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PREFACE 

In the recent decade, the research in neural network came into 

a new era. Some researchers proposed new models of neura l networks . 

Some enhanced the old ones with new structures, in order to reduce 

the complexity of the networks. New learning algorithms were 

proposed and investigated. Centers related to neural network 

research were set up in many university across the United State and 

European . Companies were also established for neural network 

research, development and application. 

So far, a number of neural networks has been well developed 

and applied. The Multi-Layer Perceptron with Back Propagation 

learning algorithm was implemented in pattern recognition 

application successfully. In another school, the Adaptive Resonance 

Theory (ART), was applied not just in pattern recognition, but also 

in speech recognition. Hopfield Net was well developed as 

associative memory. Besides, the capability of VLSI fabrication has 

been deeply investigated. Futhermore, the application of neural 

network in system control is also becoming popular. 

The scope of neural network is very large. It is impossible to 

give a full account, both on the historical background and the 

theory background, on neural network within this technical report. 

Hence, as a final year project report, only part of the theory and 

history, of the neural network, will be elucidated in the text. 

Basically, neural networks can be classified into supervised 

and unsupervised types. Inside the report, most of the neural 

network models described will be in the category of unsupervi sed 

learning. There are two reasons why the writer preferr ed the 

unsupervised instead of the supervised type. 
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( 1) Since the supervised type of neural networks was already 

studied and implemented in one of the final year projects in 1990. 

The writer do not want to overlap the job with that project. The 

interested reader can refer to that project report, written by c.w. 
Cheung in the 1990 (Cheung 90), to get the background on the 

supervised type of neural network. Besides, several models in 

supervised learning were also studied indepth in that project. 

Multi-Layer Perceptron was even implemented by him in Tactile image 

recognition and robotics motion control and the result was good. 

(2) The core of this project is in the development and 

implementation of a novel neural network model, the LAR (Learning 

by Attraction and Repulsion) model. This model was designed by the 

writer early in 1992. The structure of LAR model is bas i ca l ly 

inspired from the Competitive Learning one which is an unsupervised 

learning model. As an introductory section , most of the models 

described are of the unsupervised type. 

Priori to the main content, an introduction is given in 

chapter one. It gives a concise historical background on neural 

network, its appearance, its relationship with other subjects and 

its role. It is aimed at providing an overview for the reader . So, 

it acts as a bridge for the new comer. Since the presentation 

approach may not be good, if the reader get lost in this chapter, 

he can skip this chapter and find another way to get the historical 

information. Let me emphasis, background information may not help 

the reader to understand the theory of the neural network but it 

can give the reader a sense of completeness in this area. One 

suggested reading is Principle of Neurodynamics . It was written by 

Frank Rosenblatt in 1962 (Rosenblatt 1962). In chapter 3 of the 

book, Frank Rosenblatt described clearly the neural network history 

including the arising of neural network and its relationship with 

psychology, physiology and etc. 
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In chapter two, the basic concept of theory of neural network 

will be presented. As mentioned before, it is mainly unsupervised 

type, including Hopfield Net, Competitive Learning and ART. The 

reader who wishes to have a deeper insight on the supervised model 

can refer to "The study of the Applications of Neural Networks" 

(Cheung 1990), "Neurocomputing" (Hecht-Neilsen 1990), "Neural 

Network and Fuzzy systems" (Kosko 1992) or "Neural Computing" 

(Wasserman 1989). Besides, the writer presumes that the reader have 

acquired basic knowledge on the neuron structure. For further 

details, the reader can refer to chapter 15 of "Biopsychology" 

written by John Pinel (Pinel 1990). 

The LAR model is given in chapter three. It was actually the 

core stuff in the final year project. A number of simulation 

programs and application programs have been written for the 

verification and evaluation of the model. Part of the result will 

also be provided for the explanation. The LAR model was also 

implemented in character recognition and machine part recognition. 

Details of these applications will be found in chapter four and 

five respectively. 

In chapter six, the further development on the LAR model will 

be presented. A number of Appendices will follow. This materials 

serve as a source for the reader. When the reader find problem in 

understanding the algorithm or the content of the report, he can 

ref er to the appendices. At the end of the report, a list of 

reference will be provided in order to let the reader to trace the 

sources of information, quoted inside the report. 

In summary, the objective of this report consists of the 

following five points. 

1. It introduces the historical background of neural networks . 

2. It introduces the basic ideas of neural network. 
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3. It explains the theory of the LAR model. 

4. It provides the sources of information. 

s. It provides the programs and data files for the LAR model. 

Most important, the writer wishes that the report can also be a 

pointer for the new comer. 
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CHAPTER ONE : INTRODUCTION 

In this chapter, some important ideas on the neural network 

will be given. It~ connection with other fields of studies, such as 

artificial intelligence, brain theory , psychology etc,. will be 

examined. Actually, half of the content of this chapter is 

summarized from Frank Rosenblatt (1958), Rosenblatt (1960), 

Rosenblatt (1962) and Rosenblatt (1964). 

Fundamental Questions of Human Cognition 

If we are eventually to understand the capability of higher 

organisms for the perceptual recognition, generalization, recall 

and thinking, we must first have answers to the following three 

fundamental questions: 

1. How is information about the physical world sensed, or detected, 

by a biological system? 

2. In what form is the information stored, or remembered? 

3. How does information stored or remembered influence recognition 

and behavior. 

The first of these questions is in the province of sensory 

physiology, and is the only one for which appreciable understanding 

has been achieved. With regard to the second question, two 

alternative positions have been maintained. 

The first suggests that storage of sensory information is in 

the form of coded representation of images, with same sort of one

to-one mapping between sensory stimulus and the stored pattern . 

According to this hypothesis, if one understood the code of the 

nervous system, one should in principle be able to discover exactly 

5 



what an organism remembers by reconstructing the original sensory 

patterns from the "memory traces". 

The alternative approach which stems from the tradition of 

British empiricism, hazards the guess that images of stimuli may 

never really record at all, and that the central nervous system 

simply act as an intricate switching network, where retention takes 

the form of new connections, or pathways, between centers of 

activity. The important feature of this approach is that there is 

never any simple mapping of the stimulus into memory, according to 

some code which would permit its later reconstruction. 

corresponding to these two positions on the method of 

information retention, there exist two hypotheses with regard to 

the third question. The "code memory theorists" are forced to 

conclude that recognition of any stimulus involves the matching of 

systematic comparison of the contents of storage with incoming 

sensory patterns. The theorists in the empiricist tradition have 

essentially combined the answer to the third question with their 

answer to the second: since the stored information takes the form 

of new connections, or transmission channels in the neurons system, 

it follows that the new stimuli will make use of these new pathways 

which have been created, automatically activating the appropriate 

response without requiring any separate process for their 

recognition or identification. The theory backing the Perceptron 

and neu'f+.ral network takes the empiricist or connectionist position . 

At this moment, the reader should realize that in the recent 

decades, "code memory theorists" was the symbolic approach. It 

played a main role in the study of artificial intelligence 

research. 
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Neural Network Vs Duplication of Human Learning 

The following message is also quoted from Rosenblatt (1960) 

while he was answering a question from an audience. In his answer, 

he explained clearly his attitude towards his research area. It 

should be the attitude of neural networks research workers 

nowadays. 

Well, first of all let me say that we are interested in 

duplicating human learning, if it is possible to do so. We are 

interested in determining the extend to which it is feasible to 

consider such a thing as duplicating human learning, or at least 

understanding how human learning operates. Whether or not there 

exists a better mode of learning is in sense an empirical question 

to which I don't feel we can supply an answer at this point. 

We interested, however, not only in studying human learning, 

but in studying the behavior of networks which include biological 

nervous systems as a subclass. That is to say, we are interested in 

study of signal transmission networks which involve connected nodes 

or cell points which have functional characteristics similar to 

those of biological neurons, but not necessarily identical. 

If it emerges from the study of such systems that some of 

these behave better than others or some of them so in fact behave 

better than human nervous systems, this would be a very interesting 

finding indeed. But it would emerge from the study of this general 

class of systems and is not something I feel we can specially aim 

for at this point. 
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Neural network as a subject in neuroscience 

Neuroscience can be broadly defined as a scientific displince 

concerned with understanding both the brain and the mind, which are 

usually presumed to be respectively the hardware and software 

ObJ'ect. In neuroscience, the brain's structure 
aspects of the same 
has been simulated by creating many functional concepts and 
psychological models based on experimental results. Many valuable 
inspirations provide insight to neural network. As a result, many 

models have been created, which are simplified versions of the 

actual human brain. In return, the ideas evolved from neural 

network provide useful insights to the research of neuroscience 

(Rosenblatt et al, 1966; Rosenblatt 1967; Kandel 1982; Pinel 1990 ; 

Churchland et al 1990). 

Three important issues in Neural Network 

In the history of neural network, there are three issues 

paving the way for the current research. One was the neuron model 

proposed by Warren MuCulloch and Walter Pitts in 1943 (MuCulloch 

and Pitts 1943). The other was the Hebb's postulation, or Hebbian 

Learning, which was claimed in 1949 (Hebb 1972; Hebb 1980). M-P 

neuron may be represented as shown in Fig 1. 1 ( b) and in its 

simplest possible form is a device which gives an output (to the 

right) if it gets an input from at least a certain number, say 0, 
of its inputs (on the left). It thus has a threshold 0 in the 

simplest version of the model. Biologists often criti cize the 

logical neuron for being too unrealistic. It is important for us to 

realize that this is rather unfair . The great advantage of the 

logical neuron is its simplicity, which often enables us easily to 

gain an insight into how a network of nerve cells might be expected 

to behave. The last issue was the derivation of the membrane 

equation by A. Hodgkin and A. Huxley in the 1952 (Hodgkin and 

Huxley, 1952). 
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(a) 

(a) Biological neuron 
(b),(c) M-P Neuron 

Figure (1.1) Neuron model 

Xi 

Xi 

X1 
(b) 

y 

y 

Xn (c) 

MuCulloch and Pitts Neuron (MuCulloch and Pitts 1943; Griffith 

1971) 

In Fig l.l(b), xi is the output signal from the ith neuron. To 

be more precise, it is the potential at the axon of the ith neuron. 

wi is the synaptic strength between the ith neuron and the neuron 

y. Denote the effective potential arrived at the dendrite of the 

neuron as S. The effective potential, s, is given by Equ(l.l). 

( 1. 1) 
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For the sake of simplicity, the activity of the neuron is defined 

as Equ ( 1. 2) . 

( 1. 2) 
if s~a 
if S<6 

where O represents the threshold value. In other texts, M-P neuron 

is also called threshold logic device. The symbol of a M-P neuron 

is given in Figl.l(c}. This neuron model has influenced the neural 

network researches in the last three decades. 

Hebb's Neurophysiological Postulate 

Another important issue affecting the current neural network 

research is the Neurophysiological Postulate claimed by Donald Hebb 

in 1949. The postulate is stated as follows: 

When an axon of a cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth 

process or metabolic change takes place in one or both cells such 

that A's efficiency, as one of the cells firing B is increased. 

Donald Hebb also suggested that one cell could become more 

capable of firing another is due to the synaptic knobs development 

(Hebb 1949). The mathematical representation of the postulate is 

given by Equ(l.3). 

(1. 3) 
a -w.- «~0 at 1 

According to the postulate, the strength of the synapse will 

be increased if the postsynaptic cell and presynaptic cell are 

firing simultaneously or repeatedly. Besides, a collolary on the 

Hebb's postulation is also suggested in parallel. The mathematical 
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interpretation is given by Equ(l.4). 

(1.4) 
a 

-W· - <X <O at 1 

when an axon of cell A is near enough to cell B and repeatedly 

firing B, A's efficiency is decreased if B is not be excited. 

Hodgkin-Huxley Membrane Equation 

Nerve cells generate electrical signals by gating the ions 

channels. The ability of nerve cells to gate their ion channels 

allows them to control the permeability of their membranes and to 

regulate the diffusion of selected ions down preestablished 

electrochemical gradients. Consider the properties of the i on 

channels used for signalling in electrical terms, a s i mple 

mathematical model was derived, in the form of Equ(l.5). 

(1. 5) 

~, v+ and V denote respectively passive (chloride C~), excitatory 

(sodium Na+), and inhibitory (potassium K+) saturation upper bounds 

with corresponding shunting conductance gP, g+ and g- . c is the 

capacitance. Figure(l.2) shows the equivalent electric circuitry . 

At equilibrium the Hodgkin-Huxley model has the resting 

potential Vredt given by Equ(l.6). While the chloride-based passive 

terms are neglected, the resting potential is given by Equ(l.7) . 

(1. 6) v - -=g;_P_V_P_+=g_•_v_•_+=g_-_v_-
r es t gP+g•+g-
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g 

vtl_ 

g- c 

T 

Figure(l.2) Circuit representation of membrane equation 

(1.7) 

Though the equation was proposed in 1952, utilization of this 

equation in the neural network model was not usual. Most of the 

neural network models proposed in the 1960s or earlier made use of 

the McCulloch-Pitts neuron model. After 1960s, only a limited 

number of researchers, such as Stephen Grossberg and his 

colleagues, made use of this membrane equation in the neural 

network models. Michael Cohen and Stephen Grossberg further proved 

that those neural networks described by the relationship in the 

form of Equ(l.5) can have a global stability (Cohen and Grossberg 

1983). Some writers call this Cohen-Grossberg Stability Theorem 

(Kosko 1992). 
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connection of the three issues 

Right now, the reader may ask a question: how can these three 

issues be linked up to explain human cognitive ability. Actually, 

there is no concrete explanation on this question at this stage. 

There is no biological evidence indicating the truth of the Hebb's 

postulation. However , we believe that Hebb's postulate is right. 

That is to say, we accept the proposition that the synaptic 

strength between t wo neurons will increase during learning. 

Similarly, we accept t hat the model of the neuron, in the simplest 

case, is the same as the M-P model . Here, we will not concentrate 

on describing the connection between these three issues with human 

cognition. Interested readers can refer to chapter 3 of "Principle 

of Neurodynamics" written by Frank Rosenblatt (Rosenblatt 1962). In 

section 3. 1. 5 of that book , he gives a clear coverage on the 

phenomena of retention and adaptation mechanism in organisms. It 

may give the reader good materials for him to form a precise 

concept on the relationship among Hebb's postulation , M-P model and 

the neural network. 

Conclusion 

Neural network is a hot research topic Some people even 

claimed that neural network architecture had the potential to 

realize a new type of computer, replacing the traditional computer. 

However, this goal is still very far from reachable. Actually , what 

will be the fate of neural network research is still a question. 

Will it be the same as in the 1970s when neural network research 

was in a silent period? The answer is still not known. 

In so far, the writer has tried to describe a very brief 

overview on certain aspects of the neural network, including its 

historical background and its relationships with other subjects. 

But the story of neural network is much more intricative and much 
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longer than represented on these few pages. It is out of the scope 

of a project report to spell out the whole history of neural 

network and it is also out of the scope of the ability of the 

writer. 

The following chapters will not touch on history. Instead, 

they will concentrate on the concept and theory of unsupervised 

learning models, especially the LAR model (Lee et al 1992a). 
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CHAPTER 2 BASIC CONCEPT OF NEURAL NETWORK 

As mentioned in chapter one, in this chapter we will present 

a description of the basic concepts concept on some aspects of 

neural network aspects and several unsupervised network models. 

Those reader who find the content being too brief can refer to 

the reference listed for further information. 

In this chapter, we first model the neuron as function and 

introduce a few common signal functions. After that , three neural 

models will be presented including the Hopfield Net, Competitive 

Learning, and ART . 

Neuron As Function 

Neurons behave as functions. Neurons transduce an unbounded 

input activation x(t) at time t into a bounded output signal 

S(x(t)). Usually a sigmoidal or 

S-shaped curve, as in F i gure 

Sx) 

r----------------

1 

i 
0 f------""------__i 

0 

Figure(2.1) Sigmodal curve 

of Kosko's book (Kosko 1992). 

1. Logistic Signal Function 

2.1, describes the transduction. 

In general , there are 

several common types of neuron 

functions used in the current 

neural network research. I n the 

following text , only six of them 

will be given . For more details , 
reader can ref er to chapter two 

It is t h e most popular binary signal function. We define the 

function as Equ(2 .1). The shape of this signa l function can be 
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refer to Fig. (2.1). 

(2. 1) S(x) ---1--
1 + e-cx 

Where c is a positive number. Obviously, the function is a 

monotonically increasing function. Nearly all supervised type 

neural networks, such as Adaline and Back-propagation perception, 

use this function, logistic signal function, as the neuron 

transfer function. Sometimes we also call this function as 

sigmoid funct i on . 

2. Threshold S i gn al Function 

Another common neuron function is the threshold signal 

function. Actua l ly , is an infinitely steep logistic signal 

function. The characteristic equation is given by Equ(2 . 2) . 

(2. 2) 
if xk+l> T 
if xk+1-T 
if xk+1 <T 

Where T is an arbitrary real-value threshold T . The index k 

indicates the discrete time step. The index notation implies that 

threshold signal functions instantaneously transduce discrete 

8(x) 

Figure(2.2) 
function 

\ '" 

Threshold signal 

activations to signals. When the 

activation equals the threshold 

at time k+l , the signal maintain 

the same value it had at time k . 

The neuron does not make a 

state-update "decision" at time 

k+l. This type of neuron 

function appears in one of the 

core neural network nowadays , 

the Hopfield Network (Hopf ield 

1982; Hopfield 1984). Figure 2.2 

shows the shape of the threshold 
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signal function. 

3. Hyperbolic-tangent signal Function 

It is a naturally occurring bipolar signal function. It 
shape looks like Figure 2 .1. The transfer characteristic is given 

by equation Equ (2.3). 

(2. 3 ) S (x) -tanh (ex) 

This signal function is also very commonly used in many 

supervised learning models such as Adaline and backpropagation. 

4. Threshold Linear Signal Function 

Threshold linear signal function is a binary signal function 

often used to approximate neuronal firing behaviour. The function 

is given by Equ(2.4) and the shape is indicated by Fig(2.3). 

(x) 
1 -------------------------;-------------------~----

: 
! 
i 
I 
! 
! 

O~----{' 
0 1 

x 

Figure(2.3) Threshold Linear 
Signal Function 

5. Competitive Neuronal Signal 

(2. 4) if cx~l 
if O<cx<l 

and S(x)=O if cx<O. Obviously, 

it is also a monotonically 

increasing function. 

Competitive Neuron Signal is used in competitive learning. 

Though the s ignal function is simple, its mechanism is very 

complicated (Lippmann 1988). The effect is due to the lateral 

inhibitory connection within the output layer. Anyway, as a 

17 



d with the mechanism . The . we are not concerne 
transfer function,. . ·gnal function is g i ven by Equ(2 . 5) • 
equation of competitive si 

(2. 5) 
if xj-maxlx) 
else 

This equation is very simple. Competitive learning is based on 

this equation. 

6. Pulse-Coded Signal Function 

Pulse-Coded signal function is recently proposed by Bart 

Kesko (Kesko 1992). In the field of neuron research, scientist 

have already recogni ze the pulse trains propagation phenomenon. 

However , this idea has not been used. Kesko and Kong recently 

built a number of neural network models, such as differential 

competitive learning model and differential Hebbian learning 

models (Kong and Kesko 1991; Kesko 1990; Kesko 1991), based on 

this signal function. The function is given by Equ(2.6) . 

(2. 6) S( t) - J x(u) eu-tds 

The function x equals one if a pulse arrives at time t , and zero 

if no pulse arrives, Equ(2.7). 

(2.7) 
if a pulse occur at t 
if no pulse at t 

unsupervised Type Neural Networks 

The develop ent of unsupervised learning algorithms has been 

long in history (Rosenblatt 1958; McCleland and Rumelhart 1981; 

Rumelhart and ~·~cC leland 1982; Rumelhart and Zipser 1985) • It can 

be traced bac ~o 1958, when the Gamma Perceptron was invented 

by Frank Rosenn_att. Competitive Learning is one of the simplest 

paradigm in t h_s area. Though competitive learning can be applied 

in vector ql!a~~i zation, clustering and categorization of 

18 



patterns, its application in pattern recognition is very poor. 

Stephen Grossberg slightly mentioned in his 1987 paper {Grossberg 

1987). But he did not give reason for this incapability. 

In the last decade , Stephen Grossberg reclaimed the Adaptive 

Resonance Theory and he also proved that ART can eliminate this 

l imitation (Grossberg 1987). Grossberg and his colleagues 

implemented this model in adaptive pattern recognition (Carpenter 

a nd Grossberg 1987a, Carpenter and Grossberg 1987b). In the 

following section, three unsupervised neural networks will be 

introduced . They are the Hopfield Network, developed by John 

Hopfield in Ca lTech, Competitive Learning model which has been 

sustained f or more than three decades and the last one is ART. 

1. Hopfield Network 

v1 v2 

v6 v3 

A simple Hopf ield Net is 

shown in Fig(2.4). This 

structure is a special case of 

associative network, or 

recurrent associative network. 

The weight values of Hopfield 

Network follow the restrictions 

imposed by Equ(2.8} and 

Figure(2.4) Simple Hopfield Net Equ(2.9). 

The Neuron1 , v; a s a transfer function being a threshold signal 

function, Equ ( 2.2) . 

I n so~e other articles, it is also called a processing 
element or a n ~e. 
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1 

(2. 2) S. (x .k+1) - Si (xi k) 
.l .l 

0 

where 

(2 . 10) 

The neurons are updated one at a time. The stability proof 

of the Hopfield net can be found in a number of articles 
(Hopfield 1982, Hopfield 1984 and Kosko 1992). 

The Hopfiel d network does not have a learning law associated 

with its transfer f unction. The weight matrix is specified in 

advance. No restri ct i on on the real number values wij are made 

except that the matr ix (wij) must be symmetric and have a zero 

diagonal. In recent studies by Michael Cohen and Stephen 

Grossberg (Cohen and Grossberg 1983), it is indicated that 

unsymmetric matrix with non-zero diagonal can also have a stable 

equilibrium memory recall. 

The building of the weight matrix is usually followed the 

associative learning rule, or Hebbian learning, Equ{2.ll}. 

(2.11) 

h {x X X } is the set of the pattern vectors. If the set w ere 1 I 2 I ••• I L 

{x X XL} is a n orthonormal set, lf 2 1 •••I then the recall will be 

perfect. ie. when an input pattern Y=Xk is input to the network 

and let it interate. If the pattern set is an orthonormal set, 

then y will be given by Equ(2 . 12). If the set i s not orthonormal, 

then correlation noise,~, will exist, Equ(2.13). 

(2.12) 
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(2. 1 3 ) 

Theoretical proof has shown that the noise free memory capacity 
of a Hopfield net is 0.15n, (Hertz et al, 1991), where n is the 

number of neurons. Recently, C.C.Hui and L.W . Chan of the Chinese 

University of Hong Kong proposed An Error Correcting Al.gorithm 

for Hopfieid Network (Hui 1991). This algorithm upgrades the 

noise free memory capacity of a Hopfield Network to 0.85n. 

2. Competitive learning 

Competitive Learning is one of the oldest neural network 

algorithms. Its history can be traced back to the 1958 

(Rosenblatt 1958). In the next paragraph, this model will be 
elucidated. 

Definition 

Competitive learning model is simply a two layers neural 

network as shown in Fig ( 2 . 5) . 

Each of the neurons in the first 

Simplify Competitve Leaming Model 

x 

Pattern 

S(X) y 

Synaptic 
Connection 

S(Y) 

Response 

layer is connected to all the 

neurons in the second layer. 

Response of the first layer is 

based on the all-or-none 

Figure(2. 5 ) Simplified CL model 

principle . That is, when the 

neuron i in the first layer 

receives signal, ~' is greater 

than a threshold, this neuron 

will deliver an impulse, Si (xJ , 

Equ(2.14). 

(2. 14) 
if xi>e i 
if xi=:;;e i 
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All impulses from the first layer will then pass to the second 

layer through the synaptic connections, and the strength of the 

synapse is denoted by \V_ji where j represents the jth neuron in 
the second layer. 

Winner-Takes-Aii Ruie 

The response of the second layer obeys the winner-takes-all 
rule. Suppose Y.i is the potential of the J'th neuron. The response 
of the neuron is given by Equ(2.15). 

(2.15) 1 S(y .)-{ 
J 0 

if Yj-max{y) 
else 

The value of YJ· is actually the effecti've 

the first layer, given by Equ(2.16). 

(2.16) 

potential received from 

Obviously, there is only one neuron which will be acti've · 
f le• 

S (y) =1. Once a neuron wins, say neuron j, its corresponding 

weight will be updated as Equ(2.17). 

(2. 17) 
c .k 

~w .. -g-1--gw .. 
Jl n J l. 

k 

If there are m input patterns, k=l, 2, .... , m Cik and nk are 

constants such that the summation of the Cik/nk is equal to 1. 

The parameter g is the step size. Accordingly, the weight vector 

is moving towards the pattern vector, Fig(2.6). Generally 

speaking, we can state the principle of competitive learning as 

the following: 

The winner will be given to the one which is the closest to the 
pattern, otherwi se it will be a loser. For a winner, it will be 

attracted towards the pattern; otherwise, as a loser, it will 

remain unchanged a t all. 
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w1 
0---

(Winner) 

x 
(Pattern) 

Mechanism of the weight 
vector in the N-D spaoe. 

Figure(2.6) Mechanism of 
competitive learni ng 

3. Adaptive Resonance Theory 

In the next chapter, we will 

come back to the limitation of 

the competitive learning in 

applications in pattern 

recognition. In here, we simply 

state that the limitation is due 

to the initial 

constraint. Besides, 

setting 

the 

criteria for an unsupervised 

learning algorithm to recognize 

pattern will also present . 

ART network model i s capable of self-organizing and self

stablizing its recognition codes in response to arbitrary 

temporal sequences of arbitrarily many input patterns of varible 

complexity. Due to its complicated structure, the details of the 

ART will not be elucidated here. Readers interested in can refer 

to Carpenter and Grossberg (1987a) and Grossberg (1987). Besides, 

Wasserman (1989 ) and Lippmann (1988) have also introduced ART, 

in a much simplif ied wa y . 

The structure of an ART is shown in Fig(2.7). For 

simplicity, the LTM t races between F1 and F2 can be redrawn as 

shown in Fig(2.8 ). ~ this, there are only two neurons in the F2 

layer and three reurons in the F1 layer. Moreover, the input 

pattern is restr_c~ed to be in binary form. Before giving the 

mechanism of t he - e l, a list of definition is presented in the 

following. 

Definition 

1. F1 activity ~a::::ern is given by X=(X1 ,Xz,···1XM) · 

2. F2 activity -=a::::ern is given by Y= (XM+if XM+21 ... , XN) . 

3. we denote r-~es n F1 by~, where i=(l,2, . . . ,M) and nodes 
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+ 

- + + 
+ + 

F1 ~ 

+ 
lnpu Pattern 

Figure(2.7 ) Block diagram of ART 

in F2 by vj, where j=(M+l, ... ,N). 

-

STM 
RESET 
WAVE 

+ 

4. The transfer function of the node in F1 is given by h(x) 

and so the outp t pattern of F1 is given by 

S=(h(xi) ,h(x2 ) , ••• ,h( xM)). 

5. z ij is defined as the (bottom-up) LTM trace, or called 

weight, in the pathway from ~ to ~· similarly, we define 

zji as the (top-down ) LTM trace in the pathway from vj to vi. 

6. The signal reciev ed by each of the nodes in F2 is given by 

Ti' where j= (M+l , .-2, ... , N) , Equ ( 2. 18) . We also define 

T= (TM+ll TM+2 , ••• , -: • a s the input to the F2 • 

(2.18) 

7. The transfe~ =~-ction of the nodes in F2 is given by f(x), 

Equ(2.19} , ar.~ so t he output pattern of F2 is given by 

V=(f(XM+l), f (X - • .. . ,f(XN)). 

(2 .19) 
if Tj-maxlTJ 
otherwise 
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F 
1 

Figure(2.8) Connection between the two layers 

8. The top-down template, recalled from F2, is defined as 

V=(VuV2, ... ,VM), where Vi is given by Equ(2.20). 

(2.20) v .- f f(x .) z .. 
.l j-M+l J J.l 

Obviously, a different pattern U from F2 will ignite a 

different pattern V. Since there is only one node in F2 

with output 1, we define vID as the top-down template due 

to node j in F2 • 

9. The external input pattern is given by I=(ipi2, ... ,iM). 

10. The activity of the layer F1 is given by Equ(2.21). 

(2.21) 
I 

x-{ .rnvu> 
if F 2 is inactive 
if F 2 node v1 is active 
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The inactivity of F2 will be discussed later. 

Associative Decay Rule 

As learning of the input pattern I takes place, LTM traces 

in the bottom-up coding pathways and the top-down template 

pathways between an inactive F1 node and an active F2 node 

approach O. Associative learning within the LTM traces can thus 

cause decreases as well as increases in the sizes of the traces. 

This is a non-Hebbian form of associative learning. 

Weber Law Rule 

As learning of I takes place, LTM traces in the bottom-up 

coding pathways which join active F1 and F2 nodes approach an 

asymptote of the form 

where a,~ are positive constant 

Obviously, a larger norm of I, defined in Equ(2.26), implies a 

smaller positive LTM trace in the pathways encoding I. 

Mechanism of the ART learning 

For simplicity, the transfer function on the two layers are 

defined as Equ(2.22) and Equ(2.23). 

(2.22) 

(2.23) f(x.)=x. 
J J 
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Moreover, the top-down and bottom-up traces are initialized as 

Equ(2.24) and Equ(2.25), according to Lippmann (1988). 

(2.24) 

(2.25) 

z .. (0)-1 
Jl. 

1 z . . (0)---
J.J l+M 

When a new pattern is input to Fu we let the network evaluate 

the top-down template V and x·, following the sequence. 

I .... X .... S .... T .... Y .... U .... V .... X* 

x• is calculated by Equ(2.21). Here, we also define the norm of 

X as the number of ones, Equ(2.26). 

(2.26) I xl-fx . 
i-1 1 

Once x• has been found, a vigilance test is applied as described 

by Equ(2.27). 

( 2 . 27) lx*I 
lif>p where O~p~l 

If the result is true, then the corresponding weights will be 

updated. If the result is false, then the best matching node 

selected is tempararily disabled by the STM RESET WAVE and the 

top-down template is recalculated. In case no top-down template 

is suitable after the repeative search, F2 will be inactive. The 

learning algorithm of the ART net is summarized in the next 

paragraph. 

ART Learning Algorithm 

Step 1. Initialization 

Step 2 . Apply New Input 

Step 3 • Compute U=(f(xM+i) ,f(xM+2), ••• ,f(xN)) 

Step 4. Select Maximum Exemplar, f (x) . 
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This is performed using extensive lateral inhibition. 

Step 5. Vigilance Test 

GOTO STEP 6 
GOTO STEP 7 

step 6. Disable Best Matching Exemplar 
The output of the best matching node selected in Step 

4 is temporarily set to zero, STM RESET WAVE, and no 

longer takes part in the maximization of Step 4. Then 

goto Step 3. 

step 7. Adapt Best Maching Exemplar 

(2.28} 

(2.29} 

zji ( t+l} -zji ( t} h (xJ 

( } zji(t}h(x) 
z .. t+ 1 - --"""~-----

J..] O. 5+.Ezji ( t} h (xi} 

The actual learning of ART is more complicated. It is 

expressed in differential equation form (Carpenter and 

Grossberg 1987a). However, the Weber Law Rule and 

Associative Decay Rule show the form of the equilibrium 

value of the weight in each learning step. For the choice 

of the constant values can refer to Carpenter and 

Grossberg (1987a). 

Step 8. Enable any nodes disabled in Step 6. Go to Step 2 

Although the mechanism of ART is in advance compared with 

other unsupervised learning algorithm. Throughout understanding 

on the ART is not that easy. So that, ART is not being selected 

as the model in the final year project. 
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CHAPTER 3: LAR - AN UNSUPERVISED LEARNING ALGORITHM 

INTRODUCTION 

In this chapter, an unsupervised learning algorithm, the 

Learning by Attraction and Repulsion {LAR), will be presented. The 

idea leading to the development of this algorithm for the neural 

network is inspired from electrostatics phenomenon. In the model of 

this neural network, we treat the normalized pattern vectors as the 

position vectors of positive charges, while the normalized weight 

vectors as the position vectors of negative charges. A step of 

movement of a negative charge indicates the change of the 

corresponding weight vector. Hence, according to the Inverse Square 

Law, F=k/r2 , where r is the distance between two charges, we can 

evaluate each of the forces acting on a single charge as dW=µF. It 

is found that the neural network developed from the above idea can 

self organize to give various responses to different input 

patterns. Thus, compared with the competitive learning algorithm, 

this algorithm does not suffer from the limitation due to different 

initial settings. A simple example in the application of this 

neural network to pattern recognition is provided. 

The discussion will be started from the Initial Setting 

Problem of the competitive learning. Next, a criterion for pattern 

recognition by unsupervised neural networks is suggested. 

INITIAL SETTING CONSTRAINT 

The basic principle of the competitive learning has been 

presented in chapter 2. Qualitatively, the mechanism can be 

described as follows. 

The winner weight vector will be given to the one which is the 
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closest to the pattern. Otherwise, it is a loser . For a winner 

weight, it will be attracted towards the pattern; otherwise, as a 

loser, it will remain unchange at all. 

The step of the movement of the winner is proportional to the 

distance between the winner weight and the pattern. i.e . .1W=µ(P-W) . 

Diagrammatically, the mechanism can be viewed as Fig(3.1). In any 

one iteration, only the winner takes the update. 

~ 
(Winner) 

W2 

0 
(Loser) 

Figure(3.1) Competitive Learning 

x 
(Pattern) 

Mechanism of the weight 
vector in the N-D space. 

Under this mechanism, the ability of the competitive learning 

in pattern recognition is largely dependent on the initial setting , 

and not just on the similarity amongst patterns. This condition is 

called the Initial Setting Constraint, (Lee et al 1992a). 
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Initial setting Constraint 

It is observed that the movement of the neurons is mainly 

determined by the initial values of both the weight vector and the 

pattern vector. For instance, in Fig(3.2}, we have 4 neurons and 4 

input patterns. Initially, only one weight vector is close to all 

the 4 pattern vectors. It will surely win for all the four 

patterns. Therefore, it will be the one and only one weight vector 

getting updated. As a result, the system cannot give four 

different responses to the four patterns. This is a severe 

limitation of the competitive learning in distinguishing patterns. 

Mechanism of Competitive Learning 

. 
wmner 

• > 
0 0 

Figure(3.2} Limitation of Competitive Learning 
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CRITERIA FOR PATTERN RECOGNITION 

The three criteria for bu1· ld1' ng · an unsupervised 
network in pattern recognition are: 

learning 

No Matter which algorithm the neural network is being used, the 
network must achieve 

(i) an equilibrium state, i.e. the final values of the weight 
vectors must be at equilibrium. 

(ii) the equilibrium state must be stable, and 

(iii) the output response must be observable. 

Criteria {i) and (ii), in fact, have been considered as the basic 

conditions for checking the network performance {Cohen and 

Grossberg 1983). Criterion (iii) is actually a commonly implied 

criterion in pattern recognition. In mathematical term, it means 

that the learning must guarantee a one-to-one mapping. These three 

conditions govern the way that we derive an unsupervised learning 

algorithm. 

We have not yet proved that the network can fulfill the 

criterion (i) and (ii) except via studying the numerical data from 

a number of experiments. Based on the result of these experiments, 

we can also roughly conclude that the network is workable in the 

sense that it fulfills criteria (iii). 

LEARNING MODEL 

The structure of this model is similar to that of the 

competitive learning model. The only difference is on the weight 

updating rule. Consider a neural network consisting of two layers 

of neurons as Fig(3.3). 

The first layer contains n neurons while the second layer 
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p 

Pattern 

Figure(3.3) LAR model 

x y 

Synaptic 
Connection 

(W) 

z 

Response 

contains m neurons. The organization of this network can be 

summarized as follows. 

Organization 

(i) The pattern P={plfp2 , ••• ,pn) is impinged onto the first layer of 

neurons, the responses of the neurons are in all-or-none fashion as 

shown in Equ(3.1) below. 

(3. 1) 
1 x.-{ 

.l 0 
if Pi~e i 
otherwise 
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(3. 2) 

(3. 3) 

1 z .-{ 
J 0 

if Yj is maximum 
otherwise 

Self-Organization As Charge Distribution 

The idea of the proposed learning algorithm comes from the 

phenomenon of electric charge distribution, (Kraus 1984). Suppose 

the normalized pattern vectors are represented as position vectors 

of positive charges, and the normalized weight vectors as the 

position vectors of negative charges. In such a case, it can be 

imagined that the weight vectors will distribute themselves on the 

space according to the locations of the pattern vectors. 

To evaluate the change of the weight vectors at each step, we 

simply find out the total force acting on that charge. Then we make 

the change of the weight vectors along the direction of the 

resultant force, i.e. ~WaF. Figure(3.4) shows the above idea. 

In Figure(3.4), there are three negative charges in the space 

with positions given by Wj where j=l, 2, 3. There is a positive 

charge, represented by the cross sign, the position of which is 

given by the pattern vector. Consider the neuron j. There are three 

external forces acting on it, indicated by three arrows. According 

to the Inverse Square Law, the attraction force is given by 

Equ ( 3. 4) . 

( 3. 4) where q - 0102 
1 47t€ 
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Figure(3.4) Force diagram 

( 3. 4) 

input pattern 
x 

where q - 0102 
1 4 1t€ 

Repulsion force 
between weights 

respectively. Similarly, the repulsion force acting on the neuron 

j is given by Equ(3.5). 

( 3. 5 ) where q - 0202 
2 41t€ 

Hence the resultant force is simply the addition of the attraction 

and repulsion forces, Equ(3 . 6). 

( 3. 6) 
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Then we update each of the weight vectors according to Equ(3.7). 

(3. 7) for all j-(1,2, ... ,m) 

Let us have a simple example. Consider the case when there is 

only one neuron in the second layer and there is only one input 

pattern, i.e., there is only one negative charge and one positive 

charge. The mechanism is obviously the same as the competitive 

learning mechanism. The only difference is on the weight update 

equation. In competitive learning the movement size is proportional 

to the distance between the pattern and the weight while the 

movement size in LAR is inversely proportional to the square of the 

distance apart. 

In actual implementation, the weight vectors and the pattern 

vectors are normalized before each iteration. So it can be imagined 

that the process is occurred on the surface of a hypersphere, 

instead of an n-dimensional space. The algorithm is summarized as 

follow. 

Step 1. Normalize all weight vectors to unit magnitude. 
i.e. 

( 3. 8) 
" w. w.-d 

1 11W~11 
J 

v j E{l I 2 I • • • I m} 

Step 2. Select randomly one of the pattern vector. i.e. 

(3. 9) where kE{l, 2, ... , l} 

then, 

(3.10) x-f(P), also be written as xi=fi (p) 
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where, 

(3.11) 
if pi>O 
if pi5;.0 

Step 3. Normalize vector X. i.e. 

( 3. 12) " f(p) ~ " 
X- llf(P) II +uen where &-o 

(3.13) 

Step 4. Calculate the value Fj, VjE{l,2, ... ,m). 

x-w ~ wj-wr 
F .-q +q L..J 

J 1 llX-~3 2 r~1 llw .-w IP 
J I 

( 3. 14) 

Step 5. Set the changes of the weight proportional to FJ· 
i.e. 

(3.15) VjE{l,2, ... ,m} 

and then the new weight vector w/ is set to be 

( 3 . 16) 

Then set Wj to equal to Wj •, and goto Step 1. 

The inclusion of Step 3 is to prevent the situation when Wj=X. In 

Steps 4 and 5, it is clear that the update of the weight vector is 

independent of zj, which is the output of the second layer neuron. 

LAR Vs Competitive Learning 

Actually, there are at least three differences between the LAR 

algorithm and the Competitive Learning algorithm, including (i) the 
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number of weights which can be updated, (ii) the size of movement 

and (iii) the dependency of the output signal. They are indicated 

in Fig ( 3. 5) . 

LAR 

(1) All weight vectors 
are updated. 

(2) Change of weight 
Is proportional to 

(P-W) 

IP-W13 

(3) Update is independent 
from Z, output. 

CL 

Only the winner can update. 

Change of weight 
is proportional to (P-W) 

Update is depend on Z, 

Figure(3.5) Comparison between LAR and competitve learning 

Criteria Fulfillment 

As mentioned early in this chapter, a vigorous mathematicai 

proof on the three criteria have not yet been estabiished. We have 

so far only experimental results to support our conjecture that the 

criteria can be fulfilled. In fact, a proof of this algorithm 

satisfying the criteria has been tried with the Lyapunov method. 

Lyapunov method is a traditional approach in proving the stability 

of a number of neural networks (Hopfield 1982 , Cohen and Grossberg 

1983; Rumelhart and Zipser 1985; Kosko 1992). However, the proof 

for the LAR model is too difficult to be completed within one 
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academic year. The difficulty is due to the situation that the 

learning equation involves the term (P-W) /IP-WI 3, instead of (P-W) • 

The validity of the LAR algorithm can only be illustrated by 

simulation results at this moment of time. A simple example is 

provided in the following. This example is only an illustration of 

the behavior of this LAR model. In this example, two mutually 

exclusive patterns, Xk for k=l,2, are input to the LAR network and 

the network learns from these patterns. The configuration is as 

follows. 

(1) Number of input neurons = 48, 

(2) Number of output neurons = 4, 

(3) ql = 25, q2 = 1, 

(4) 'Y = 0.0001, 

(5) number of iterations = 2580. 

In order to show the weight update behavior during learning, 

we plot a graph showing wixkT (dot product) against number of 

iterations, where i=(l,2,3,4) and k=(l,2). The graph for k=l is 

shown in Fig(3.6a} while the graph for k=2 is shown in Fig(3.6b). 

The graphs show that the dot product of the winner weight to the 

pattern is constant after 640 iterations. It is also observed that 

the dot product of the losers are not constant after 640 iteration . 

So it can be imagined that this equilibrium is a dynamic 

equilibrium. Tha t is to say, the winner is circulating on the 

surface of a N-D sphere instead of being at a fixed position. 

According to the graph obtained, there is one weight vector moving 

around the pattern(l) while there are three weight vectors moving 

around the pattern(2}. 

Though the above data cannot be used to prove vigorously that 

the learning of LAR model is stable for all situations, it does 

illustrate the validity and behavior of the network. 
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CONCLUSION 

In this chapter, we mainly illustrate a novel approach in the 

development of an unsupervised learning network which is inspired 

from electrostatics phenomenon. Although the mathematical proof has 

not yet been established, the numerical 

data has indicated its ability. The outstanding issue of this 

model, compared with the traditional neural network, is that it is 

totally unsupervised. That is to say, the learning process of this 

LAR model is absolutely independent from the initial setting and 

the output response. Besides, the learning rule of the model is 

based on a simple idea. It is easy to understand the mechanism of 

the model. 

In the next chapter, an application example will be presented , 

in which a systematic checking scheme is followed in order to 

examine the three criteria. 

Here the writer wishes to emphasize several issues . The LAR 

model is actually not designed for real life applications . This is 

only a simple model trying to demonstrate some capabi lity simila r 

to our human intelligence behavior. Throughout the study, 

summarized in chapter one and two, it is believed that the current 

neural network model is not strong enough to explain t h e who l e 

mechanism of our intelligence behavior . The LAR model cannot 

explain everything. But it seems that it can have the potential to 

show the creativity behavior. 
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CHAPTER 4 : CHARACTER RECOGNITION USING LAR 

INTRODUCTION 

In this chapter, we will illustrate an application example of 

the LAR in character recognition. The following paragraphs will be 

concentrated on the configuration and the experimental results of 

the simulation model. Thus, this chapter serves as another 

experimental example indicating the capability of the LAR . 

SIMULATION EXAMPLE : Character Recognition 

Statement of problem 

First of all, let us clarify the aim of this experiment. one 

goal of this experiment is to illustrate the ability of the LAR 

model in differentiating different characters. That is to say, we 

wish to show that the network can give different codes for 

different learnt patterns. The learnt patterns are those characters 

shown as Fig(4.2}. Besides, another goal of this experiment is to 

illustrate the incapability of competitive learning in applications 

to character recognition. 

structure of the network 

Fig(4.l} shows the structure of the neural network . It 

consists of 48 neurons in the first layer and 8 neurons in the 

second layer, Fig(4.l}. We set the constants ql and q2 to be 25 and 

1 respectively. The step size, 1 1 is 0.0001. The threshold, ail of 

each of the neurons in the first layer are set to o. The update 

takes over 4096 iterations. 
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(P) 

Pattern 

~8 

Synaptic 
Connection 

Figure(4.l} Simulation Network 

Simulation Result 

Z· 
J 

za 

(Z) 

Response 

Two approaches of learning have been applied to the model. one 

of them is the general LAR approach, or called the non-chaotic 

approach . The simulation result of this approach will be 

illustrated in subsection Test 1. The other one is the chaotic LAR 

approach and its simulation result is given in subsection Test 2. 

Test 1: General LAR approach 

In this test, we choose pattern (i) to (vi) in Fig(4.2). The 

structure of the network is just the same as mentioned in the 

previous section. The learning algorithm is stated below. 
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(i) 

(v) 

II • 
I •• •• • 

(ii) 

(vi) 

Figure(4.2) Testing characters 

(iii) 

(vii) 

•••• 
•••• 
(iv) 

(viii) 

Step 1. Normalize all the weight vectors to unit 
magnitude. 

(4. 1) 
"' w. w - J 

j 1W] 
J 

'v'j Efa, 2, ... , 8} 

Step 2. Select randomly one of the patterns 

(4. 2) P-Pk where kE{l, 2, 3, 4, 5, 6} 
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( ~l)) 
~ X-f(P) 1 

where fi (pJ -{0 
if p i>O 
if P i !!.O 

Step 3. Normalize vector X and add a small vector to it. 

(4.4) " x .... ( 
X-u.;n+&e - f_ P) +O. 005e 

HAil n llf(P) II n 

(4 . 5) e - (_1_ i i 
48 y'48 I v'48 I ' • •I v'48 ) 

Step 4. Calculate the value F v· {l 2 
j t ]€ ' , ••• , 8 } . 

(4.6) 
,... A. ,... ,... 

x-w . w -w 
F .-25 J +'E j I 

J llX-w)l3 r~j 11wrw)l3 

Step 5. Set the change of the weight proportional to F·. 
J 

(4 . 7) 

Repeat Step 1 to 5 for 4096 iterations. 

The simulation results are tabulated below . In case of the LAR 

model, the 2nd neuron in the second layer is initially the winner 

of pattern 1 to 4. After 512 iterations, the performance is better . 

The network can distinguish 4 patterns . After 4096 iterations, the 

network can completely differentiate all the 6 patterns . 

Iteration Pattern # max . value of yj/ ~ ':JJ 
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0 1 01000000 0.976141 

2 01000000 0.955053 

3 01000000 1 . 016840 

4 01000000 1.116477 

5 10000000 1.023682 

6 00000010 1.125428 

512 1 00001000 1.159309 

2 01000000 1.157658 

3 00010000 1.146984 

4 10000000 1.253260 

5 00000010 1.194579 

6 00000010 1.290241 

4096 1 00001000 1.259999 

2 01000000 1.241957 

3 00010000 1. 260759 

4 10000000 1.307193 

5 00000010 1.271767 

6 00000001 1.320562 

Stability Checking 

Though the results indicate the differentiation of the 

patterns at around the 4096 iteration, we may query the stability 

of the response of the network. Can the same response be also 

achieved if we set the iteration is more than 4096? To show that 

this can be achieved, we need to observe the variations of all the 

values of the weights, which is an impossible task. Instead of 

plotting weight against iterations, ~ is plotted against 

iterations, Vj € { 1, 2, ••• , 8}. The value Yj is calculated by Equ. ( 4. 8) o 

(4. 8) 
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Fig(4.3) shows the changing of 'Yj against iteration. After every 128 

iterations, the system is tested by the six patterns. For i nstance, 

Fig(4.3a) shows the response of the eight output neurons to the 

character 'A'. The response shows that the network reaches a stable 

state after 4096 iteration . 

Differentiation check 

According to the results tabulated . It is found that this 

network is capable of differentiating different patterns during the 

4096 iterations. In addition to the results quoted from the 

stability checking, we can roughly conclude that the capability of 

differentiation will be sustained beyond the 4096 iterati ons. That 

is to say , the network is workable in the sense of criteri a (i i i), 

under this situation. 

Test 2: Chaotic LAR approach 

In this test, we select the pattern (i) to (iv) and (vii) to 

(viii) from Fig(4.2}. The network parameters are the same. But here 

we add a concept - Chaos - to the simulation program. The mechanism 

is summarized in the following text. 

step 1. Normalize all the weight vectors to unit 
magnitude. 

(4. 1) 
" w. w.- d 

1 11W~11 
] 

Vj E{l, 2 , . . . , a} 

step 2. Select r andomly one of the patterns 

( 4 . 2 ) P-Pk where kE{l, 2 I 3 I 4 I 5 I 6} 
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(4.3) X-f(P) 1 
where fi (p) -{0 

if pi>O 
if P i 5:.0 

Step 3. Normalize vector X and add a small vector to it. 

(4. 4) x"- x +&e f(P) +o oos" 
llXll n- llf ( P) II ' en 

(4. 5) " ( 1 1 1 
e48- -- I - - I ' ' ' I -- ) 

/48 /48 /48 

Step 4. Calculate the value~, Vj€{l,2, ... ,8}. 

(4.6) 
x-w . w.-w 

F .-25 ] + L ] I 

1 llX-w .113 r .. j 11w .-w 113 
] ] I 

Step 5. Set the change of the weight proportional to Fj. 

(4. 7) 

After every 128 iterations, select randomly on e o f the 
weights and set it to zero. 

Repeat Step 1 to 5 for 4096 iteration. 

Under this condition, we found that the result is more or less 

the same as the non-chaotic approach. The ~ is also plotted for 

reference , indicated in Fig(4.4). In some cases , it is found that 

the chaotic approach could give a better mode of learni ng . 

COMPARISON WITH COMPETITIVE LEARNING 

The same pattern set is input to the competitive learning 
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network. The following results are obtained. As expected, the 

final/intermediate results of the network are totally determined by 

the initial conditions. 

Iteration Pattern # zj max. value of yj 

0 1 01000000 0.022365 

2 01000000 0.024384 

3 00010000 0.023920 

4 10000000 0.022417 

5 10000000 0.022807 

6 00000001 0.022316 

512 1 01000000 0.022594 

2 01000000 0.024700 

3 00010000 0.024065 

4 10000000 0.022464 

5 10000000 0.022879 

6 00000001 0.022340 

4096 1 01000000 0.024251 

2 01000000 0.026696 

3 00010000 0.025121 

4 10000000 0.022746 

5 10000000 0.023439 

6 00000001 0.022494 

With respect to the differentiation checking, a competitive 

learning model is found to fail in character recognition . 
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CHAPTER 5 : MACHINE PART RECOGNITION USING LAR 

INTRODUCTION 

In recent years, there are a number of appl ications of the 

neural network in the field of control , pattern recogn ition and 

speech recognition. Most of the results are promising . However , 

only the supervised type of neural networks is implemented in the 

field of control (IEEE 1992) o The unsupervised type of neural 

networks has not been applied yet. 

I n this chapter, we give a simulation example of the LAR in 

machine part recognition . We integrate the LAR model with an 

L A R x 2 

I J 

x 2 
x 1 s ~ XS 

p 2 
X4 

Assocl a t I v e 1 
N e t w o r k x 3 

T h e r s h o I d 
_J 

P1 & P 2 1r & t~& side • le ws o ft~ & part. 

Fi gure(5 . 1) Block diagram of a 3-D machine part r e cognizer. 
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Associative Learning Model (Anderson 1983). The LAR net classifies 

the input machine parts into different groups, while the 

Associative net recognizes the standard defective parts. After 

Training, this layered neural net can perform the following tasks: 

1. to reject the defective machine parts; and 2. to classify the 

machine parts if they are non-defective. Apart from 2-D machine 

part recognition, the same idea can be applied to 3-D machine part 

recognition, Fig(5.1). 

In the next section, we first review on the learning 

algorithm, LAR and Associative net respectively. Then we proceed to 

elucidate the details on the organization of the layered neural 

net, which is also called the integrated model. Training procedure 

is then given. Simulation results are provided for clarification of 

the organization and the training procedure of the layered neural 
network. 

LEARNING MODEL 

In this machine part recognizer, we use two neural network 

models, the LAR and Associative network. The mechanism of 

competetive learning and LAR has been described in chapter 2 and 3 . 

So that we just present the associative learning algorithm. 

Associative Learning 

Consider the network structure as Fig(5.2). { } 
p= P 1, • • , Pu • • Pn 

is the input pattern while s { } · 
= S1, • • , si, · · sn is the supervised 

training output signal. The first layer responses in an all-or-none 
fashion, as Equ(5.1). 

( 5. 1) 1 
x.-{ 

.l 0 
if pi>O 
if pi5;0 
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z 
1 

z 
p 

z 
m 

s 1 

s 
m 

Figure(5.2} Associative learning network 

During learning, we input {p,s} pairs to the network and let i t 

learn as Equ(5.2). 

(5 . 2) 

where a, ~ are constants. For details of this ~ rning model, refer 

to Anderson (1983) and Hecht-Nielsen (1990) .A Xx 
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ORGANIZATION OF INTEGRATED MODEL 

x 2 
L A R 

X2 
x 1 s -p XS 

x 4 
Assoc! a t I v e 

Network 
X3 

T h e r s h o I d 

Figure(5.3} Block of integrated model 

Fig. (5.3} and Fig. (5.4) show the block diagram of the 

integrated model. The integrated model consists of a LAR net and an 

Associative net. The LAR net is trained to recognize the non

def ecti ve machine parts, while the Associative net is being trained 

to recognize the defective machine parts. 

After training of the LAR net and Associative net 

sequentially, these two networks can cooperate to perform the task 

- classification the non- defective machine parts and rejection of 

those defective parts. Fig . (5.5) shows the structure of the 

integrated model. The nodes in the first layer are partitioned into 

two groups. The top view (side l} and the lateral view (side 2} of 

the machine parts are input respectively. The overall operation 
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-- -- ------- ---- · 
' LA R 

X2 

X4 

I 
I 
I 

ThershOld 

Associat ive 

Networl:: 

: ________ Q 
I 
I 
I 
I ; _a.J...; ;;; 

~----~-----
1 

I 
I 

X 3 

Part 

Figure(5.4) Block diagram of application 

principle is summarized by Equ(3} to Equ(7). 

(5.3) 

(5.4) 

( 5. 5) 

1 x . (1) ={ 
.l 0 

1 
x . (2) -{ 

.l 0 

1 
x . ( 3) -{ 

.l 0 

if pi>O 
otherwise 

if .Ew .. (l)x.(1) is max 
• .l] J 

J 
otherwise 

.Ew .. (2)x . (2) >0. 
. 1.J J ]. 

J 
otherwise 
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X2 

X1 X5 
........... "'; 

p 

.......... !,___ -> X5 

Threshold X3 

Figure(5.5) Structure of the integrated model 

(5.6) 

( 5. 7) 

1 x . (4) -{ 
.l 0 

if (S/\xi (2)) -1 
otherwise 

if (xi(2)>xi(3)) 
otherwise 

where e is the thresholds values of the neurons on layer X(3) and 

sis the supervisor signal, given by Equ(5 .8), provided only in the 

training mode. 

( 5. 8) s -{1 
0 

if the part is defective 
if the part is non- defective 

59 



TRAINING PROCEDURE 

The training procedure is summarized as follows: 

Step 1. Set S=O. 
step 2. Train the LAR net by inputing the non-defective machine 

part. 

Step 3. Set S=l. 
step 4. Train the Associative net by inputing the defective machine 

part. 

once the training is finished, s is set to zero again, and the 

system is tested and tuned. The threshold value ei is tuned to 

optimize the performance of the recognition and rejection 

processes. 

SIMULATION RESULT 

A simulation program has been written for illustrating the 

algorithm. The parameters of the structure are listed below. 

(a) number of neurons in x ( 1) = 72 1 

number of neurons in X(2) = 4 
number of neurons in x ( 3) = 4 
number of neurons in X(4) = 4 
number of neurons in X(5) 4 

(b) LAR net q1=25 I q2=l . 
I 

'Y = 0.0001, 

number of iteration = 7680. 

1 36 neurons are for one side of view. 
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(c} Associative net ej = o.95, o.975, i. 

a = 0.01, ~ = 0.05 and 

number of iteration = 7680 

One set of machine parts are being tested2 , Fig. (5 . 6). 

While the learning of the non-defective part is finished, the 

Si<l.o 1 Side 2 

Part (ii) 

Figure ( 5. 6) Non-defective parts 

Sid61 Side 2 

Part (ii) 

Figure(5.7) Standard defective 
parts 

system is trained with a set of defective machine parts , Fig. (5.7). 

In order to test the ability of the system in differentiating 

patterns, the two defective parts are designed to be very similar 

to the non-defective part, only different from one pixel . These 

machine parts are then treated as the standard and used to train 

the associative network. 

While the LAR is being trained, the values T;=LW;j(l)xj(l), the 

dot product, is recorded. There are four curves. Each of them 

representing the response of one neuron in the second layer . These 

curves only indicate the change of T; for the part(i) . The trend of 

the changing of T; is shown in Fig. (5.8). This plot indicates that 

2 Each side-view of the machine parts are represented by binary 
signal. For example the side 1 of the set(l} is in the form of 
{000000011110011110011110011110000000}. 
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Iteration x128 

Figure(5.8} Change of T against iteration , on the part(i). 

the LAR can achieve a stable state while learning. It is s hown that 

there are two winner neurons, in the X2 layer, giving the same dot 

product value, approx. 1.05 . 

After all the training, the integrated model i s tested and t he 

results are tabulated in Table 1. It is found that the system can 

correctly reject or classify the machine parts for all the 

threshold settings. 

CONCLUSION 

Throughout the paper, we are trying to illustrate a simpl e 

application example of an unsupervised learning model , t h e LAR . I t 
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Part 

ND ( i) 
ND (ii) 
D ( i) 
D (ii) 

ND:non-defective part 
D: defective part 

Table 1 

Threshold= 0.95,0.975,1 . 

<X2> <X3> <X4> <Xs> 

0100 0001 0000 0100 
1000 0010 0000 1000 
0001 0001 0001 0000 
0010 0010 0010 0000 

All zero in Xs means that t he part is defective according to the response 
of the system after learning. 

is a good example to show that unsupervised learning algorithm can 

have the potential to be implemented in industry. In contrast , 

nearly all the industrial applications of the neural networks had 

been concentrating on the back-proporgation model. 

For simplicity, the ability of the integrated model can be 

viewed as shown in Fig. (5.9). 
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DEFECTIVE REJECTION JOB 

I 

Figure(5.9) Functions of the integrated model 
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icHAPTER 6: CONCLUSION & COMMENT ON FURTHER DEVELOPMENT 

In so far, we have provided with the basic concept of neural 

network and the theory of the LAR model. Related work on the LAR 

model have been summarized in three papers and all of them are 

accepted (Lee et al, 1992a; Lee et al, 1992b; Sum et al, 1992}. 

However, the study of LAR is not that all. Due to the time 

limitation, it is not possible to do all the experiments for 

analysis the performance and behavior of the LAR model. In this 

chapter, we will try to describe several plausible suggestions on 

the further development of this LAR model. 

As discuss in chapter 3, the algorithm is governed by six 

parameters. They are (i) step size, -y, (ii) the number of input 

patterns,1 h (iii) the number of output neurons,n, (iv) the size of 

positive charge Q1 , (v) the size of negative charge Q2 , and (vi) 

similarity among the input pattern. Without loss of generality, we 

study the parameter ql and q2 instead of Ql and Q2. Based on these 

six parameters, we can further study the LAR model through the 

following ways. 

{l} Analysis of the performance of the model on step s i ze. ~ 
In fact, it just repeats the experiment presented i n chapter 

4 but with a smaller step size. 

(2) Analysis of the influence of l/n. 

In this test, all parameters except 1 are -y=0.0001, 

n=16, q 1=25 and q 2=1. Then increment the number of input patterns 

from 1 to 16. Plot a graph showing the differentiation ability 

against the ratio l /n. 

(3) Analysis of the influence of %1%· 

Also, we can fix all the parameters except q 1 • -y=0.0001, n=l 2-_, 

q2=1. Then set the value q 1 changing from 1 to 50, one at a time . 

) 
2 
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Plot a graph showing the differentiation ability against the ratio 

qifq2· 

(4) Analysis of the pattern similarity on the performance of the 

model. 
Fix the value of parameters as follows: ~=0.0001, n=1=2, q 1=25 

and q 2=1. Here the correlation factor is defined as Equ(6.l). 

(6. 1) 

and 

(6. 2) 

By inputing different pairs of patterns to the network, a graph can 

be plotted showing the differentiation ability against c. 

~ Find out a mathematical proof or disproof on whether 

model can fulfill the criteria mentioned in chapter 3. 

(6) Study the application scope of the LAR model. 
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< APPENDIX A > 

Directory of A: \LAR 

CHAROl DAT 301 12-24-91 2:10a 
CHAR02 DAT 400 01-10-92 5:48p 
CMCL c 4464 01-09-92 11: llp 
CMCL OBJ 5853 01-09-92 1:22a 
CMCL EXE 36397 01-09-92 1:22a 
MCL c 4245 01-09-92 11: Olp 
MCL OBJ 5651 01-09-92 ll:Olp 
MCL EXE 36234 01-09-92 11: Olp 

Directory of A: \MPR 

MPROl c 8300 01-29-92 3:26a 
MPRGOl DAT 99 01-28-92 3:31p 
MPRDOl DAT 99 01-28-92 3:38p 
MPROl OBJ 10337 01-29-92 3:32a 
MPROl EXE 37942 01-29-92 3:32a 
MPROl BAK 8303 01-29-92 3:24a 
MPRDOl BAK 99 01-28-92 3:31p 
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< APPENDIX A(i) > 

/*------------------------------------------------------------------------
CMCL. C 8-JAN-92 

Modified Compeititve Learning with Chaos. 

- The rule of response in the second layer is followed 
the competitive learning. 

- The weight updating rule is a new, not the same as 
the classic one. Its idea is based on a phenomena in 
electrostatics, like pole repell and unlike pole attract. 

- Chaos idea has been implemented in the algorithm to 
show the effect. 

--------------------------------------------------------------------------*/ 
#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<conio.h> 
#include<graphics.h> 

#define 
#define 
#define 
#define 
#define 
#define 

iteration 4096 
inneuron 48 
outneuron 8 
image 6 

T 0.0001 
mass 25 

int 
float 
float 
float 
float 
float 
float 

void 
void 
void 
void 
void 
void 
void 
void 
void 
void 

main() 
{ 

X2(outneuron]; 
Xl[image](inneuron]; 
DWW(outneuron)(outneuron]; 
DWX[outneuron][image]; 
IL[ image); 
Wl[outneuron)[inneuron); 
WN[outneuron); 

chaos (void); 
forward respond(void); 
inputpattern(void); 
learning(void); 
loadinput(void); 
normalization(void); 
normalize image(void); 
testing(void); 
weight init(void); 
weight=norm(void); 

int iterate; 
int index; 
void print weight(); 
load input ( ) ; 
normalize image(); 
weight init(); 
for(iterate=O; iterate<iteration; iterate++) 
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{ 
/*printf(".", iterate);*/ 
learning ( ) ; 
weight norm(); 
normalization(); 
index=iterate%256; 
if (index==O) { printf("\n\n 

print weight( ) ; 
forward respond(); 
printf("\n\n" ) ; 
chaos (); } 

%d ---\n\n",iterate); 

} 

printf("\n\n --- %d ---\n\n",iterate); 
print weight(); 
forward respond(); 
} -

void loadinput() 
{ 
char xc; 
int i,j,k; 
int xx; 
FILE *input; 

/*input=fopen("mcl.dat","r");*/ 
input=fopen("charOl.dat","r"); 
for(k=O; k<image; k++) 

{ for(i=O; i<inneuron; i++) 
{ xc=getc(input); 

xx=atoi(&xc); 
Xl[k] [i]=xx; 

} 
getc(input); 

} 
fclose(input); 
} 

void weight_init() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
for(j=O; j<inneuron; j++) Wl[i][j]=random(B); 

weight norm(); 
normalization(); 
} 

void 
{ 
int 
int 
float 
float 

forword_respond() 

i,j,k; 
maxneuron; 
S; 
Smax; 
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for(k=O; k<image; k++) 
{ 
printf("\nimage %d\n", k+l); 
Smax=O; 
maxneuron=O; 
for(i=O; i<outneuron; i++) 

{ 
S=O; 
for(j=O; j<inneuron; j++) S=S+Wl[i][j]*Xl[k)[j); 
if(S>Smax) { Smax=S; maxneuron=i; } 

} 

} 
for(i=O; i<outneuron; i++) 

{ 
X2[i]=O; 
if(i==maxneuron) X2[i]=l; 
printf(" %d", X2[i)); 
} 

printf(" %f", Smax); 
} 

void separation() 
{ 
int i,k,l; 
float d,dd; 

for(k=O; k<outneuron; k++) 
for(l=O; l<outneuron; l++) 
{ d=O; 

} 

for(i=O; i<inneuron; i++) 
{ dd=Wl[k][i]-Wl[l][i]; 

d=d+dd*dd; 
} 

DWW[k][l]=d; 

for(k=O; k<outneuron; k++) 
for(l=O; !<image; l++) 

} 

{ d=O; 

} 

for(i=O; i<inneuron; i++) 
{ dd=Wl[k][i] - Xl[l][i]; 

d=d+dd*dd; 
} 

DWX[k][l]=d; 

void learning() 
{ 
int i,j,l; 
int pn; 
float f; 

float F[outneuron)[inneuron); 

separation(); 
pn=random(4); 

for(i=O; i<outneuron; i++) 
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for(l=O; l<inneuron; 1++) 
{ F[i][l]=O; 

for(j=O; j<outneuron; j++) . . . 
{if (jJ=i) ( f=(Wl[i][l]-Wl[J][l])/DWW[i][J]i 

F[i][l]=F[i][l]+f; 
} 

} 

f=(Xl{pn][l]-Wl[i][l])/DWX[i)[pn]; 
F[i][L]=F[i][L]+mass*f; 

} 

for(i=O; i<outneuron; i++) 
for(l=O; l<inneuron; 1++) Wl[i][l]=(l-T)*Wl[i][l]+T*F[i][l]; 

} 

void print_weight() 
{ 
int i,j,k; 

for(i=O; i<outneuron; i++) 
{ 

} 
} 

for(j=O; j<inneuron; j++) 
printf(" %f", Wl[i][j]); 
printf("\n"); 

void weight_norm() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
{ 
WN[i]=O; 
for(j=O; j<inneuron; j++) WN[i]=WN[i]+Wl[i][j)*Wl[i][j]; 
WN[i]=sqrt(WN(i]); 
} 

} 

void normalization() 
{ 
int i,j; 
float norm; 

for(i=O; i<outneuron; i++) 
{ 
norm=WN[i]; 
for(j=O; j<inneuron; j++) Wl[i][j]=Wl[i][j)/norm; 
} 

} 
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void normalize_image() 
{ 
int i,j; 
float norm; 

for(i=O; i<image; i++) 
{ 
IL(i]=O; 
for(j=O; j<inneuron; j++) IL[i]=IL[i]+Xl[i][j]*Xl[i][j); 
IL[i]=sqrt(IL[i]); 
} 

for(i=O; i<image; i++) 
{ 
norm= IL [ i] ; 
for(j=O; j<inneuron; j++) Xl[i][j)=Xl[i][j)/norm+0.05; 

} 
} 

voi d chaos() 
{ 
int n l ,n2 ; 

nl=random(inneuron) ; 
n2=random(outneuron) ; 
Wl[n2][nl]=O; 
} 
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< APPENDIX A(ii) > 

/*------------------------------------------------------------------------
MCL. C 6-JAN-92 

Modified Compeititve Learning 

- The rule of response in the second layer is followed 
the competitive learning. 

- The weight updating rule is a new, not the same as 
the classic one. Its idea is based on a phenomena in 
electrostatics, like pole repell and unlike pole attract. 

--------------------------------------------------------------------------*/ 
#include<stdio.h> 
#include<stdlib.h> 
#include<math . h> 
#include<conio.h> 
#include<graphics.h> 

#define 
#define 
#define 
#define 
#define 
#define 

iteration 4096 
inneuron 48 
outneuron 8 
image 6 

T 0.0001 
mass 25 

int 
float 
float 
float 
float 
float 
float 

void 
void 
void 
void 
void 
void 
void 
void 
void 

main() 
{ 
int 
int 
void 

X2[outneuron]; 
Xl[image][inneuron); 
DWW[outneuron][outneuron]; 
DWX[outneuron][image]; 
IL[image]; 
Wl[outneuron][inneuron]; 
WN[outneuron]; 

forward respond(void); 
inputpattern(void); 
learning(void); 
loadinput(void); 
normalization(void); 
normalize image(void); 
testing(void); 
weight init(void); 
weight=norm(void); 

iterate ; 
index; 
print_weight(); 

loadinput(); 
normalize image () ; 
weight init(); 
for(iterate=O; iterate<iteration; iterate++) 

{ 
/* printf("." , iterate);*/ 

learning(); 
weight norm () ; 
normalization () ; 
index=iterate%256; 
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if (index==O) { printf("\n\n --- %d ---\n\n",iterate); 
print weight(); 
forword respond(); 
printf <"\n\n"); } 

} 
printf("\n\n --- %d ---\n\n",iterate); 
print_weight(); 
forword_respond(); 
} 

void loadinput() 
{ 
char xc; 
int i,j,k; 
int xx; 
FILE *input; 

/* input=fopen("mcl.dat","r"); */ 
input=fopen("charOl.dat","r"); 
for(k=O; k<image; k++) 

{ for(i=O; i<inneuron; i++) 
{ xc=getc(input); 

xx=atoi(&xc); 
Xl[k][i)=xx; 

} 
getc(input); 

} 
fclose(input); 
} 

void weight_init() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
for(j=O; j<inneuron; j++) Wl[i][j)=random(8); 

weight norm(); 
normalization(); 
} 

void 
{ 
int 
int 
float 
float 

forword_respond() 

i,j,k; 
maxneuron; 
S; 
smax; 

for(k=O; k<image; k++) 
{ 
printf("\nimage %d\n", k+l); 
Smax=O; 
maxneuron=O; 
for(i=O; i<outneuron; i++) 

{ 
S=O; 
for(j=O; j<inneuron ; j++) S=S+Wl[i][j]*Xl[k][j]; 
if(S>Smax) { Smax=S; maxneuron=i; } 
} 

for(i=O; i<outneuron; i++) 
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{ 
X2[i]=O; . 
if(i==maxneuron) X2[i]=l; 
printf(" %d", X2[i)); 
} 

printf (" %f", Smax); 
} 

} 

vo i d separation() 
{ 
int i,k,l; 
float d,dd; 

for(k=O; k<outneuron; k++) 
for(l=O; l<outneuron; l++) 
{ d=O; 

} 

for(i=O; i<inneuron; i++) 
{ dd=Wl[k][i]-Wl[l][i]; 

d=d+dd*dd; 
} 

DWW[k][l]=d; 

for(k=O; k<outneuron; k++) 
f or(l=O; l<image; l++) 
{ d=O; 

} 

} 

for(i=O; i<inneuron; i++) 
{ dd=Wl[k][i]-Xl[l][i]; 

d=d+dd*dd; 
} 

DWX[k][l]=d; 

void learning() 
{ 
int 
int 
float 

i,j,l; 
pn; 
f; 

float F[outneuron}[inneuron}; 

separation(); 
pn=random(4); 

for(i=O; i<outneuron; i++) 
for(l=O; l<inneuron; l++) 
{ F[i][l]=O; 

for(j=O; j<outneuron; j++) 
{if (j!=i) { f=(Wl[i][l]-Wl[j][l] )/DWW[i][j]; 

F[i][l]=F[i][l]+f; 

} 

} 
} 

f=(Xl [pn][l] -Wl[i][l])/DWX[i][pn}; 
F[i][ l] =F[i][ l]+mass*f; 
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for(i=O; i<outneuron; i++) 
for(l=O; l<inneuron; l++) Wl[i][l]=(l-T)*Wl[i][l]+T*F[i][l]; 

} 

void print_weight() 
{ 
int i,j,k; 

for(i=O; i<outneuron; i++) 
{ 

} 
} 

for(j=O; j<inneuron; j++) 
printf(" %f", Wl[i][j]); 
printf("\n" ); 

void weight_norm () 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
{ 
WN[i)=O; 
for(j=O; j<inneuron; j++) WN[i]=WN[i]+Wl[i)[j)*Wl[i)[j); 
WN[i)=sqrt(WN[i )) ; 
} 

} 

void 
{ 
int 
float 

normalization( ) 

i,j; 
norm; 

for(i=O; i<outneuron; i++) 
{ 
norm=WN[i]; 
for(j=O; j<inneuron; j++) Wl [ i][j)=Wl[i][j)/norm; 
} 

} 

void normalize_image() 
{ 
int i,j; 
float norm; 

for(i=O; i<image; i++) 
{ 
IL[i]=O; 
for(j=O; j<inneuron; j++) IL[i]=IL[i]+Xl[i][j]*Xl[i][j]; 
IL[i)=sqrt(IL[i)); 
} 

for(i=O; i<image; i++) 
{ 
norm=IL[i]; 
for(j=O; j<inneuron; j++) Xl[i][j]=Xl[i][j]/norm+0.05; 
} } 
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< APPENDIX A(iii) > 

/*-----------------------------------------------------------------------
MPROl. C 28-JAN-92 -

Machine Part Recognition (Part l) 

Function : Parts Classifi cation 
Reject Defective Parts 
Testing 

I nput : MPRGOl . DAT 
MPRDOl.DAT 

-----------------------------------
# include < s tdio.h> 
# include<s tdlib.h> 
# include <math.h> 
#include<conio.h> 
#include <graphics.h> 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

int 
int 
int 
i nt 
i nt 
f l oat 
float 
float 
float 
float 
float 
float 
f loat 

void 
void 
void 
void 
voi d 
vo i d 
voi d 
v o i d 
voi d 
void 
voi d 
void 
void 
void 
void 
void 

iteration 128 
inneuron 48 
outneuron 2 
image 
d e fnum 
T 
t 
p 
l e v e ll 
mass 

Super; 

2 
2 
0.0001 
0.01 
0.05 
1 
25 

X2[outneuron]; 
X3[outneuron); 
X4 [ outneuron]; 
XS [ out neuron]; 
Xl [image][inneuron]; 
TI [inneuron); 
DWW [outneuron)[outneuron); 
DWX [outneuron)[ima ge ) ; 
IL[ i mage ]; 
Wl [ outneuron][inneuron ) ; 
W2 [ outneuron)[inne uron ) ; 
WN [ outneuron]; 

a u t otesting(void ) ; 
forward respond(void); 
GenerateX2(void); 
GenerateX3(void); 
GenerateX4(void); 
GenerateXS(void); 
i nputpattern(void); 
l earn12 (void); 
learn13(void); 
l oaddefect(vo i d) ; 
loadinput( void); 
normalization(voi d); 
normalize i mage(void) ; 

normalize w2(void); 
testing (void); 
test i nput(void) ; 

---------------------------------------* / 



void 
void 

main() 
{ 
int 
int 
int 
i nt 
void 

weight init(void); 
weight=norm(void); 

i,j; 
def no; 
iterate; 
index; 
print_weight(); 

Super=O; 
loadinput () ; 
pr i ntf (" loadinput completed ... \n"); 
norma lize image ( ); 
printf ( " norma lization completed ... \n"); 
we ight init () ; 
print f1 " uns upe rvised learning started ... \n"); 
for (iterate=O; iterate<iteration; iterate++) 

{ 
l earnl2 () ; 
we ight norm () ; 
norma lization () ; 
inde x =ite r a te%128; 
i f ( i ndex ==O) { printf ("\n %d ---\n",iterate); 

forword_respond( ) ; } 
} 

printf("\n --- %d --- " ,iterate ) ; 
forward respond () ; 
printf(~\n\n u ns upervised l earning completed ... \n"); 
printf(" loading d e f e ctive pattern ... \n"); 
loaddefect(); 
pri ntf( " normal i ze defective pattern ... \n"); 
normalize image () ; 
printf(" supervised earning started - learn defectvie item •.. \n"); 
/* printf(" de f ect "ve item = %d \ n", defnum); */ 
Super=l; 
for(iterate=O; iterate< t eration ; iterate++) 

{ 
defno=random (defn 
printf("\n%d • .. \n•, de~ o ) ; 
for(i=O; i<inneuro; i - ) -- [ i]=Xl [defno)[i ] ; 
GenerateX2(); 
GenerateX4(); 
learnl3(); 
GenerateX3(); 
GenerateX5(); 

} 

printf("\n"); 
for(j=O; j<outneuro~; printf("%d" , X2 [ j ]) ; 
printf(" "); 
for(j=O; j<outneuron; print f ( " %d", X3 [j]) ; 
printf(" "); 
for ( j=O; j<outneur o ; -- pr · nt f ( "%d" , X4 ( j )) ; 
printf(" "); 
for(j=O; j<outneur on; -- pr.:.nt f ( "%d" , X5 [j]) ; 

printf("\n supervised e~ -:; :; 
printf(" Auto-Test ing St~ec -: 
normalize W2(); 
autotesting(); 

ete d ... \n\n" ) ; 

getchar (); 
} 

78 



void 
{ 
char 
int 
int 
FILE 

loadinput ( ) 

xc; 
i,j,k; 
xx; 
*input; 

i nput=fopen( "mprgOl.dat","r"); 
for ( k=O; k<image; k++) 

{ for ( i=O; i<inneuron; i++) 
{ xc=getc(input); 

xx=atoi( &xc ) ; 
Xl[k][i] =xx; 

} 
getc(input) ; 

} 
fclose (input); 
} 

void loaddefect () 
{ 
char 
i nt 
int 
F ILE 

xc; 
i, j I 

xx; 
*defect; 

defect=fopen("mprdO .dat","r"); 
for ( k=O; k<de fnum; k+T ) 

{ for (i=O ; i<inneuron; i++) 
{ xc=g etc(defect ) ; 
xx=a t o i(&xc); 
Xl[k][i ] =xx; 

} 
getc(defect ); 

} 
fclose(defect ); 
} 

v o i d weight_init () 
{ 
int i, j; 

for (i=O; i<outne ron; i++) 
f or(j=O; j<inne ran; j++ ) Wl[i][ j)=random(8); 

we i ght norm ( ) ; 
normalization( ); 

for(i=O; i<outne ro ; i++) 
for(j=O; j<inne r n; j++) W2 [ i )[j] =O; 

} 

voi d 
{ 
int 
int 
float 
float 

forword_ r espond() 

i,j,k; 
maxneuron; 
s; 
Smax; 
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for(k=O; k<image ; k++) 
{ 
printf("\nimage %d\n" , k+l); 
Smax=O; 
maxneuron=O; 
for(i=O; i<outneuron; i++) 

{ 
S=O; 
for(j=O; j<inneuron; j++) S=S+Wl[i][j]*Xl[k][j]; 
printf(" %f", S); 
if ( S>Smax) { Smax=S; maxneuron=i; } 
} 

} 

for(i=O; i<outneuron; i++) 
{ 

} 

X2 [i ]=O; 
i f ( i==maxneuron) X2[i]=l; 
} 

vo id separation() 
{ 
i nt 
f loat 

i,k, l ; 
d,dd; 

fo r(k=O; k<outne u ron; k++) 
for(l=O; l<outneuron; l++) 
{ d=O; 

for(i=O; i<inneuron; i++) 
{ dd=Wl [ k ][ i] -Wl[l][i]; 

d=d+dd*dd; 
} 

DWW [ k ][ l ] =d; 
} 

for(k=O; k<ou t e u ron; k++) 
for(l=O; l <ioage; l++) 
{ d=O; 

} 

} 

void 
{ 
int 
int 
f l oat 

f l oat 

for(i= O; -<inne u ron; i++) 
{ dd=W Aj[i ] -Xl[l][i]; 

d=d - dd dd ; 
} 

DWX[k ] [ J=d ; 

learn12( ) 

i ,j,l; 
pn ; 
f; 

F(outneuron)(inneuron) ; 

separation ( ); 
pn=random(image ); 

for ( i=O; i<outneuron; i++) 
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for(l=O; l<inneuron; l++) 
{ F [ i ) [ l ] =O ; 

for(j=O; j<outneuron; j++) 
{if (jl=i) { f=(Wl[i][l]-Wl[j)[l])/DWW[i][j]; 

F[i] [l]=F[i] [l]+f; 
} 

} 

f=(Xl[pn)[l]-Wl[i][l])/DWX[i)[pn); 
F[i)[l]=F(i][l]+mass*f; 

} 

for(i=O; i<outneuron; i++) 
for(l=O; l<inneuron; l++) Wl[i][l]=(l-T)*Wl[i][l]+T*F[i][l]; 

} 

void learnl3() 
{ 
int it j i 

for (i=O; i<outneuron; i++) 
for (j =O; j<inneuron; j++) W2[i][j]=(l-t)*W2[i][j]+p*TI(j]*X4[i]; 

} 

void ·eig ~ arm() 
{ 

n , . 
- I I 

for ( = ~< ne u ron; i++) 
{ 
WN[ i 
for (j = ; J< "nneuron; j++) WN[i]=WN[i]+Wl[i](j]*Wl[i)(j); 
WN[i ] =sqrt: 1'N[i]) ; 
} 

} 

void normalize_W2() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
{ WN[i]=O ; 

for(j=O ; j<inneuron; j++) WN[i]=WN(i]+W2[i)(j]*W2[i][j); 
WN[i)=sqrt (WN [i]); 

} 

for(i=O; i<outneuron; i++) 
for(j=O; j<inneuron; j++) 

{ if ( WN [ i] ! =O) W2 ( i )[ j ] =W2 ( i )[ j ) /WN [ i) i } 
} 

81 



void normalization() 
{ 
int 
float 

i,j; 
norm; 

for(i=O; i<outneuron; i++) 
{ 

norm=WN[i]; 
for(j=O; j<inneuron; j++) Wl[i][j]=Wl[i][j]/norm; 
} 

} 

void 
{ 
int 
float 

normalize_image() 

i, j; 
norm; 

for(i=O; i<image; i++) 
{ 

IL[i ) =O; 
for (j =O; j<inneuron; j++) IL[i]=IL(i]+Xl[i][j)*Xl[i][j); 
IL[i)=sqrt(IL[i]); 
} 

for (i=O; i<image; i++) 
{ 
norm=IL [i) ; 
for(j=O; j < inneuron; j++) Xl[i)[j)=Xl[i)[j)/norm+0.005; 

} 
} 

void testinput() 
{ 
int j; 
float TI:; 

TIL=O; 
for(j=O; j<inne ron; j++ ) TIL=TIL+TI[j)*TI(j]; 
TIL=sqrt(TIL); 
for(j=O; j<inne ron; j++) TI[j)=TI[j)/TIL+0.05; 
} 

void GenerateX2() 
{ 
int 
int 
float 

Smax=O; 

i,j; 
Winner; 
Smax,S; 

for(i=O; i<outneuron ; i++) 
{ S=O; 

for(j=O; j<inneuron; j++) S=S+Wl[i][j]*TI[j] ; 
if(S>Smax ) { Smax=S; Winner=i; } 

} 
for(i=O; i<outneuron; i++) 

{ X2[i]=O; 
if(i==Winner ) X2[ i]=l; 

} 
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} 

void 
{ 
int 
float 

GenerateX3() 

i,j; 
S; 

for(i=O; i<outneuron; i++) 
{ S=O; 

for(j=O; j<inneuron; j++) S=S+W2[i][j]*TI[j]; 
X3[i]=O; 

} 
if(S>=levell) X3[i]=l; 

} 

void 
{ 
int 
float 

GenerateX4 () 

i,j; 
S• I 

for(i=O; i<outneuron; i++) 
{ X4[i]=O; 

} 
if((Super==l)&&(X2[i]==l)) X4[i]=l; 

} 

void GenerateXS() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) XS[i]=X2[i]-X3[i]; 
} 

void autotesting() 
{ 
int i,j,k; 

loadinput(); 
normalize image(); 
Super=O; -
for(k=O; k<image; k++) 

{ for(i=O; i<inneuron; i++) TI[i)=Xl[k][i]; 
GenerateX2(); 

} 

GenerateX4 (); 
GenerateX3(); 
GenerateXS(); 
printf("\n"); 
for(j=O; j<outneuron; j++) printf("%d", X2[j]); 
printf(" "); 
for(j=O; j<outneuron; j++) printf("%d", X3[j]); 
printf(" "); 
for(j=O; j<outneuron; j++) printf("%d", X4[j]); 
printf(" "); 
for(j =O; j<outneuron; j++ ) printf("%d", XS[j]); 

loaddefect(); 
normalize_image(); 
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Super=l; 
for(k=O; k<image; k++) 

{ for(i=O; i<inneuron; i++) TI [ i) =Xl [ k) [ i); 
GenerateX2(); 
GenerateX4(); 
GenerateX3(); 
GenerateXS(); 
printf("\n"); 
for( j=O; j<outneuron; j++) printf("%d", X2 [ j ) ) ; 
printf(" " ) ; 
for ( j=O; j<outneuron; j++) printf("%d", X3[j]); 
printf(" " ) ; 
for ( j=O; j<outneuron; j++) printf("%d", X4 [ j) ) ; 
printf(" " ) ; 
for ( j=O; j<outneuron; 

} 
j++) printf("%d", XS [ j ) ) ; 

} 
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< APPENDIX A(iv) > 

Here is the content of the file CHAROl.DAT ( for use in MCL.C / CMCL.C ) 

111100001100010010010010111111110011100001100001 
111110110011110011111110111110110011110011111110 
011111111111110000110000110000110000111111011111 
111111111111110000111111111111110000111111111111 
001110010010010010010010010010010110010110001111 
110011110011110011111111111111110011110011110011 

Here is the content of the file CHAR02.DAT. The last two lines are dummy. ( for 
use in MCL.C / CMCL.C ) 

111110100001100001100010111100100110100011100011 
111100100110100010100010111110100000100000100000 
111100001100010010010010111111110011100001100001 
111110110011110011111110111110110011110011111110 
011111111111110000110000110000110000111111011111 
111111111111110000111111111111110000111111111111 
001110010010010010010010010010010110010110001111 
110011110011110011111111111111110011110011110011 

Here is the content of MPRGOl.DAT ( good machine part for MPR.C ) 

111111110011110011100001100001110011110011111111 
000000001100001100011110011110001100001100000000 

Here is the content of MPRDOl.DAT ( defective machine part for MPR.C ) 

110111110011110011100001100000110011110011111111 
000100001100001100011110011110001100001100001000 
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STRUCTURE OF NETWORK 

Consider a neural network consisting of 48 neurons in the 
first layer and 8 neurons in the second layer. We set the 
constants q 1 and q2 to be 25 and 1 respectively. The step 
size, 'Y, is 0.0001. The threshold, 8i, of each of the 
neurons in the first layer are set to 0. The update takes 
over 4096 iterations. 
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Synaptic 
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Test 1: General LAR approach 

In this test, we choose pattern (i) to (vi). 

Iteration Pattern# . 
max. value of yj ZJ 

0 1 01000000 0.976141 
2 01000000 0.955053 
3 01000000 1.016840 
4 01000000 1.116477 
5 10000000 1.023682 
6 00000010 1.125428 

512 1 00001000 1.159309 
2 01000000 1.157658 
3 00010000 1.146984 
4 10000000 1.253260 
5 00000010 1.194579 
6 00000010 1.290241 

4096 1 00001000 1.259999 
2 01000000 1.241957 
3 00010000 1.260759 
4 10000000 1.307193 
5 00000010 1.271767 
6 00000001 1.320562 



Test 2: Chaotic LAR approach 

In this test, we select the pattern (i) to (iv) and (vii) 
to (viii) from Fig(4.2). The network parameters are the 
same. But here we add a concept - Chaos - to the 
simulation program. 
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