ForSOM, as the output of ea
h of the hidden unit is re
tangular, so it is possibleto prove the universal approximation property using the same te
hnique as in[47℄. As a result, both SSOM1 and SOM implemented hybrid networks areuniversal approximators. However, in so far, there is no proof on the universalapproximation property of using (3.7) as basis fun
tion, for the best knowledgeof the author. The 
on
lusion that we made in Chapter four is therefore basedon the assumption that the hybrid network, shown in Figure(4.1), implementedby SSOM2 
an be an universal approximator.� Ordering Property In this thesis, we have not presented any theoreti
al proofon the ordering property of SSOM and SOM. The ordering property is solelydemonstrated by simulation examples and appli
ation examples. Be aware thatall the examples shown are in the dimension of two.� Computational Speed As the 
ompetition me
hanism is soft, the time 
on-sumed for building a map is mu
h longer than using the 
onvention winner-take-all rule. The reason 
an be 
on
eived as following. Suppose the map sizeis n� n and eight-neighbor is implemented. In 
ase of SOM, ignoring the timefor �nding the winner and the identi�
ation of neighborhood, the number ofnode to be updated is nine. Assume that the NIF is a step fun
tion with valueone, no more mathemati
al operation. In 
ase of SSOM, the number of node tobe updated is n�n. For ea
h of the node, eight addition-operation are required.As a result, 8n2 extra addition-operation are needed whi
h make the trainingtime for SSOM is mu
h longer than SOM.50



Appendix Chapter7.2 Further Resear
hA

ording to the last se
tion, it is obvious that one possible further resear
h is to do abit theoreti
al analysis on the property of SSOM. Besides, using SSOM in 
onstru
tionof relational matrix, we have to de�ne the training in two-phases fashion. The hidden-output weights are determined after the 
lustering is �nished. It 
omes out a problemwhen the number of data is very large. In this 
ase, an on-line training seems to bene
essary.

51



Appendix AProof of Corollary 1Essentially, this Appendix is devoted to the proof of Corollary 1. The proof of Corol-lary is in fa
t an impli
ation of Corollary 1. The proof of Corollary 1 is divided intothree se
tions, from the se
ond se
tion to the forth se
tion a

ording to the distribu-tion dis
ussed: uniform, log
on
ave and loglinear. When the input data distributionis uniform, an energy fun
tion 
an be 
onstru
ted by using Krasovskii method toshow that the 
onvergen
e is global. The extension on the re
ent results are listedfollowing for 
larity:� Extension of Bouton-Pages results [4℄ [8℄ on the 
onvergen
e of 1-D Map to the
ase when the size of neighborhood is any large (Corollary 1).� Simplifying the proof of Bouton-Pages Theorem [4℄ on the log-
on
ave inputdistribution 
ase by introdu
ing the Trushkin Lemma [43℄ (Corollary 1).� Extension of Bouton-Pages [4℄ result on uniform input distribution by 
on-stru
tion an obje
tive fun
tion using Krasovskii method [18℄. Hen
e, the global
onvergen
e of SOM 
an be guaranteed.This Appendix is 
omposed of four se
tions. In the �rst se
tion, the mean updateof the SOM me
hanism is derived. Following the same te
hnique as in Bouton-Pages paper [4℄, the 
onvergen
e proof on the uniform, log
on
ave and loglinear inputdistribution 
ases are presented in se
tion two. In se
tion two, two new results arealso presented as well: (i) the size of neighborhood 
an be any large and (ii) the
onvergen
e of one dimensional SOM is globally almost sure. The 
ase of log
on
aveinput distribution and loglinear distribution are proven in se
tion three and fourrespe
tively.A.1 Mean Average UpdateSin
e input x is a random variable, the updating of V (t) is indeed a sto
hasti
 re
ur-sive algorithm. Suppose that the distribution of x is f(x), the mean average update52



Appendix A Chapteris that E[V (t+ 1)℄ = V (t) + �(t) Z 10 �(x; V )[xu� V (t)℄f(x)dx;where �(x;M) = 
Xk=1�k(x(t))�k:Here �k(x(t)) is an indi
ator fun
tion de�ned as�k(x(t)) = ( 1 if kx(t)� vk(t)k = minikx(t)� vi(t)k0 otherwise :Sin
e [0; 1℄ = S
k=1 
k,E[V (t+ 1)℄ = V (t) + �(t) 
Xk=1 Z
k �k[xu� V (t)℄f(x)dx; (A.1)where f(x) is the probability density fun
tion of x. And the algorithm of SOM 
analso be rewritten asV (t+ 1) = V (t) + �(t)[h(V (t))� �(V (t); x(t))℄; (A.2)where h(V ) = 
Xk=1 Z
k �k[xu� V (t)℄f(x)dx (A.3)and �(V (t); x(t)) = �(x; V )[x(t)u� V (t)℄� 
Xk=1 Z
k �k[xu� V (t)℄f(x)dx: (A.4)Furthermore, denote h(V ) = (h1(V ); h2(V ); : : : ; h
(V ))T whereh1(V ) = �0 Z
1(x� v1)f(x)dx+ �1 Z
2(x� v1)f(x)dx+ : : : (A.5)+ �l Z
l+1(x� v1)f(x)dxh2(V ) = �1 Z
1(x� v2)f(x)dx+ �0 Z
2(x� v2)f(x)dx+ : : : (A.6)+ �l Z
l+2(x� v2)f(x)dx: : :53



Appendix A Chapterhi(V ) = �l Z
i�l(x� vi)f(x)dx + : : :+ �1 Z
i�1(x� vi)f(x)dx (A.7)+ �0 Z
i(x� vi)f(x)dx+ �1 Z
i+1(x� vi)f(x)dx+ : : :+ �l Z
i+l(x� vi)f(x)dx: : :h
(V ) = �l Z

�l(x� v
)f(x)dx+ �l�1 Z

�2(x� v
)f(x)dx+ : : : (A.8)+ �0 Z

(x� v
)f(x)dx:Hen
e h(V ) 
an be rewritten ash(V ) = (�0��1)h(0)(V )+(�1��2)h(1)(V )+: : :+(�l�1��l)h(l�1)(V )+�lh(l)(V ); (A.9)where h(k)(V ) = (h(k)1 (V ); h(k)2 (V ); : : : ; h(k)
 (V ))T for all 1 � k � l, andhi(k)(V ) = 8>>>>>>>>>><>>>>>>>>>>: R vi+k+vi+k+120 (x� vi)f(x)dx 81 � i < k + 1R vi+k+vi+k+12vi�k+vi�k�12 (x� vi)f(x)dx 8k + 1 � i � 
� k � 1R 1vi�k+vi�k�12 (x� vi)f(x)dx 8
� k � 1 < i � 
 : (A.10)We obtain the asso
iated di�erential equationddtV = h(V ): (A.11)for SOM algorithm and the invariant set DC = fV j8V 2 DA; h(V ) = 0g.A.2 Case 1: Uniform DistributionSubstitute f(x) = 1 into (A.10), we geth(0)(V ) = �18�2666666664 (v1 + v2)(v2 � 3v1)(v1 + v3)(v1 � 2v2 + v3)(v2 + v4)(v2 � 2v3 + v4): : :(v
�2 + v
)(v
�2 � 2v
�1 + v
)(v
�1 + v
)(2 + v
�1 � 3v
) 3777777775 : (A.12)54



Appendix A ChapterWhen k = 1; 2; : : : ; l,h(k)i (V ) = �18� (vi+k + vi+k+1 � 4vi) (vi+k + vi+k+1) (A.13)for 1 � i � k; h(k)i (V ) = �18� (vi+k + vi+k+1 � vi�k�1 � vi�k) (A.14)� (vi+k + vi+k+1 � 4vi + vi�k�1 + vi�k)for k + 1 � i � 
 � k � 1 andh(k)i (V ) = �18� (2� vi�k�1 � vi�k) (2 � 4vi + vi�k�1 + vi�k) (A.15)for 
� k � i � n. Re
all thath(V ) = lXk=1(�k�1 � �k)h(k)(V ):Taking partial derivative of (A.13) to (A.15), it 
an no diÆ
ult to 
he
k that �h(k)(V )�Vis negative de�nite whenever �i � �i+1 for all 0 � i < l and the fa
t that81 � i � k qi+k+1 � qi�k > qi+k+1 � vi8k+ 1 � i � 
� k � 1 qi+k+1 � qi�k = (qi+k+1 � vi) + (vi � qi�k)8
� k � i � 
 qi+k+1 � qi�k > (vi � qi�k); (A.16)for all 0 � k � l. Hen
e �h(V )�V is stri
tly negative de�nite whenever l > 0. Let us
onstru
t an s
alar fun
tion J(V ) = hT (V )h(V ). Obviously, it is greater than zeroand J(V ) = 0 when h(V ) = 0. Taking the derivative of J(V ) with respe
t to t,ddtJ(V ) = hT (V )24 �h(V )�V !T +  �h(V )�V !35h(V ) (A.17)Sin
e �h(V )�V is stri
tly negative de�nite, ddtJ(V ) � 0 and equality holds if and onlyif h(V ) = 0. Therefore it 
an be 
on
luded that J(V ) is a Lyapunov fun
tion for(A.11). In other word, (A.11) is a gradient system minimizing J(V ) when f(x) = 1.Similar to 
ase 1, there exists Ds � DC su
h that limt!1 V (t) = V � where V � 2 Ds �DC . Furthermore, Ds is asymptoti
ally stable in large. Using the same argument asBouton and Page, the 
onvergen
e of SOM is globally almost sure in the sense ofKushner and Clark. And the proof is 
ompleted. 2The 
onstru
tion of J(V ) is a
tually based on Krasovskii method [18℄. Otherapproa
hs to the proof on this 
ase have been done by a number of resear
hers [4℄ [8℄[21℄ [28℄ but all of them only show that the stability is lo
al. Moreover, they assumethat �i = 1 for all i = 0; 1; : : : ; l� 1 ex
ept [28℄. In [28℄, they prove only that �0 > �1and �i = 0 for all i � 2. 55



Appendix A ChapterA.3 Case 2: Log
on
ave DistributionTo visualize the proof, we 
onsider a smaller size map where 
 = 5. Hen
e,h(V ) = (h1(V ); h2(V ); h3(V ); h4(V ); h5(V ))T ; (A.18)where hi(V ) = Z
i(x� vi)f(x)dx; (A.19)for all i = 1; 2; 3; 4; 5: Re
all that 
1 = h0; v1+v22 �,
k = hvk�1+vk2 ; vk+vk+12 � for all2 � k � 
� 1 and 

 = hv
�1+v
2 ; 1i. Hen
eh1 = h1(v1; v2; v3);h2 = h2(v2; v3; v4);h3 = h3(v1; v2; v3; v4; v5);h4 = h4(v2; v3; v4);and h5 = h5(v3; v4; v5):Taking the partial derivative of equation(A.18) with respe
t to V , we get the Ja
obianmatrix �h�V =  �hi�vj!5�5= 266666664 �h1�v1 �h1�v2 �h1�v3 0 00 �h2�v2 �h2�v3 �h2�v4 0�h3�v1 �h3�v2 �h3�v3 �h3�v4 �h3�v50 �h4�v2 �h4�v3 �h4�v4 00 0 �h5�v3 �h5�v4 �h5�v5 377777775 (A.20)where �h1�v1 = � Z (v2+v3)=20 p (x) dx�h1�v2 = �h1�v3 = 12 �v2 + v32 � v1� p�v2 + v32 ��h2�v2 = � Z (v3+v4)=20 p (x) dx�h2�v3 = �h2�v4 = 12 �v3 + v42 � v2� p�v3 + v42 �56



Appendix A Chapter�h3�v1 = �h3�v2 = 12 �v1 + v22 � v3� p�v1 + v22 ��h3�v3 = � Z (v4+v5)=2(v1+v2)=2 p (x) dx�h3�v4 = �h3�v5 = 12 �v4 + v52 � v3� p�v4 + v52 ��h4�v2 = �h4�v3 = 12 �v2 + v32 � v4� p�v2 + v32 ��h4�v4 = � Z 1(v2+v3)=2 p (x) dx�h5�v3 = �h5�v4 = 12 �v3 + v42 � v5� p�v3 + v42 ��h5�v5 = � Z 1(v3+v4)=2 p (x) dxTo justify the stability of the equilibrium points, we put M0 into the Ja
obian matrixat those equilibrium points, �h�V . A

ording to Trushkin Lemma (Theorem 5), it 
anbe easily shown that �h�V is stri
tly diagonal dominant matrix with negative diago-nal elements. Based on the Gers
hgorin's Theorem (see se
tion 7.3 of [12℄), it 
anbe shown that all the eigenvalues of �h�V are stri
tly in the negative 
omplex plane.Therefore, it 
an 
on
lude that all the equilibrium points are asymptoti
ally stableby using Lyapunov linearization method [18℄. Hen
e the proof is 
ompleted. 2Without loss of generality, the proof 
an be extended to NI in any size by using thefollowing Trushkin Lemma [43℄:Theorem 5 (Trushkin Lemma[43℄) If a 
ontinuous fun
tion f(x) is de�ned on a
losed interval [a; b℄, where either �1 � a < b < +1 or �1 < a < b � +1,f(x) > 0 for every x 2 (a; b), f(�1) = f(+1) = 0 andZ0 = Z ba f(x)dx < +1;Z1 = Z ba xf(x)dx < +1;then if log f(x) is a 
on
ave fun
tion on the interval (a; b) thenZ0 > f(a)(Z1=Z0 � a) + f(b)(b� Z1=Z0):57



Appendix A ChapterA.4 Case 3: Loglinear DistributionWhile the distribution is loglinear, only lo
al stability is a
hieved. The proof isa

omplished by substitution f(x) = 
0esxinto equation (A.11), where 
0 = hR 10 exp(sx)dxi�1 and s 6= 0. For simpli
ity, we onlyprove the 
ase that 
 = 5 and l = 1. However, the proof 
an easily be extendedto whatever 
 > 0 and l > 1. Before analysis the behavior of (A.11) for loglineardistribution, let us dedu
e several equations whi
h are useful for the proof. First ofall, 
onsider that h(a; b; v) = 
o Z ba (x� v) exp(sx)dx: (A.21)Note that (A.21) is hi if we put a = qi�k, b = qi+k+1 and v = vi. Di�erentiate (A.21)with respe
t to v, a and b, �h�v = 
os (exp(sa)� exp(sb)) ;�h�a = �
o(a� v) exp(sa);and �h�b = 
o(b� v) exp(sb):Integrating (A.21) by part and set h(a; b; v) = 0, the solution, v, is given byv = b exp(sb)� a exp(sa)exp(sb)� exp(sa) � 1s : (A.22)With the above equalities, we 
an pro
eed to the proof. In order to illustrate 
learlythe step of proof, we set 
 = 5 and 0 < v1(0) < v2(0) < v3(0) < v4(0) < v5(0) < 1,_v1 = 
0 Z q20 (x� v1) exp(sx)dx;_v2 = 
0 Z q30 (x� v2) exp(sx)dx;_v3 = 
0 Z q4q1 (x� v3) exp(sx)dx;_v4 = 
0 Z 1q2 (x� v4) exp(sx)dx;_v5 = 
0 Z 1q3 (x� v5) exp(sx)dx:58



Appendix A ChapterThe Ja
obian matrix at the equilibrium point, V0, is that�h�V jV=V0 = 266666664 �h1�v1 �h1�v2 �h1�v3 0 00 �h2�v2 �h2�v3 �h2�v4 0�h3�v1 �h3�v2 �h3�v3 �h3�v4 �h3�v50 �h4�v2 �h4�v3 �h4�v4 00 0 �h5�v3 �h5�v4 �h5�v5 377777775v=v0where �h1�v1 = exp(sq0)� exp(sq2)s ;�h1�v2 = �h1�v3 = 12(q2 � v1) exp(sq2);�h2�v2 = exp(sq0)� exp(sq3)s ;�h2�v3 = �h2�v4 = 12(q3 � v2) exp(sq3);�h3�v1 = �h3�v2 = �12(q1 � v3) exp(sq1);�h3�v3 = exp(sq1)� exp(sq4)s ;�h3�v4 = �h3�v5 = 12(q4 � v2) exp(sq4);�h4�v2 = �h4�v3 = �12(q2 � v4) exp(sq2);�h4�v4 = exp(sq2)� exp(sq5)s ;�h5�v3 = �h5�v4 = �12(q3 � v5) exp(sq3);�h5�v5 = exp(sq3)� exp(sq5)s :A

ording to Theorem 1, 0 < v1(t) < v2(t) < v3(t) < v4(t) < v5(t) < 1 for all t � 0.As s 6= 0, it is found that �hi�vi < 0 for all 1 � i � 5 and �hi�vj � 0, where i 6= j. Inparti
ular, the matrix is a band matrix whi
h looks like26666664 � + + 0 00 � + + 0+ + � + +0 + + � 00 0 + + � 37777775 :59



Appendix A ChapterWhere '-' denotes the element is negative while '+' denotes a positive element. It 
anthen show that the sum of ea
h row is negative. It is stated as following lemma.Lemma 5: If f(x) is loglinear, then P5j=1 �hi�vj < 0 for all 1 � i � 5.(Proof) Before pro
eed to the proof of Lemma 5, we need the following three Lemma.Lemma A1: ey � 1 � y � 0 for all y 2 (�1;+1). Equality holds if and only ify = 0.(Proof) Set f(y) = ey�1�y, the derivative of f(y) with respe
t to y is that dfdy = ey�1.Sin
e dfdy = 0 if and only if y = 0. As dfdy > 0, f(0) is a lo
al minimum. Hen
e it isglobal minimum. As a result, f(y) � 0 for all y and f(y) = 0 if and only if y = 0.Hen
e the proof is 
ompleted. 2Lemma A2: For all k 6= 0 and a 2 (0; 1℄,g1(a) = 1 � 2ekak + aeka � 1 < 0:(Proof) Rewrite g1, we obtain thatg1(a) = (1� 2eka)(eka � 1) + kak(eka � 1) :First we 
onsider the 
ase k > 0. Under this 
ase, k(eka � 1) > 0 for all a 2 (0; 1℄.A

ording to Lemma A1,(1� 2eka)(eka � 1) + ka = �(eka � 1)2 � eka(eka � 1) + ka< �(eka � 1)2 � ekaka+ ka= �(eka � 1)2 � (eka � 1)ka= �(eka � 1)(eka � 1 + ka)< 0: (A.23)Hen
e g1(a) < 0 if k > 0. Next we 
onsider k < 0. Similar, we get that k(eka�1) > 0for all a 2 (0; 1℄. Again, a

ording to Lemma A1,(1� 2eka)(eka � 1) + ka < (1� 2eka)(eka � 1) + (eka � 1)= 2(1 � eka)(eka � 1)< 0; (A.24)60



Appendix A Chapterfor all a 6= 0. Therefore g1(a) < 0 for all a 2 (0; 1℄. The proof is 
ompleted. 2Lemma A3: For all k 6= 0 and 0 < a < b < 1,g2(a; b) = (a� b)ek(a+b)ekb � eka � ekbk + 2ekak < 0:(Proof) Similar to the proof of Lemma A2, we 
onsider two 
ases, k > 0 and k < 0.After manipulation on g2(a; b), we get thatg2(a; b) = �k(b� a)ek(a+b) + eka(ekb � eka)k(ekb � eka) � ekb � ekak= �ek(a+b)k(ekb � eka) nek(a�b) � 1 + k(b� a)o� ekb � ekak : (A.25)As b > a > 0 and from Lemma A1, g2(a; b) < 0 for all k > 0. Next, we 
onsider the
ase that k < 0. When k < 0, ek(a+b) > 0. k(ekb � eka) > 0 and ekb�ekak wheneverb > a. A

ording to Lemma A1, ek(a�b) � 1 + k(b � a) > 0. Therefore, g2(a; b) < 0when k > 0. As a result, g2(a; b) < 0 for all k 6= 0 and the proof is 
ompleted. 2(Proof of Lemma 5) Adding all the elements within ea
h row, and put the value ofv1; : : : ; v5 derived from (A.22), we get the following equalities.5Xj=1 �h1�vj = esq0 � esq2s � (q2 � v1)esq2= 1� 2esq2s + q2esq2 � 1 (A.26)5Xj=1 �h2�vj = esq0 � esq3s � (q3 � v2)esq3= 1� 2esq3s + q3esq3 � 1 (A.27)5Xj=1 �h3�vj = esq1 � esq4s + (q1 � v3)esq1 � (q4 � v3)esq4= 2s(esq1 � esq4) (A.28)61



Appendix A Chapter5Xj=1 �h4�vj = esq2 � esq5s + (q2 � v4)esq2= (q2 � q5)es(q5+q2)esq5 � esq2 � esq5s + 2esq2s (A.29)5Xj=1 �h5�vj = esq3 � esq5s + (q3 � v5)esq3= (q3 � q5)es(q5+q3)esq5 � esq3 � esq5s + 2esq3s (A.30)A

ording to Lemma A2 and A3, 5Xj=1 �h1�vj < 0;5Xj=1 �h2�vj < 0;5Xj=1 �h4�vj < 0;and 5Xj=1 �h5�vj < 0:Moreover, (esq1 � esq4) > 0 if s < 0 and (esq1 � esq4) < 0 if s > 0. P5j=1 �h3�vj < 0.Hen
e, 5Xj=1 �hi�vj < 0for all 1 � i � 5 if f(x) is loglinear and the proof is 
ompleted.The general 
ase of Lemma 5 is stated as following lemma.Lemma 5': If f(x) is loglinear, then P
j=1 �hi�vj < 0 for all 1 � i � 
.In addition to the fa
t that the diagonal elements of the matrix are negative, it is
on
luded that all the eigenvalues of Ja
obian matrix �h(V )�V are lo
ated in the negativehalf plane. So, the equilibrium of (A.11) is again asymptoti
ally stable. Hen
e theproof of Corollary 1 is 
ompleted. 62



Appendix BDi�erent Senses of neighborhoodRe
ently, many resear
hers have tried to explore the idea of neighborhood intera
tionto other 
lustering algorithm. As a result, they brought out di�erent de�nitions ofneighborhood and neighborhood intera
ting fun
tions (NIF) other than Kohonen'soriginal de�nition. As the model dis
ussed in this thesis applies the 
on
ept of neigh-borhood intera
tion, it is ne
essary to 
larify what sense of neighborhood is beingapplied. In general, the senses of neighborhood 
an be divided into two 
lasses:stati
 and dynami
.B.1 Stati
 neighborhood: Kohonen's senseIt is the simplest sense of neighborhood whi
h is de�ned by T.Kohonen for his SOMmodel. This de�nition 
an be stated as follows. For simpli
ity, only 1D Map will be
onsidered but it does not loss the generality.De�nition 1 (Kohonen [21℄) The neighborhood intera
ting set (NIS) is de�ned asNI = fI � 1; I; I + 1g for I is not at the boundary. While I = 1, NI = f1; 2g. WhileI = N , NI = fN � 1; Ng. The NIF, �i(k) is de�ned as follows:�i(k) = ( 1 if ji� kj � 10 otherwise: (B.1)Apart from �xing the fun
tion as a step fun
tion, Kohonen also de�ned the NIF inGaussian shape:De�nition 2 (Kohonen [21℄) The NIS is de�ned as De�nition 1 but the NIF, �i(k)is de�ned by �i(k) = exp(�(i� k)2).In both of the above de�nitions, their 
ommon feature is that their de�nitions on theneighborhood intera
ting set are independent of the Eu
lidean distan
e between theinput ve
tor x and the weight ve
tor. 63



Appendix B ChapterB.2 Dynami
 neighborhoodUsing above de�nitions, some resear
hers �nd that that stati
 neighborhood is not
exible enough to form a good data manifold for some spe
ial type of input data setsu
h as sphere data. Therefore some resear
hers attempted to de�ne neighborhoodin a dynami
 sense [3℄ [29℄ [32℄. In these 
ases, the neighborhood set of a SOM areupdated after a number of training 
y
les.B.2.1 Mou-Yeung De�nitionIn [32℄, the neighborhood set is update after every predetermined number of iterations.The neighborhood relationship is 
onstru
ted using the following de�nition:De�nition 3 (Mou and Yeung [32℄) Node i and node j are neighborhood if andonly if kvi � vjk2 < kvi � vkk2 + kvk � vjk2, for all k 6= i; j. And the NIF �i(k) isde�ned by �i(k) = ( 1 i and k are neighbor0 otherwise: (B.2)Instead of de�ning the neighborhood in term of the distan
e amongst vis,B.2.2 Martinetz et al. De�nitionBezdek et al. [3℄ and Martinetz et al. [29℄ de�ned the neighborhood set in term ofdi�eren
e between the lo
ation of input x and the lo
ation of weight ve
tors vis. Theidea is that. On
e a data ve
tor x is presented, the winner is the one 
losest to x, saynode I. Then the �rst neighborhood of node I is the se
ond 
losest to x. Then these
ond neighborhood of node I is the third 
losest and et
. Under su
h 
ir
umstan
e,ea
h neighbor of I will be marked with a value 
alled neighborhood ranking value.The de�nition of neighborhood ranking is de�ned as following:De�nition 4 (Neural Gas [29℄) Consider that v�1 be the ve
tor being 
losest tox, then the neighborhood set is de�ned as fv�1; v�2; : : : ; v�
g, where v�2 is the se
-ond 
losest to x. The neighborhood ranking value is de�ned as a fun
tion of �i,�i(�i(x; V )) = e��i=�.As �i is a fun
tion of x and V , �i is also a fun
tion of x and V . Besides, �i < �j ifi > j. If kx� vik ! 1, �i is still non-zero.B.2.3 Tsao-Bezdek-Pal De�nitionSimilarly, Tsao et.al. [44℄ de�ned the neighborhood sense in the same manner:64



Appendix B ChapterDe�nition 5 (Tsao-Bezdek-Pal [44℄) Consider that v�1 be the ve
tor being 
losestto x, then the neighborhood set is de�ned as fv�1; v�2 ; : : : ; v�
g. The NIF is de�nedas a fun
tion of �i, �i(�k) = ( 1 If k = 1.� otherwise, (B.3)where � is a number smaller than 1.In order to visualize the similarity and di�eren
e among all these de�nitions of neigh-borhood, let us have a simple example.B.3 ExampleSuppose that the a 1D map 
onsists of six nodes, Figure B.1. The input data x isindi
ated by the bla
k solid 
ir
le while vis are indi
ated by hollow 
ir
les. In thisexample, v4 is obviously the 
losest to x. hen
e, no matter using whi
h de�nition, node4 is the winner. However, based on di�erent senses of neighborhood, the neighborhoodset of node 4 are di�erent.In the sense of Kohonen, N4 = f3; 4; 5g. In the sense of Mou-Yeung, N4 = f2; 4; 5g.In the sense of Neural Gas and Tsao-Bezdek-Pal, N4 = f4; 2; 5; 6; 1; 3g, where thelo
ation re
e
ts the ranking. But, due to their di�erent in the de�nitions of NIF, thevalues of �i(:) are di�erent. The values are listed on the table.h hh hh hx v2 v3v4v5 v6xv1 Figure B.1: An example of 1D Map.De�nition I �1 �2 �3 �4 �5 �6Def. 1 4 0 0 1 1 1 0Def. 2 4 e�9 e�4 e�1 1 e�1 e�4Def. 3 4 0 1 0 1 1 0Def. 4 4 e�4 e�1 e�5 1 e�2 e�3Def. 5 4 � � � 1 � �Table B.1: De�nition of NIF �i(x) when x is presented. � is a small number.To 
ontrast the di�erent between di�erent de�nitions, the neighborhood intera
t-ing values are shown in Figure(B.2). 65



Appendix B Chapter

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(a)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(b)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(c)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(d)

Figure B.2: The neighborhood intera
ting fun
tions de�ned by (a) uniform fun
tion,(b) Gaussian fun
tion, (
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Appendix B ChapterB.4 Dis
ussionA
tually, there are many ways to 
ombine the 
on
ept of neighborhood intera
tion tothe algorithms of MaximumLikelihood Competitive Learning and Fuzzy CompetitiveLearning. Figure B.3 indi
ates some possible extensions. However, not all of themare 
onsidered in this thesis in order to implement the softing version of SOM.
MLCLFCLCLSOMSOMHardBezdek Def.2 Def.4SSOMSSOMSSOMSSOMDef.1 Def.3 fIgNeuralGasMou-Yeung

RBF Figure B.3: The suggested 
ombinations.The reasons 
an be explained as following. The senses of Mou-Yeung and NeuralGas are not 
onsidered sin
e both senses of neighborhood are de�ned in a dynami
way so that in some 
ases the global information of neighborhood may be lost. Forexample, under Mou-Yeung's de�nition, the map has to be 
onstru
ted time aftertime. There will be a serious problem when the data set 
onsists of two isolated
lusters whi
h are separated far apart: The map will be separated into two. In this
ase, it 
annot identify the neighborhood relationship between 
lusters. Under NeuralGas's de�nition, the situation is even worst sin
e the neighborhood relationship istotally lost. Besides, the 
ompuatational 
ost on the 
onstru
tion of neighborhoodsets for ea
h of the neuron is also very high. So, in the design of , we de�ne the senseof neighborhood as one of the Kohonen's de�nition, Def.1.67
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Appendix DQuadrature Amplitude ModulationQuadrature amplitude modulation (QAM) is one of the te
hnique for multisymboltransmission. In one of the simulated experiment, this modulation te
hnique is 
om-bined with the 
lustering algorithm proposed { the Soft Self Organizing Map { todemonstrate the gain due to topologi
al order. Here we give only a very brief intro-du
tion to QAM. For further detail, please refers to [40℄.D.1 Amplitude ModulationQAM is essentially an extension of amplitude modulation (AM) whi
h is used inradio broad
asting. The prin
iple 
an be des
ribed as following. Suppose that thebroad
ast station would like to transmit a spee
h signal, say s(t), to the audien
e.Based on amplitude modulation te
hnique, the broad
ast signal will be formed bymultiplying the spee
h signal with a 
arrier wave, say 
(t) = sin(w
t), in the wayas that s(t)
(t). In the re
eiver side, this spee
h signal is re
onstru
ted by using therelation s(t) = RT s(t)
(t)
(t)dt. Figure(D.1) show a simple example. The spee
hsignal is low frequen
y sinusoidal fun
tion. It is modulated through a high frequen
y
arrier wave. The resultant broad
ast signal is shown in Figure(D.1
).D.2 QAMQAM extends the idea of amplitude modulation and provides a simple modulationmethod for the transmission of digital signal. Imagine that a sequen
e of binarysignal, say 00101101, is going to be sent out. We 
an treat this sequen
e in the sameway as spee
h. Then using the amplitude modulation te
hnique to form the broad
astsignal. Suppose the 
arrier wave is also 
(t) = sin(200t), the modulation steps 
anbe des
ribed as following:� f0 0 1 0 1 1 0 1g ! s(t) = f�1 � 1 1 � 1 1 1 � 1 1g:,74
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(c) Transmitted SignalFigure D.1: A simple example showing the idea of amplitude modulation: (a) the
arrier wave 
(t) = sin(200t), (b) the spee
h signal s(t) = sin(20t) and (
) thebroad
ast signal (2 + sin(20t))sin(200t).
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Appendix D Chapter� the amplitude of the broad
ast signal is f1 1 3 1 3 3 1 3g.Obviously, it is a Bi-level amplitude modulation sin
e ea
h digit 
an represent twopossible 
ases only. Figure(D.2) shows the waveforms of the 
orresponding signalsduring modulation.
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(c) Broadcast SignalFigure D.2: Transmission of sequen
e of binary signal using amplitude modulation:(a) the 
arrier wave 
(t) = sin(200t), (b) the binary signal and (
) the broad
astsignal.Instead of modulating the signal bit by bit, it is possible to modulate the sig-nal two-bit by two-bit. In the above example, the transmission sequen
e be
omesf00 10 11 01g. As the possible event generated by two-bits are four, 00, 01, 10 and11 respe
tively, two alternative s
hemes 
an be applied. The �rst one is Four-levels
heme. A

ording to the following en
oding s
heme:� 00!�1:5,� 01!�0:5,� 10! +0:5,� 11! +1:5, 76
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e of binary signal using amplitude modulation:(a) the 
arrier wave 
(t) = sin(200t), (b) the en
oded signal and (
) the broad
astsignal.
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Appendix D Chapterwe obtain the waveforms as Figure(D.3).An alternative is to modulate the signal based on QAM. Figure(D.4) shows thestru
ture of a QAM transmitter.
"!# "!# hh "!# xx -.���� 6?- +��ai 
osw
t

sinw
t QAMoutputBu�erandEn
oder biBinaryinput
Figure D.4: Simple diagram of a QAM transmitter.Instead of using single sinusoidal wave as the 
arrier wave, the 
arrier wave of QAMis 
omposed of two orthogonal sinusoidal waves, 
osw
t and sinw
t. The broad
astsignal is then the superposition of two modulated sinusoidal waves, ai
osw
t+bisinw
t.Similar to 4-level method, we assign ea
h of the four possible signal 
ombinations byan en
oding s
heme:� 00! (a1 = �1; b1 = �1),� 01! (a1 = �1; b1 = +1),� 10! (a1 = +1; b1 = �1),� 11! (a1 = +1; b1 = +1).Figure(D.5) shows the 
orresponding waveforms.It is useful to represent en
oded signal in a two-dimensional diagram by lo
at-ing the various points (ai; bi). The signal points are said to be represent a signal
onstellation. Figure(D.6) shows the signal 
onstellations of the above QAM.Suppose that ai and bi 
an be assigned to be either one of f�1:5 �0:5 +0:5 +1:5g,we 
an design a 16-symbol QAM 
onstellation, Figure(D.7).As the lo
ations of the waveforms are in regular mesh, it is possible to assignthese waveforms to a organizing map whi
h is de�ned in the same mesh stru
ture.Figure(D.8) shows the idea of this assignment. This assignment method is the waythat we apply to vowel data transmission.78
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Figure D.5: Transmission of sequen
e of binary signal using QAM: (a) the 
arrierwave 
(t) = sin(200t), (b) the en
oded signal (solid line is the signal of a(t) while thedash-dot line is the signal of b(t) and (
) the broad
ast signal.).x xx x 
osw
tsinw
t1-1-1 1Figure D.6: The signal 
onstellation of the above QAM s
heme.79
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onstellation of the 16-symbol QAM s
heme.

Input Data Space

Signal SpaceFigure D.8: The idea of 
odeve
tor waveform assignment.80
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