
NEURAL NETWORK
FOR

CHARACTER RECOGNITION

The Study of Aritificial Neural Network and the Implem­
entation of LAR in Character/Machine-Part Recognition

John P.F.SUM
Department of Electronic Engineering

Hong Kong Polytechnic

Supervised by : Peter K.S.TAM
Senior Lecturer

Section of Control and Instrumentation
Department of Electronic Engineering

Hong Kong Polytechnic

• . •.: ...,..,.
'-",;. d

•

.. . .. ~,, -·y

. . , .,, .
:·~.,, , , ,

I • e.,a. ' C :-

kN ~VM . J' 7 - · · · · .-..

CONTENTS

PREFACE • ..•••••••..••••.•...•......•......•.•....• ••••. 1
Acknowledgement 4

Chapter l: rntroduction•.....•.... 5
Fundamental Questions of Human Cognition 5
Neural Network Vs Duplication of Human Learning 7
Neural Network as a subject in Neuroscience 8
Three important issues in Neural Network B
Connection of the three issues 13
Conclusion 13

Chapter 2 : Basic concepts of Neural Networks 15
Neuron as function 15
Unsupervised type neural networks 18

Chapter 3 : LAR - An Unsupervised Learning
Introduction
Initial setting constraint
Criteria for pattern recognition
Learning model
Conclusion

Algorithm . . 29
29
29
32
32
41

Chapter 4 : Character Recognition Using LAR 42
Introduction 42
Simulation example : Character Recognition 42
Comparison with competitive learning 48

Chapter 5 : Machine Part Recognition Using
Introduction
Learning model
Organization of integrated model
Training procedure
Simulation result
Conclusion

Chapter 6 : conclusion & Comment on Further

LAR 54
54
55
57
60
60
62

Development 65

Appendix A: Simulation Software 67
Appendix A(i) - CMCL.C 68
Appendix A(ii) - MCL.C 73
Appendix A(iii) - MPROl.C 77
Appendix A(iv) - Data file 85

Appendix B: Bibilography 86
Further References 89

PREFACE

In the recent decade, the research in neural network came into

a new era. Some researchers proposed new models of neura l networks .

Some enhanced the old ones with new structures, in order to reduce

the complexity of the networks. New learning algorithms were

proposed and investigated. Centers related to neural network

research were set up in many university across the United State and

European . Companies were also established for neural network

research, development and application.

So far, a number of neural networks has been well developed

and applied. The Multi-Layer Perceptron with Back Propagation

learning algorithm was implemented in pattern recognition

application successfully. In another school, the Adaptive Resonance

Theory (ART), was applied not just in pattern recognition, but also

in speech recognition. Hopfield Net was well developed as

associative memory. Besides, the capability of VLSI fabrication has

been deeply investigated. Futhermore, the application of neural

network in system control is also becoming popular.

The scope of neural network is very large. It is impossible to

give a full account, both on the historical background and the

theory background, on neural network within this technical report.

Hence, as a final year project report, only part of the theory and

history, of the neural network, will be elucidated in the text.

Basically, neural networks can be classified into supervised

and unsupervised types. Inside the report, most of the neural

network models described will be in the category of unsupervi sed

learning. There are two reasons why the writer preferr ed the

unsupervised instead of the supervised type.

1

(1) Since the supervised type of neural networks was already

studied and implemented in one of the final year projects in 1990.

The writer do not want to overlap the job with that project. The

interested reader can refer to that project report, written by c.w.
Cheung in the 1990 (Cheung 90), to get the background on the

supervised type of neural network. Besides, several models in

supervised learning were also studied indepth in that project.

Multi-Layer Perceptron was even implemented by him in Tactile image

recognition and robotics motion control and the result was good.

(2) The core of this project is in the development and

implementation of a novel neural network model, the LAR (Learning

by Attraction and Repulsion) model. This model was designed by the

writer early in 1992. The structure of LAR model is bas i ca l ly

inspired from the Competitive Learning one which is an unsupervised

learning model. As an introductory section , most of the models

described are of the unsupervised type.

Priori to the main content, an introduction is given in

chapter one. It gives a concise historical background on neural

network, its appearance, its relationship with other subjects and

its role. It is aimed at providing an overview for the reader . So,

it acts as a bridge for the new comer. Since the presentation

approach may not be good, if the reader get lost in this chapter,

he can skip this chapter and find another way to get the historical

information. Let me emphasis, background information may not help

the reader to understand the theory of the neural network but it

can give the reader a sense of completeness in this area. One

suggested reading is Principle of Neurodynamics . It was written by

Frank Rosenblatt in 1962 (Rosenblatt 1962). In chapter 3 of the

book, Frank Rosenblatt described clearly the neural network history

including the arising of neural network and its relationship with

psychology, physiology and etc.

2

In chapter two, the basic concept of theory of neural network

will be presented. As mentioned before, it is mainly unsupervised

type, including Hopfield Net, Competitive Learning and ART. The

reader who wishes to have a deeper insight on the supervised model

can refer to "The study of the Applications of Neural Networks"

(Cheung 1990), "Neurocomputing" (Hecht-Neilsen 1990), "Neural

Network and Fuzzy systems" (Kosko 1992) or "Neural Computing"

(Wasserman 1989). Besides, the writer presumes that the reader have

acquired basic knowledge on the neuron structure. For further

details, the reader can refer to chapter 15 of "Biopsychology"

written by John Pinel (Pinel 1990).

The LAR model is given in chapter three. It was actually the

core stuff in the final year project. A number of simulation

programs and application programs have been written for the

verification and evaluation of the model. Part of the result will

also be provided for the explanation. The LAR model was also

implemented in character recognition and machine part recognition.

Details of these applications will be found in chapter four and

five respectively.

In chapter six, the further development on the LAR model will

be presented. A number of Appendices will follow. This materials

serve as a source for the reader. When the reader find problem in

understanding the algorithm or the content of the report, he can

ref er to the appendices. At the end of the report, a list of

reference will be provided in order to let the reader to trace the

sources of information, quoted inside the report.

In summary, the objective of this report consists of the

following five points.

1. It introduces the historical background of neural networks .

2. It introduces the basic ideas of neural network.

3

3. It explains the theory of the LAR model.

4. It provides the sources of information.

s. It provides the programs and data files for the LAR model.

Most important, the writer wishes that the report can also be a

pointer for the new comer.

ACKNOWLEDGEMENT

Finally, I would like to thank some people who helped me in

completing this project. The first two are Mr.Lee Lin Fai ,

Electronics Engineering Degree Four, and Miss Florence Tang,

Language and Communication Degree Two. Both of them gave me a lot

of advises during the development of the LAR model. Discussion with

them was worthwhile and stimulative. The second two whom I would

like to thank are Dr. Peter Tam (my project supervisor) and Dr .

C.K. Lee, Department of Electronic Engineering, HKP. Without their

valuable suggestion and encouragement, the LAR model might not be

appeared so early and the papers might not be submitted so easy .

Most of all, I would like to thank my uncle Anthony To, Master

Candidate, Department of Educational Psychology , University of Hong

Kong. Without his provision of the information in psychology, I

will surely miss plenty of important aspects of the neural network.

Besides, I would like to give a special thank to Dr. Peter Tam for

his patient reviewing on the manuscript. Of course, the writer is

willing to response to any mistake appeared in this report. I

apologize to those of my friends whose contribution I cannot

include in this brief acknowledgment here. I am sorry.

John P.F. SUM

(Degree 4) Department of Electronics Engineering,

Hong Kong Polytechincs. HONG KONG.

May 1992

4

CHAPTER ONE : INTRODUCTION

In this chapter, some important ideas on the neural network

will be given. It~ connection with other fields of studies, such as

artificial intelligence, brain theory , psychology etc,. will be

examined. Actually, half of the content of this chapter is

summarized from Frank Rosenblatt (1958), Rosenblatt (1960),

Rosenblatt (1962) and Rosenblatt (1964).

Fundamental Questions of Human Cognition

If we are eventually to understand the capability of higher

organisms for the perceptual recognition, generalization, recall

and thinking, we must first have answers to the following three

fundamental questions:

1. How is information about the physical world sensed, or detected,

by a biological system?

2. In what form is the information stored, or remembered?

3. How does information stored or remembered influence recognition

and behavior.

The first of these questions is in the province of sensory

physiology, and is the only one for which appreciable understanding

has been achieved. With regard to the second question, two

alternative positions have been maintained.

The first suggests that storage of sensory information is in

the form of coded representation of images, with same sort of one­

to-one mapping between sensory stimulus and the stored pattern .

According to this hypothesis, if one understood the code of the

nervous system, one should in principle be able to discover exactly

5

what an organism remembers by reconstructing the original sensory

patterns from the "memory traces".

The alternative approach which stems from the tradition of

British empiricism, hazards the guess that images of stimuli may

never really record at all, and that the central nervous system

simply act as an intricate switching network, where retention takes

the form of new connections, or pathways, between centers of

activity. The important feature of this approach is that there is

never any simple mapping of the stimulus into memory, according to

some code which would permit its later reconstruction.

corresponding to these two positions on the method of

information retention, there exist two hypotheses with regard to

the third question. The "code memory theorists" are forced to

conclude that recognition of any stimulus involves the matching of

systematic comparison of the contents of storage with incoming

sensory patterns. The theorists in the empiricist tradition have

essentially combined the answer to the third question with their

answer to the second: since the stored information takes the form

of new connections, or transmission channels in the neurons system,

it follows that the new stimuli will make use of these new pathways

which have been created, automatically activating the appropriate

response without requiring any separate process for their

recognition or identification. The theory backing the Perceptron

and neu'f+.ral network takes the empiricist or connectionist position .

At this moment, the reader should realize that in the recent

decades, "code memory theorists" was the symbolic approach. It

played a main role in the study of artificial intelligence

research.

6

Neural Network Vs Duplication of Human Learning

The following message is also quoted from Rosenblatt (1960)

while he was answering a question from an audience. In his answer,

he explained clearly his attitude towards his research area. It

should be the attitude of neural networks research workers

nowadays.

Well, first of all let me say that we are interested in

duplicating human learning, if it is possible to do so. We are

interested in determining the extend to which it is feasible to

consider such a thing as duplicating human learning, or at least

understanding how human learning operates. Whether or not there

exists a better mode of learning is in sense an empirical question

to which I don't feel we can supply an answer at this point.

We interested, however, not only in studying human learning,

but in studying the behavior of networks which include biological

nervous systems as a subclass. That is to say, we are interested in

study of signal transmission networks which involve connected nodes

or cell points which have functional characteristics similar to

those of biological neurons, but not necessarily identical.

If it emerges from the study of such systems that some of

these behave better than others or some of them so in fact behave

better than human nervous systems, this would be a very interesting

finding indeed. But it would emerge from the study of this general

class of systems and is not something I feel we can specially aim

for at this point.

7

Neural network as a subject in neuroscience

Neuroscience can be broadly defined as a scientific displince

concerned with understanding both the brain and the mind, which are

usually presumed to be respectively the hardware and software

ObJ'ect. In neuroscience, the brain's structure
aspects of the same
has been simulated by creating many functional concepts and
psychological models based on experimental results. Many valuable
inspirations provide insight to neural network. As a result, many

models have been created, which are simplified versions of the

actual human brain. In return, the ideas evolved from neural

network provide useful insights to the research of neuroscience

(Rosenblatt et al, 1966; Rosenblatt 1967; Kandel 1982; Pinel 1990 ;

Churchland et al 1990).

Three important issues in Neural Network

In the history of neural network, there are three issues

paving the way for the current research. One was the neuron model

proposed by Warren MuCulloch and Walter Pitts in 1943 (MuCulloch

and Pitts 1943). The other was the Hebb's postulation, or Hebbian

Learning, which was claimed in 1949 (Hebb 1972; Hebb 1980). M-P

neuron may be represented as shown in Fig 1. 1 (b) and in its

simplest possible form is a device which gives an output (to the

right) if it gets an input from at least a certain number, say 0,
of its inputs (on the left). It thus has a threshold 0 in the

simplest version of the model. Biologists often criti cize the

logical neuron for being too unrealistic. It is important for us to

realize that this is rather unfair . The great advantage of the

logical neuron is its simplicity, which often enables us easily to

gain an insight into how a network of nerve cells might be expected

to behave. The last issue was the derivation of the membrane

equation by A. Hodgkin and A. Huxley in the 1952 (Hodgkin and

Huxley, 1952).

8

(a)

(a) Biological neuron
(b),(c) M-P Neuron

Figure (1.1) Neuron model

Xi

Xi

X1
(b)

y

y

Xn (c)

MuCulloch and Pitts Neuron (MuCulloch and Pitts 1943; Griffith

1971)

In Fig l.l(b), xi is the output signal from the ith neuron. To

be more precise, it is the potential at the axon of the ith neuron.

wi is the synaptic strength between the ith neuron and the neuron

y. Denote the effective potential arrived at the dendrite of the

neuron as S. The effective potential, s, is given by Equ(l.l).

(1. 1)

9

For the sake of simplicity, the activity of the neuron is defined

as Equ (1. 2) .

(1. 2)
if s~a
if S<6

where O represents the threshold value. In other texts, M-P neuron

is also called threshold logic device. The symbol of a M-P neuron

is given in Figl.l(c}. This neuron model has influenced the neural

network researches in the last three decades.

Hebb's Neurophysiological Postulate

Another important issue affecting the current neural network

research is the Neurophysiological Postulate claimed by Donald Hebb

in 1949. The postulate is stated as follows:

When an axon of a cell A is near enough to excite a cell B and

repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells such

that A's efficiency, as one of the cells firing B is increased.

Donald Hebb also suggested that one cell could become more

capable of firing another is due to the synaptic knobs development

(Hebb 1949). The mathematical representation of the postulate is

given by Equ(l.3).

(1. 3)
a -w.- «~0 at 1

According to the postulate, the strength of the synapse will

be increased if the postsynaptic cell and presynaptic cell are

firing simultaneously or repeatedly. Besides, a collolary on the

Hebb's postulation is also suggested in parallel. The mathematical

10

interpretation is given by Equ(l.4).

(1.4)
a

-W· - <X <O at 1

when an axon of cell A is near enough to cell B and repeatedly

firing B, A's efficiency is decreased if B is not be excited.

Hodgkin-Huxley Membrane Equation

Nerve cells generate electrical signals by gating the ions

channels. The ability of nerve cells to gate their ion channels

allows them to control the permeability of their membranes and to

regulate the diffusion of selected ions down preestablished

electrochemical gradients. Consider the properties of the i on

channels used for signalling in electrical terms, a s i mple

mathematical model was derived, in the form of Equ(l.5).

(1. 5)

~, v+ and V denote respectively passive (chloride C~), excitatory

(sodium Na+), and inhibitory (potassium K+) saturation upper bounds

with corresponding shunting conductance gP, g+ and g- . c is the

capacitance. Figure(l.2) shows the equivalent electric circuitry .

At equilibrium the Hodgkin-Huxley model has the resting

potential Vredt given by Equ(l.6). While the chloride-based passive

terms are neglected, the resting potential is given by Equ(l.7) .

(1. 6) v - -=g;_P_V_P_+=g_•_v_•_+=g_-_v_-
r es t gP+g•+g-

11

g

vtl_

g- c

T

Figure(l.2) Circuit representation of membrane equation

(1.7)

Though the equation was proposed in 1952, utilization of this

equation in the neural network model was not usual. Most of the

neural network models proposed in the 1960s or earlier made use of

the McCulloch-Pitts neuron model. After 1960s, only a limited

number of researchers, such as Stephen Grossberg and his

colleagues, made use of this membrane equation in the neural

network models. Michael Cohen and Stephen Grossberg further proved

that those neural networks described by the relationship in the

form of Equ(l.5) can have a global stability (Cohen and Grossberg

1983). Some writers call this Cohen-Grossberg Stability Theorem

(Kosko 1992).

12

connection of the three issues

Right now, the reader may ask a question: how can these three

issues be linked up to explain human cognitive ability. Actually,

there is no concrete explanation on this question at this stage.

There is no biological evidence indicating the truth of the Hebb's

postulation. However , we believe that Hebb's postulate is right.

That is to say, we accept the proposition that the synaptic

strength between t wo neurons will increase during learning.

Similarly, we accept t hat the model of the neuron, in the simplest

case, is the same as the M-P model . Here, we will not concentrate

on describing the connection between these three issues with human

cognition. Interested readers can refer to chapter 3 of "Principle

of Neurodynamics" written by Frank Rosenblatt (Rosenblatt 1962). In

section 3. 1. 5 of that book , he gives a clear coverage on the

phenomena of retention and adaptation mechanism in organisms. It

may give the reader good materials for him to form a precise

concept on the relationship among Hebb's postulation , M-P model and

the neural network.

Conclusion

Neural network is a hot research topic Some people even

claimed that neural network architecture had the potential to

realize a new type of computer, replacing the traditional computer.

However, this goal is still very far from reachable. Actually , what

will be the fate of neural network research is still a question.

Will it be the same as in the 1970s when neural network research

was in a silent period? The answer is still not known.

In so far, the writer has tried to describe a very brief

overview on certain aspects of the neural network, including its

historical background and its relationships with other subjects.

But the story of neural network is much more intricative and much

13

longer than represented on these few pages. It is out of the scope

of a project report to spell out the whole history of neural

network and it is also out of the scope of the ability of the

writer.

The following chapters will not touch on history. Instead,

they will concentrate on the concept and theory of unsupervised

learning models, especially the LAR model (Lee et al 1992a).

14

CHAPTER 2 BASIC CONCEPT OF NEURAL NETWORK

As mentioned in chapter one, in this chapter we will present

a description of the basic concepts concept on some aspects of

neural network aspects and several unsupervised network models.

Those reader who find the content being too brief can refer to

the reference listed for further information.

In this chapter, we first model the neuron as function and

introduce a few common signal functions. After that , three neural

models will be presented including the Hopfield Net, Competitive

Learning, and ART .

Neuron As Function

Neurons behave as functions. Neurons transduce an unbounded

input activation x(t) at time t into a bounded output signal

S(x(t)). Usually a sigmoidal or

S-shaped curve, as in F i gure

Sx)

r----------------

1

i
0 f------""------__i

0

Figure(2.1) Sigmodal curve

of Kosko's book (Kosko 1992).

1. Logistic Signal Function

2.1, describes the transduction.

In general , there are

several common types of neuron

functions used in the current

neural network research. I n the

following text , only six of them

will be given . For more details ,
reader can ref er to chapter two

It is t h e most popular binary signal function. We define the

function as Equ(2 .1). The shape of this signa l function can be

15

refer to Fig. (2.1).

(2. 1) S(x) ---1--
1 + e-cx

Where c is a positive number. Obviously, the function is a

monotonically increasing function. Nearly all supervised type

neural networks, such as Adaline and Back-propagation perception,

use this function, logistic signal function, as the neuron

transfer function. Sometimes we also call this function as

sigmoid funct i on .

2. Threshold S i gn al Function

Another common neuron function is the threshold signal

function. Actua l ly , is an infinitely steep logistic signal

function. The characteristic equation is given by Equ(2 . 2) .

(2. 2)
if xk+l> T
if xk+1-T
if xk+1 <T

Where T is an arbitrary real-value threshold T . The index k

indicates the discrete time step. The index notation implies that

threshold signal functions instantaneously transduce discrete

8(x)

Figure(2.2)
function

\ '"

Threshold signal

activations to signals. When the

activation equals the threshold

at time k+l , the signal maintain

the same value it had at time k .

The neuron does not make a

state-update "decision" at time

k+l. This type of neuron

function appears in one of the

core neural network nowadays ,

the Hopfield Network (Hopf ield

1982; Hopfield 1984). Figure 2.2

shows the shape of the threshold

16

signal function.

3. Hyperbolic-tangent signal Function

It is a naturally occurring bipolar signal function. It
shape looks like Figure 2 .1. The transfer characteristic is given

by equation Equ (2.3).

(2. 3) S (x) -tanh (ex)

This signal function is also very commonly used in many

supervised learning models such as Adaline and backpropagation.

4. Threshold Linear Signal Function

Threshold linear signal function is a binary signal function

often used to approximate neuronal firing behaviour. The function

is given by Equ(2.4) and the shape is indicated by Fig(2.3).

(x)
1 -------------------------;-------------------~----

:
!
i
I
!
!

O~----{'
0 1

x

Figure(2.3) Threshold Linear
Signal Function

5. Competitive Neuronal Signal

(2. 4) if cx~l
if O<cx<l

and S(x)=O if cx<O. Obviously,

it is also a monotonically

increasing function.

Competitive Neuron Signal is used in competitive learning.

Though the s ignal function is simple, its mechanism is very

complicated (Lippmann 1988). The effect is due to the lateral

inhibitory connection within the output layer. Anyway, as a

17

d with the mechanism . The . we are not concerne
transfer function,. . ·gnal function is g i ven by Equ(2 . 5) •
equation of competitive si

(2. 5)
if xj-maxlx)
else

This equation is very simple. Competitive learning is based on

this equation.

6. Pulse-Coded Signal Function

Pulse-Coded signal function is recently proposed by Bart

Kesko (Kesko 1992). In the field of neuron research, scientist

have already recogni ze the pulse trains propagation phenomenon.

However , this idea has not been used. Kesko and Kong recently

built a number of neural network models, such as differential

competitive learning model and differential Hebbian learning

models (Kong and Kesko 1991; Kesko 1990; Kesko 1991), based on

this signal function. The function is given by Equ(2.6) .

(2. 6) S(t) - J x(u) eu-tds

The function x equals one if a pulse arrives at time t , and zero

if no pulse arrives, Equ(2.7).

(2.7)
if a pulse occur at t
if no pulse at t

unsupervised Type Neural Networks

The develop ent of unsupervised learning algorithms has been

long in history (Rosenblatt 1958; McCleland and Rumelhart 1981;

Rumelhart and ~·~cC leland 1982; Rumelhart and Zipser 1985) • It can

be traced bac ~o 1958, when the Gamma Perceptron was invented

by Frank Rosenn_att. Competitive Learning is one of the simplest

paradigm in t h_s area. Though competitive learning can be applied

in vector ql!a~~i zation, clustering and categorization of

18

patterns, its application in pattern recognition is very poor.

Stephen Grossberg slightly mentioned in his 1987 paper {Grossberg

1987). But he did not give reason for this incapability.

In the last decade , Stephen Grossberg reclaimed the Adaptive

Resonance Theory and he also proved that ART can eliminate this

l imitation (Grossberg 1987). Grossberg and his colleagues

implemented this model in adaptive pattern recognition (Carpenter

a nd Grossberg 1987a, Carpenter and Grossberg 1987b). In the

following section, three unsupervised neural networks will be

introduced . They are the Hopfield Network, developed by John

Hopfield in Ca lTech, Competitive Learning model which has been

sustained f or more than three decades and the last one is ART.

1. Hopfield Network

v1 v2

v6 v3

A simple Hopf ield Net is

shown in Fig(2.4). This

structure is a special case of

associative network, or

recurrent associative network.

The weight values of Hopfield

Network follow the restrictions

imposed by Equ(2.8} and

Figure(2.4) Simple Hopfield Net Equ(2.9).

The Neuron1 , v; a s a transfer function being a threshold signal

function, Equ (2.2) .

I n so~e other articles, it is also called a processing
element or a n ~e.

19

1

(2. 2) S. (x .k+1) - Si (xi k)
.l .l

0

where

(2 . 10)

The neurons are updated one at a time. The stability proof

of the Hopfield net can be found in a number of articles
(Hopfield 1982, Hopfield 1984 and Kosko 1992).

The Hopfiel d network does not have a learning law associated

with its transfer f unction. The weight matrix is specified in

advance. No restri ct i on on the real number values wij are made

except that the matr ix (wij) must be symmetric and have a zero

diagonal. In recent studies by Michael Cohen and Stephen

Grossberg (Cohen and Grossberg 1983), it is indicated that

unsymmetric matrix with non-zero diagonal can also have a stable

equilibrium memory recall.

The building of the weight matrix is usually followed the

associative learning rule, or Hebbian learning, Equ{2.ll}.

(2.11)

h {x X X } is the set of the pattern vectors. If the set w ere 1 I 2 I ••• I L

{x X XL} is a n orthonormal set, lf 2 1 •••I then the recall will be

perfect. ie. when an input pattern Y=Xk is input to the network

and let it interate. If the pattern set is an orthonormal set,

then y will be given by Equ(2 . 12). If the set i s not orthonormal,

then correlation noise,~, will exist, Equ(2.13).

(2.12)

20

(2. 1 3)

Theoretical proof has shown that the noise free memory capacity
of a Hopfield net is 0.15n, (Hertz et al, 1991), where n is the

number of neurons. Recently, C.C.Hui and L.W . Chan of the Chinese

University of Hong Kong proposed An Error Correcting Al.gorithm

for Hopfieid Network (Hui 1991). This algorithm upgrades the

noise free memory capacity of a Hopfield Network to 0.85n.

2. Competitive learning

Competitive Learning is one of the oldest neural network

algorithms. Its history can be traced back to the 1958

(Rosenblatt 1958). In the next paragraph, this model will be
elucidated.

Definition

Competitive learning model is simply a two layers neural

network as shown in Fig (2 . 5) .

Each of the neurons in the first

Simplify Competitve Leaming Model

x

Pattern

S(X) y

Synaptic
Connection

S(Y)

Response

layer is connected to all the

neurons in the second layer.

Response of the first layer is

based on the all-or-none

Figure(2. 5) Simplified CL model

principle . That is, when the

neuron i in the first layer

receives signal, ~' is greater

than a threshold, this neuron

will deliver an impulse, Si (xJ ,

Equ(2.14).

(2. 14)
if xi>e i
if xi=:;;e i

21

All impulses from the first layer will then pass to the second

layer through the synaptic connections, and the strength of the

synapse is denoted by \V_ji where j represents the jth neuron in
the second layer.

Winner-Takes-Aii Ruie

The response of the second layer obeys the winner-takes-all
rule. Suppose Y.i is the potential of the J'th neuron. The response
of the neuron is given by Equ(2.15).

(2.15) 1 S(y .)-{
J 0

if Yj-max{y)
else

The value of YJ· is actually the effecti've

the first layer, given by Equ(2.16).

(2.16)

potential received from

Obviously, there is only one neuron which will be acti've ·
f le•

S (y) =1. Once a neuron wins, say neuron j, its corresponding

weight will be updated as Equ(2.17).

(2. 17)
c .k

~w .. -g-1--gw ..
Jl n J l.

k

If there are m input patterns, k=l, 2, , m Cik and nk are

constants such that the summation of the Cik/nk is equal to 1.

The parameter g is the step size. Accordingly, the weight vector

is moving towards the pattern vector, Fig(2.6). Generally

speaking, we can state the principle of competitive learning as

the following:

The winner will be given to the one which is the closest to the
pattern, otherwi se it will be a loser. For a winner, it will be

attracted towards the pattern; otherwise, as a loser, it will

remain unchanged a t all.

22

w1
0---

(Winner)

x
(Pattern)

Mechanism of the weight
vector in the N-D spaoe.

Figure(2.6) Mechanism of
competitive learni ng

3. Adaptive Resonance Theory

In the next chapter, we will

come back to the limitation of

the competitive learning in

applications in pattern

recognition. In here, we simply

state that the limitation is due

to the initial

constraint. Besides,

setting

the

criteria for an unsupervised

learning algorithm to recognize

pattern will also present .

ART network model i s capable of self-organizing and self­

stablizing its recognition codes in response to arbitrary

temporal sequences of arbitrarily many input patterns of varible

complexity. Due to its complicated structure, the details of the

ART will not be elucidated here. Readers interested in can refer

to Carpenter and Grossberg (1987a) and Grossberg (1987). Besides,

Wasserman (1989) and Lippmann (1988) have also introduced ART,

in a much simplif ied wa y .

The structure of an ART is shown in Fig(2.7). For

simplicity, the LTM t races between F1 and F2 can be redrawn as

shown in Fig(2.8). ~ this, there are only two neurons in the F2

layer and three reurons in the F1 layer. Moreover, the input

pattern is restr_c~ed to be in binary form. Before giving the

mechanism of t he - e l, a list of definition is presented in the

following.

Definition

1. F1 activity ~a::::ern is given by X=(X1 ,Xz,···1XM) ·

2. F2 activity -=a::::ern is given by Y= (XM+if XM+21 ... , XN) .

3. we denote r-~es n F1 by~, where i=(l,2, . . . ,M) and nodes

23

+

- + +
+ +

F1 ~

+
lnpu Pattern

Figure(2.7) Block diagram of ART

in F2 by vj, where j=(M+l, ... ,N).

-

STM
RESET
WAVE

+

4. The transfer function of the node in F1 is given by h(x)

and so the outp t pattern of F1 is given by

S=(h(xi) ,h(x2) , ••• ,h(xM)).

5. z ij is defined as the (bottom-up) LTM trace, or called

weight, in the pathway from ~ to ~· similarly, we define

zji as the (top-down) LTM trace in the pathway from vj to vi.

6. The signal reciev ed by each of the nodes in F2 is given by

Ti' where j= (M+l , .-2, ... , N) , Equ (2. 18) . We also define

T= (TM+ll TM+2 , ••• , -: • a s the input to the F2 •

(2.18)

7. The transfe~ =~-ction of the nodes in F2 is given by f(x),

Equ(2.19} , ar.~ so t he output pattern of F2 is given by

V=(f(XM+l), f (X - • .. . ,f(XN)).

(2 .19)
if Tj-maxlTJ
otherwise

24

F
1

Figure(2.8) Connection between the two layers

8. The top-down template, recalled from F2, is defined as

V=(VuV2, ... ,VM), where Vi is given by Equ(2.20).

(2.20) v .- f f(x .) z ..
.l j-M+l J J.l

Obviously, a different pattern U from F2 will ignite a

different pattern V. Since there is only one node in F2

with output 1, we define vID as the top-down template due

to node j in F2 •

9. The external input pattern is given by I=(ipi2, ... ,iM).

10. The activity of the layer F1 is given by Equ(2.21).

(2.21)
I

x-{ .rnvu>
if F 2 is inactive
if F 2 node v1 is active

25

The inactivity of F2 will be discussed later.

Associative Decay Rule

As learning of the input pattern I takes place, LTM traces

in the bottom-up coding pathways and the top-down template

pathways between an inactive F1 node and an active F2 node

approach O. Associative learning within the LTM traces can thus

cause decreases as well as increases in the sizes of the traces.

This is a non-Hebbian form of associative learning.

Weber Law Rule

As learning of I takes place, LTM traces in the bottom-up

coding pathways which join active F1 and F2 nodes approach an

asymptote of the form

where a,~ are positive constant

Obviously, a larger norm of I, defined in Equ(2.26), implies a

smaller positive LTM trace in the pathways encoding I.

Mechanism of the ART learning

For simplicity, the transfer function on the two layers are

defined as Equ(2.22) and Equ(2.23).

(2.22)

(2.23) f(x.)=x.
J J

26

Moreover, the top-down and bottom-up traces are initialized as

Equ(2.24) and Equ(2.25), according to Lippmann (1988).

(2.24)

(2.25)

z .. (0)-1
Jl.

1 z . . (0)---
J.J l+M

When a new pattern is input to Fu we let the network evaluate

the top-down template V and x·, following the sequence.

I X S T Y U V X*

x• is calculated by Equ(2.21). Here, we also define the norm of

X as the number of ones, Equ(2.26).

(2.26) I xl-fx .
i-1 1

Once x• has been found, a vigilance test is applied as described

by Equ(2.27).

(2 . 27) lx*I
lif>p where O~p~l

If the result is true, then the corresponding weights will be

updated. If the result is false, then the best matching node

selected is tempararily disabled by the STM RESET WAVE and the

top-down template is recalculated. In case no top-down template

is suitable after the repeative search, F2 will be inactive. The

learning algorithm of the ART net is summarized in the next

paragraph.

ART Learning Algorithm

Step 1. Initialization

Step 2 . Apply New Input

Step 3 • Compute U=(f(xM+i) ,f(xM+2), ••• ,f(xN))

Step 4. Select Maximum Exemplar, f (x) .

27

This is performed using extensive lateral inhibition.

Step 5. Vigilance Test

GOTO STEP 6
GOTO STEP 7

step 6. Disable Best Matching Exemplar
The output of the best matching node selected in Step

4 is temporarily set to zero, STM RESET WAVE, and no

longer takes part in the maximization of Step 4. Then

goto Step 3.

step 7. Adapt Best Maching Exemplar

(2.28}

(2.29}

zji (t+l} -zji (t} h (xJ

(} zji(t}h(x)
z .. t+ 1 - --"""~-----

J..] O. 5+.Ezji (t} h (xi}

The actual learning of ART is more complicated. It is

expressed in differential equation form (Carpenter and

Grossberg 1987a). However, the Weber Law Rule and

Associative Decay Rule show the form of the equilibrium

value of the weight in each learning step. For the choice

of the constant values can refer to Carpenter and

Grossberg (1987a).

Step 8. Enable any nodes disabled in Step 6. Go to Step 2

Although the mechanism of ART is in advance compared with

other unsupervised learning algorithm. Throughout understanding

on the ART is not that easy. So that, ART is not being selected

as the model in the final year project.

28

CHAPTER 3: LAR - AN UNSUPERVISED LEARNING ALGORITHM

INTRODUCTION

In this chapter, an unsupervised learning algorithm, the

Learning by Attraction and Repulsion {LAR), will be presented. The

idea leading to the development of this algorithm for the neural

network is inspired from electrostatics phenomenon. In the model of

this neural network, we treat the normalized pattern vectors as the

position vectors of positive charges, while the normalized weight

vectors as the position vectors of negative charges. A step of

movement of a negative charge indicates the change of the

corresponding weight vector. Hence, according to the Inverse Square

Law, F=k/r2 , where r is the distance between two charges, we can

evaluate each of the forces acting on a single charge as dW=µF. It

is found that the neural network developed from the above idea can

self organize to give various responses to different input

patterns. Thus, compared with the competitive learning algorithm,

this algorithm does not suffer from the limitation due to different

initial settings. A simple example in the application of this

neural network to pattern recognition is provided.

The discussion will be started from the Initial Setting

Problem of the competitive learning. Next, a criterion for pattern

recognition by unsupervised neural networks is suggested.

INITIAL SETTING CONSTRAINT

The basic principle of the competitive learning has been

presented in chapter 2. Qualitatively, the mechanism can be

described as follows.

The winner weight vector will be given to the one which is the

29

closest to the pattern. Otherwise, it is a loser . For a winner

weight, it will be attracted towards the pattern; otherwise, as a

loser, it will remain unchange at all.

The step of the movement of the winner is proportional to the

distance between the winner weight and the pattern. i.e . .1W=µ(P-W) .

Diagrammatically, the mechanism can be viewed as Fig(3.1). In any

one iteration, only the winner takes the update.

~
(Winner)

W2

0
(Loser)

Figure(3.1) Competitive Learning

x
(Pattern)

Mechanism of the weight
vector in the N-D space.

Under this mechanism, the ability of the competitive learning

in pattern recognition is largely dependent on the initial setting ,

and not just on the similarity amongst patterns. This condition is

called the Initial Setting Constraint, (Lee et al 1992a).

30

Initial setting Constraint

It is observed that the movement of the neurons is mainly

determined by the initial values of both the weight vector and the

pattern vector. For instance, in Fig(3.2}, we have 4 neurons and 4

input patterns. Initially, only one weight vector is close to all

the 4 pattern vectors. It will surely win for all the four

patterns. Therefore, it will be the one and only one weight vector

getting updated. As a result, the system cannot give four

different responses to the four patterns. This is a severe

limitation of the competitive learning in distinguishing patterns.

Mechanism of Competitive Learning

.
wmner

• >
0 0

Figure(3.2} Limitation of Competitive Learning

31

CRITERIA FOR PATTERN RECOGNITION

The three criteria for bu1· ld1' ng · an unsupervised
network in pattern recognition are:

learning

No Matter which algorithm the neural network is being used, the
network must achieve

(i) an equilibrium state, i.e. the final values of the weight
vectors must be at equilibrium.

(ii) the equilibrium state must be stable, and

(iii) the output response must be observable.

Criteria {i) and (ii), in fact, have been considered as the basic

conditions for checking the network performance {Cohen and

Grossberg 1983). Criterion (iii) is actually a commonly implied

criterion in pattern recognition. In mathematical term, it means

that the learning must guarantee a one-to-one mapping. These three

conditions govern the way that we derive an unsupervised learning

algorithm.

We have not yet proved that the network can fulfill the

criterion (i) and (ii) except via studying the numerical data from

a number of experiments. Based on the result of these experiments,

we can also roughly conclude that the network is workable in the

sense that it fulfills criteria (iii).

LEARNING MODEL

The structure of this model is similar to that of the

competitive learning model. The only difference is on the weight

updating rule. Consider a neural network consisting of two layers

of neurons as Fig(3.3).

The first layer contains n neurons while the second layer

32

p

Pattern

Figure(3.3) LAR model

x y

Synaptic
Connection

(W)

z

Response

contains m neurons. The organization of this network can be

summarized as follows.

Organization

(i) The pattern P={plfp2 , ••• ,pn) is impinged onto the first layer of

neurons, the responses of the neurons are in all-or-none fashion as

shown in Equ(3.1) below.

(3. 1)
1 x.-{

.l 0
if Pi~e i
otherwise

33

(3. 2)

(3. 3)

1 z .-{
J 0

if Yj is maximum
otherwise

Self-Organization As Charge Distribution

The idea of the proposed learning algorithm comes from the

phenomenon of electric charge distribution, (Kraus 1984). Suppose

the normalized pattern vectors are represented as position vectors

of positive charges, and the normalized weight vectors as the

position vectors of negative charges. In such a case, it can be

imagined that the weight vectors will distribute themselves on the

space according to the locations of the pattern vectors.

To evaluate the change of the weight vectors at each step, we

simply find out the total force acting on that charge. Then we make

the change of the weight vectors along the direction of the

resultant force, i.e. ~WaF. Figure(3.4) shows the above idea.

In Figure(3.4), there are three negative charges in the space

with positions given by Wj where j=l, 2, 3. There is a positive

charge, represented by the cross sign, the position of which is

given by the pattern vector. Consider the neuron j. There are three

external forces acting on it, indicated by three arrows. According

to the Inverse Square Law, the attraction force is given by

Equ (3. 4) .

(3. 4) where q - 0102
1 47t€

34

Figure(3.4) Force diagram

(3. 4)

input pattern
x

where q - 0102
1 4 1t€

Repulsion force
between weights

respectively. Similarly, the repulsion force acting on the neuron

j is given by Equ(3.5).

(3. 5) where q - 0202
2 41t€

Hence the resultant force is simply the addition of the attraction

and repulsion forces, Equ(3 . 6).

(3. 6)

35

Then we update each of the weight vectors according to Equ(3.7).

(3. 7) for all j-(1,2, ... ,m)

Let us have a simple example. Consider the case when there is

only one neuron in the second layer and there is only one input

pattern, i.e., there is only one negative charge and one positive

charge. The mechanism is obviously the same as the competitive

learning mechanism. The only difference is on the weight update

equation. In competitive learning the movement size is proportional

to the distance between the pattern and the weight while the

movement size in LAR is inversely proportional to the square of the

distance apart.

In actual implementation, the weight vectors and the pattern

vectors are normalized before each iteration. So it can be imagined

that the process is occurred on the surface of a hypersphere,

instead of an n-dimensional space. The algorithm is summarized as

follow.

Step 1. Normalize all weight vectors to unit magnitude.
i.e.

(3. 8)
" w. w.-d

1 11W~11
J

v j E{l I 2 I • • • I m}

Step 2. Select randomly one of the pattern vector. i.e.

(3. 9) where kE{l, 2, ... , l}

then,

(3.10) x-f(P), also be written as xi=fi (p)

36

where,

(3.11)
if pi>O
if pi5;.0

Step 3. Normalize vector X. i.e.

(3. 12) " f(p) ~ "
X- llf(P) II +uen where &-o

(3.13)

Step 4. Calculate the value Fj, VjE{l,2, ... ,m).

x-w ~ wj-wr
F .-q +q L..J

J 1 llX-~3 2 r~1 llw .-w IP
J I

(3. 14)

Step 5. Set the changes of the weight proportional to FJ·
i.e.

(3.15) VjE{l,2, ... ,m}

and then the new weight vector w/ is set to be

(3 . 16)

Then set Wj to equal to Wj •, and goto Step 1.

The inclusion of Step 3 is to prevent the situation when Wj=X. In

Steps 4 and 5, it is clear that the update of the weight vector is

independent of zj, which is the output of the second layer neuron.

LAR Vs Competitive Learning

Actually, there are at least three differences between the LAR

algorithm and the Competitive Learning algorithm, including (i) the

.37

number of weights which can be updated, (ii) the size of movement

and (iii) the dependency of the output signal. They are indicated

in Fig (3. 5) .

LAR

(1) All weight vectors
are updated.

(2) Change of weight
Is proportional to

(P-W)

IP-W13

(3) Update is independent
from Z, output.

CL

Only the winner can update.

Change of weight
is proportional to (P-W)

Update is depend on Z,

Figure(3.5) Comparison between LAR and competitve learning

Criteria Fulfillment

As mentioned early in this chapter, a vigorous mathematicai

proof on the three criteria have not yet been estabiished. We have

so far only experimental results to support our conjecture that the

criteria can be fulfilled. In fact, a proof of this algorithm

satisfying the criteria has been tried with the Lyapunov method.

Lyapunov method is a traditional approach in proving the stability

of a number of neural networks (Hopfield 1982 , Cohen and Grossberg

1983; Rumelhart and Zipser 1985; Kosko 1992). However, the proof

for the LAR model is too difficult to be completed within one

38

academic year. The difficulty is due to the situation that the

learning equation involves the term (P-W) /IP-WI 3, instead of (P-W) •

The validity of the LAR algorithm can only be illustrated by

simulation results at this moment of time. A simple example is

provided in the following. This example is only an illustration of

the behavior of this LAR model. In this example, two mutually

exclusive patterns, Xk for k=l,2, are input to the LAR network and

the network learns from these patterns. The configuration is as

follows.

(1) Number of input neurons = 48,

(2) Number of output neurons = 4,

(3) ql = 25, q2 = 1,

(4) 'Y = 0.0001,

(5) number of iterations = 2580.

In order to show the weight update behavior during learning,

we plot a graph showing wixkT (dot product) against number of

iterations, where i=(l,2,3,4) and k=(l,2). The graph for k=l is

shown in Fig(3.6a} while the graph for k=2 is shown in Fig(3.6b).

The graphs show that the dot product of the winner weight to the

pattern is constant after 640 iterations. It is also observed that

the dot product of the losers are not constant after 640 iteration .

So it can be imagined that this equilibrium is a dynamic

equilibrium. Tha t is to say, the winner is circulating on the

surface of a N-D sphere instead of being at a fixed position.

According to the graph obtained, there is one weight vector moving

around the pattern(l) while there are three weight vectors moving

around the pattern(2}.

Though the above data cannot be used to prove vigorously that

the learning of LAR model is stable for all situations, it does

illustrate the validity and behavior of the network.

39

1.1

0 . 9

l 0 . 8

=8 0.7

0 . 6

0.5

0.4

1 . 1

0 . 9

-g 0 . 8

~
~ 0.7

o .s

0 . 5

0 . 4

•• •• •••• •••• •• ••
(1)

rter-otlon x, 28

(a) Response to (1) , WiX1

(2)

, 1 r r r 1 11
. ·····. ···· ··············1········· ·······r····· ·····r···················r···········---

\ \ \ 1 j: j I \ \
2 s 8 10 12 14 1 s 1 8

lte,..otlon x 1 28

(b) Response to (2) , Wix~

40

20

CONCLUSION

In this chapter, we mainly illustrate a novel approach in the

development of an unsupervised learning network which is inspired

from electrostatics phenomenon. Although the mathematical proof has

not yet been established, the numerical

data has indicated its ability. The outstanding issue of this

model, compared with the traditional neural network, is that it is

totally unsupervised. That is to say, the learning process of this

LAR model is absolutely independent from the initial setting and

the output response. Besides, the learning rule of the model is

based on a simple idea. It is easy to understand the mechanism of

the model.

In the next chapter, an application example will be presented ,

in which a systematic checking scheme is followed in order to

examine the three criteria.

Here the writer wishes to emphasize several issues . The LAR

model is actually not designed for real life applications . This is

only a simple model trying to demonstrate some capabi lity simila r

to our human intelligence behavior. Throughout the study,

summarized in chapter one and two, it is believed that the current

neural network model is not strong enough to explain t h e who l e

mechanism of our intelligence behavior . The LAR model cannot

explain everything. But it seems that it can have the potential to

show the creativity behavior.

41

CHAPTER 4 : CHARACTER RECOGNITION USING LAR

INTRODUCTION

In this chapter, we will illustrate an application example of

the LAR in character recognition. The following paragraphs will be

concentrated on the configuration and the experimental results of

the simulation model. Thus, this chapter serves as another

experimental example indicating the capability of the LAR .

SIMULATION EXAMPLE : Character Recognition

Statement of problem

First of all, let us clarify the aim of this experiment. one

goal of this experiment is to illustrate the ability of the LAR

model in differentiating different characters. That is to say, we

wish to show that the network can give different codes for

different learnt patterns. The learnt patterns are those characters

shown as Fig(4.2}. Besides, another goal of this experiment is to

illustrate the incapability of competitive learning in applications

to character recognition.

structure of the network

Fig(4.l} shows the structure of the neural network . It

consists of 48 neurons in the first layer and 8 neurons in the

second layer, Fig(4.l}. We set the constants ql and q2 to be 25 and

1 respectively. The step size, 1 1 is 0.0001. The threshold, ail of

each of the neurons in the first layer are set to o. The update

takes over 4096 iterations.

42

(P)

Pattern

~8

Synaptic
Connection

Figure(4.l} Simulation Network

Simulation Result

Z·
J

za

(Z)

Response

Two approaches of learning have been applied to the model. one

of them is the general LAR approach, or called the non-chaotic

approach . The simulation result of this approach will be

illustrated in subsection Test 1. The other one is the chaotic LAR

approach and its simulation result is given in subsection Test 2.

Test 1: General LAR approach

In this test, we choose pattern (i) to (vi) in Fig(4.2). The

structure of the network is just the same as mentioned in the

previous section. The learning algorithm is stated below.

43

(i)

(v)

II •
I •• •• •

(ii)

(vi)

Figure(4.2) Testing characters

(iii)

(vii)

••••
••••
(iv)

(viii)

Step 1. Normalize all the weight vectors to unit
magnitude.

(4. 1)
"' w. w - J

j 1W]
J

'v'j Efa, 2, ... , 8}

Step 2. Select randomly one of the patterns

(4. 2) P-Pk where kE{l, 2, 3, 4, 5, 6}

44

(~l))
~ X-f(P) 1

where fi (pJ -{0
if p i>O
if P i !!.O

Step 3. Normalize vector X and add a small vector to it.

(4.4) " x (
X-u.;n+&e - f_ P) +O. 005e

HAil n llf(P) II n

(4 . 5) e - (_1_ i i
48 y'48 I v'48 I ' • •I v'48)

Step 4. Calculate the value F v· {l 2
j t]€ ' , ••• , 8 } .

(4.6)
,... A. ,... ,...

x-w . w -w
F .-25 J +'E j I

J llX-w)l3 r~j 11wrw)l3

Step 5. Set the change of the weight proportional to F·.
J

(4 . 7)

Repeat Step 1 to 5 for 4096 iterations.

The simulation results are tabulated below . In case of the LAR

model, the 2nd neuron in the second layer is initially the winner

of pattern 1 to 4. After 512 iterations, the performance is better .

The network can distinguish 4 patterns . After 4096 iterations, the

network can completely differentiate all the 6 patterns .

Iteration Pattern # max . value of yj/ ~ ':JJ

45

0 1 01000000 0.976141

2 01000000 0.955053

3 01000000 1 . 016840

4 01000000 1.116477

5 10000000 1.023682

6 00000010 1.125428

512 1 00001000 1.159309

2 01000000 1.157658

3 00010000 1.146984

4 10000000 1.253260

5 00000010 1.194579

6 00000010 1.290241

4096 1 00001000 1.259999

2 01000000 1.241957

3 00010000 1. 260759

4 10000000 1.307193

5 00000010 1.271767

6 00000001 1.320562

Stability Checking

Though the results indicate the differentiation of the

patterns at around the 4096 iteration, we may query the stability

of the response of the network. Can the same response be also

achieved if we set the iteration is more than 4096? To show that

this can be achieved, we need to observe the variations of all the

values of the weights, which is an impossible task. Instead of

plotting weight against iterations, ~ is plotted against

iterations, Vj € { 1, 2, ••• , 8}. The value Yj is calculated by Equ. (4. 8) o

(4. 8)

46

Fig(4.3) shows the changing of 'Yj against iteration. After every 128

iterations, the system is tested by the six patterns. For i nstance,

Fig(4.3a) shows the response of the eight output neurons to the

character 'A'. The response shows that the network reaches a stable

state after 4096 iteration .

Differentiation check

According to the results tabulated . It is found that this

network is capable of differentiating different patterns during the

4096 iterations. In addition to the results quoted from the

stability checking, we can roughly conclude that the capability of

differentiation will be sustained beyond the 4096 iterati ons. That

is to say , the network is workable in the sense of criteri a (i i i),

under this situation.

Test 2: Chaotic LAR approach

In this test, we select the pattern (i) to (iv) and (vii) to

(viii) from Fig(4.2}. The network parameters are the same. But here

we add a concept - Chaos - to the simulation program. The mechanism

is summarized in the following text.

step 1. Normalize all the weight vectors to unit
magnitude.

(4. 1)
" w. w.- d

1 11W~11
]

Vj E{l, 2 , . . . , a}

step 2. Select r andomly one of the patterns

(4 . 2) P-Pk where kE{l, 2 I 3 I 4 I 5 I 6}

47

(4.3) X-f(P) 1
where fi (p) -{0

if pi>O
if P i 5:.0

Step 3. Normalize vector X and add a small vector to it.

(4. 4) x"- x +&e f(P) +o oos"
llXll n- llf (P) II ' en

(4. 5) " (1 1 1
e48- -- I - - I ' ' ' I --)

/48 /48 /48

Step 4. Calculate the value~, Vj€{l,2, ... ,8}.

(4.6)
x-w . w.-w

F .-25] + L] I

1 llX-w .113 r .. j 11w .-w 113
]] I

Step 5. Set the change of the weight proportional to Fj.

(4. 7)

After every 128 iterations, select randomly on e o f the
weights and set it to zero.

Repeat Step 1 to 5 for 4096 iteration.

Under this condition, we found that the result is more or less

the same as the non-chaotic approach. The ~ is also plotted for

reference , indicated in Fig(4.4). In some cases , it is found that

the chaotic approach could give a better mode of learni ng .

COMPARISON WITH COMPETITIVE LEARNING

The same pattern set is input to the competitive learning

48

network. The following results are obtained. As expected, the

final/intermediate results of the network are totally determined by

the initial conditions.

Iteration Pattern # zj max. value of yj

0 1 01000000 0.022365

2 01000000 0.024384

3 00010000 0.023920

4 10000000 0.022417

5 10000000 0.022807

6 00000001 0.022316

512 1 01000000 0.022594

2 01000000 0.024700

3 00010000 0.024065

4 10000000 0.022464

5 10000000 0.022879

6 00000001 0.022340

4096 1 01000000 0.024251

2 01000000 0.026696

3 00010000 0.025121

4 10000000 0.022746

5 10000000 0.023439

6 00000001 0.022494

With respect to the differentiation checking, a competitive

learning model is found to fail in character recognition .

49

, .3

1 . 25

1 . 2

l
1 .1 5

, . ,
~ 1 .05

0 . 95

0 . 9
10

iter-otion >< 1 28

1.35

, . 3

1.25

l , . 2

~ 1., 5

, . ,
1.05

10 20 30 40 50 60

i ter""c:ttion >C 1 28

1.25

, .2

l 1 . , 5

~ , . ,

, . 05

10 20 30 40 50 60

iter-otion >< 1 28

1 . 3

1 . 2e>

1 .2

1 . 1 e. t r····· r·················· l
··1········ ·· r··········

1 . ,
10 20 30 40 50 ISO

iter-otion >< 1 28

1 . 2e.

1 .2

1 . 1 e.

i 1 . 1

li , .05

0 . 9e>

0 . 9
10 20 e.o ISO

iter"otion >< 1 28

1 . 3e>

1 . 3

1 .2e.

·························t·············· · ········· ···· ·· ~····· ···· · · !···········
... ;/ ______ /~-~-, ________ //--1,,-------~/----- :/,_ ,----------~------

'! - l
·········-~· · ············:············

l 1 . 2

~
1 • 1 e.

1 . 1

1 . oe.
10 20 30 40 50 ISO

i ter""otion >< 1 28

, . 3

, .2

l
, . ,

~

o .g

0 . 15
10

iter"otlon >C 1 28

1 . 3:1

1 . 3

, .2el

l , . 2

~ 1 . , el

: : /

..:::::i:::::::.y .. ::~~~~"::""t~~~~ .
1 . 1 ··· · · ···················~····························· · + ····························· ·!······················· · ······~······· · ········· ·· ······ · ····+··············· ············ · ··!············

: ! : ! ! !

1.0~ ·························j-····························+····························+····························+····························t····························+···········
! : : : : :

10 20 30 40 50 ~o

l ter-ation >< 1 28

, . 3

, . 2el

, . 2

l , . , el

~
, . ,

. .
1 . 0el ·······················t····························l··········

· · · ·········· ···· ·······~·················· · ····· ······t········· · · · ····· ·· ···········!·· ··· ········· · ···············~······· ·······················t ······· · ··· ··· ···· ·· ······· ···!· ············
! : ! : : !
: : : ! : !

iter-otion M 1 28

1 . 3

1 . 2

, . , ~ ························r·····························1·· ···························r-···························l ····+······························:·············
~ l
: :

1 . 1
10 20 30 40 50 &O

i ter-ot.ion >< 1 28

, . 25

1 . 2

1 . 1 5

1 . 1

l 1 .05

~

o .g5 ···r·····························r····
o . g

o .e5

........................ .:. ~ i ~ ~ i

l l ~ l ~ ~
10 20 30 40 50 e;o

I teration M 1 28

1 . 3

1 .25

1 . 2

, . 15

1 . 1 ························t······· 7 ························i······

~ ~ ~
10 20 30 40 50 &O

iter-otion >< 1 28

CHAPTER 5 : MACHINE PART RECOGNITION USING LAR

INTRODUCTION

In recent years, there are a number of appl ications of the

neural network in the field of control , pattern recogn ition and

speech recognition. Most of the results are promising . However ,

only the supervised type of neural networks is implemented in the

field of control (IEEE 1992) o The unsupervised type of neural

networks has not been applied yet.

I n this chapter, we give a simulation example of the LAR in

machine part recognition . We integrate the LAR model with an

L A R x 2

I J

x 2
x 1 s ~ XS

p 2
X4

Assocl a t I v e 1
N e t w o r k x 3

T h e r s h o I d
_J

P1 & P 2 1r & t~& side • le ws o ft~ & part.

Fi gure(5 . 1) Block diagram of a 3-D machine part r e cognizer.

5 4

Associative Learning Model (Anderson 1983). The LAR net classifies

the input machine parts into different groups, while the

Associative net recognizes the standard defective parts. After

Training, this layered neural net can perform the following tasks:

1. to reject the defective machine parts; and 2. to classify the

machine parts if they are non-defective. Apart from 2-D machine

part recognition, the same idea can be applied to 3-D machine part

recognition, Fig(5.1).

In the next section, we first review on the learning

algorithm, LAR and Associative net respectively. Then we proceed to

elucidate the details on the organization of the layered neural

net, which is also called the integrated model. Training procedure

is then given. Simulation results are provided for clarification of

the organization and the training procedure of the layered neural
network.

LEARNING MODEL

In this machine part recognizer, we use two neural network

models, the LAR and Associative network. The mechanism of

competetive learning and LAR has been described in chapter 2 and 3 .

So that we just present the associative learning algorithm.

Associative Learning

Consider the network structure as Fig(5.2). { }
p= P 1, • • , Pu • • Pn

is the input pattern while s { } ·
= S1, • • , si, · · sn is the supervised

training output signal. The first layer responses in an all-or-none
fashion, as Equ(5.1).

(5. 1) 1
x.-{

.l 0
if pi>O
if pi5;0

55

z
1

z
p

z
m

s 1

s
m

Figure(5.2} Associative learning network

During learning, we input {p,s} pairs to the network and let i t

learn as Equ(5.2).

(5 . 2)

where a, ~ are constants. For details of this ~ rning model, refer

to Anderson (1983) and Hecht-Nielsen (1990) .A Xx

56

ORGANIZATION OF INTEGRATED MODEL

x 2
L A R

X2
x 1 s -p XS

x 4
Assoc! a t I v e

Network
X3

T h e r s h o I d

Figure(5.3} Block of integrated model

Fig. (5.3} and Fig. (5.4) show the block diagram of the

integrated model. The integrated model consists of a LAR net and an

Associative net. The LAR net is trained to recognize the non­

def ecti ve machine parts, while the Associative net is being trained

to recognize the defective machine parts.

After training of the LAR net and Associative net

sequentially, these two networks can cooperate to perform the task

- classification the non- defective machine parts and rejection of

those defective parts. Fig . (5.5) shows the structure of the

integrated model. The nodes in the first layer are partitioned into

two groups. The top view (side l} and the lateral view (side 2} of

the machine parts are input respectively. The overall operation

57

-- -- ------- ---- ·
' LA R

X2

X4

I
I
I

ThershOld

Associat ive

Networl::

: ________ Q
I
I
I
I ; _a.J...; ;;;

~----~-----
1

I
I

X 3

Part

Figure(5.4) Block diagram of application

principle is summarized by Equ(3} to Equ(7).

(5.3)

(5.4)

(5. 5)

1 x . (1) ={
.l 0

1
x . (2) -{

.l 0

1
x . (3) -{

.l 0

if pi>O
otherwise

if .Ew .. (l)x.(1) is max
• .l] J

J
otherwise

.Ew .. (2)x . (2) >0.
. 1.J J].

J
otherwise

58

XS

X2

X1 X5
........... "';

p

.......... !,___ -> X5

Threshold X3

Figure(5.5) Structure of the integrated model

(5.6)

(5. 7)

1 x . (4) -{
.l 0

if (S/\xi (2)) -1
otherwise

if (xi(2)>xi(3))
otherwise

where e is the thresholds values of the neurons on layer X(3) and

sis the supervisor signal, given by Equ(5 .8), provided only in the

training mode.

(5. 8) s -{1
0

if the part is defective
if the part is non- defective

59

TRAINING PROCEDURE

The training procedure is summarized as follows:

Step 1. Set S=O.
step 2. Train the LAR net by inputing the non-defective machine

part.

Step 3. Set S=l.
step 4. Train the Associative net by inputing the defective machine

part.

once the training is finished, s is set to zero again, and the

system is tested and tuned. The threshold value ei is tuned to

optimize the performance of the recognition and rejection

processes.

SIMULATION RESULT

A simulation program has been written for illustrating the

algorithm. The parameters of the structure are listed below.

(a) number of neurons in x (1) = 72 1

number of neurons in X(2) = 4
number of neurons in x (3) = 4
number of neurons in X(4) = 4
number of neurons in X(5) 4

(b) LAR net q1=25 I q2=l .
I

'Y = 0.0001,

number of iteration = 7680.

1 36 neurons are for one side of view.

60

(c} Associative net ej = o.95, o.975, i.

a = 0.01, ~ = 0.05 and

number of iteration = 7680

One set of machine parts are being tested2 , Fig. (5 . 6).

While the learning of the non-defective part is finished, the

Si<l.o 1 Side 2

Part (ii)

Figure (5. 6) Non-defective parts

Sid61 Side 2

Part (ii)

Figure(5.7) Standard defective
parts

system is trained with a set of defective machine parts , Fig. (5.7).

In order to test the ability of the system in differentiating

patterns, the two defective parts are designed to be very similar

to the non-defective part, only different from one pixel . These

machine parts are then treated as the standard and used to train

the associative network.

While the LAR is being trained, the values T;=LW;j(l)xj(l), the

dot product, is recorded. There are four curves. Each of them

representing the response of one neuron in the second layer . These

curves only indicate the change of T; for the part(i) . The trend of

the changing of T; is shown in Fig. (5.8). This plot indicates that

2 Each side-view of the machine parts are represented by binary
signal. For example the side 1 of the set(l} is in the form of
{000000011110011110011110011110000000}.

61

, -r -- ;··············
09 r
08 r r ············ ! r 1 ·

...... 1 J L ~----- - ---- - ------ - -- - -----------~----------------· · ···········
0.7 . i . I i

o 6 l Ll..ll
. i i i i l

10 20 30 40 50 60

Iteration x128

Figure(5.8} Change of T against iteration , on the part(i).

the LAR can achieve a stable state while learning. It is s hown that

there are two winner neurons, in the X2 layer, giving the same dot

product value, approx. 1.05 .

After all the training, the integrated model i s tested and t he

results are tabulated in Table 1. It is found that the system can

correctly reject or classify the machine parts for all the

threshold settings.

CONCLUSION

Throughout the paper, we are trying to illustrate a simpl e

application example of an unsupervised learning model , t h e LAR . I t

62

Part

ND (i)
ND (ii)
D (i)
D (ii)

ND:non-defective part
D: defective part

Table 1

Threshold= 0.95,0.975,1 .

<X2> <X3> <X4> <Xs>

0100 0001 0000 0100
1000 0010 0000 1000
0001 0001 0001 0000
0010 0010 0010 0000

All zero in Xs means that t he part is defective according to the response
of the system after learning.

is a good example to show that unsupervised learning algorithm can

have the potential to be implemented in industry. In contrast ,

nearly all the industrial applications of the neural networks had

been concentrating on the back-proporgation model.

For simplicity, the ability of the integrated model can be

viewed as shown in Fig. (5.9).

63


~~~ECTIVE CLASSIFICATION JOB 

I 

DEFECTIVE REJECTION JOB 

I 

Figure(5.9) Functions of the integrated model 

64 



icHAPTER 6: CONCLUSION & COMMENT ON FURTHER DEVELOPMENT 

In so far, we have provided with the basic concept of neural 

network and the theory of the LAR model. Related work on the LAR 

model have been summarized in three papers and all of them are 

accepted (Lee et al, 1992a; Lee et al, 1992b; Sum et al, 1992}. 

However, the study of LAR is not that all. Due to the time 

limitation, it is not possible to do all the experiments for 

analysis the performance and behavior of the LAR model. In this 

chapter, we will try to describe several plausible suggestions on 

the further development of this LAR model. 

As discuss in chapter 3, the algorithm is governed by six 

parameters. They are (i) step size, -y, (ii) the number of input 

patterns,1 h (iii) the number of output neurons,n, (iv) the size of 

positive charge Q1 , (v) the size of negative charge Q2 , and (vi) 

similarity among the input pattern. Without loss of generality, we 

study the parameter ql and q2 instead of Ql and Q2. Based on these 

six parameters, we can further study the LAR model through the 

following ways. 

{l} Analysis of the performance of the model on step s i ze. ~ 
In fact, it just repeats the experiment presented i n chapter 

4 but with a smaller step size. 

(2) Analysis of the influence of l/n. 

In this test, all parameters except 1 are -y=0.0001, 

n=16, q 1=25 and q 2=1. Then increment the number of input patterns 

from 1 to 16. Plot a graph showing the differentiation ability 

against the ratio l /n. 

(3) Analysis of the influence of %1%· 

Also, we can fix all the parameters except q 1 • -y=0.0001, n=l 2-_, 

q2=1. Then set the value q 1 changing from 1 to 50, one at a time . 

) 
2 

65 
.. 

UJ ,_ 

/u ( 



Plot a graph showing the differentiation ability against the ratio 

qifq2· 

(4) Analysis of the pattern similarity on the performance of the 

model. 
Fix the value of parameters as follows: ~=0.0001, n=1=2, q 1=25 

and q 2=1. Here the correlation factor is defined as Equ(6.l). 

(6. 1) 

and 

(6. 2) 

By inputing different pairs of patterns to the network, a graph can 

be plotted showing the differentiation ability against c. 

~ Find out a mathematical proof or disproof on whether 

model can fulfill the criteria mentioned in chapter 3. 

(6) Study the application scope of the LAR model. 

66 

the LAR 



"-

M 

7 

l 



< APPENDIX A > 

Directory of A: \LAR 

CHAROl DAT 301 12-24-91 2:10a 
CHAR02 DAT 400 01-10-92 5:48p 
CMCL c 4464 01-09-92 11: llp 
CMCL OBJ 5853 01-09-92 1:22a 
CMCL EXE 36397 01-09-92 1:22a 
MCL c 4245 01-09-92 11: Olp 
MCL OBJ 5651 01-09-92 ll:Olp 
MCL EXE 36234 01-09-92 11: Olp 

Directory of A: \MPR 

MPROl c 8300 01-29-92 3:26a 
MPRGOl DAT 99 01-28-92 3:31p 
MPRDOl DAT 99 01-28-92 3:38p 
MPROl OBJ 10337 01-29-92 3:32a 
MPROl EXE 37942 01-29-92 3:32a 
MPROl BAK 8303 01-29-92 3:24a 
MPRDOl BAK 99 01-28-92 3:31p 

67 



< APPENDIX A(i) > 

/*------------------------------------------------------------------------
CMCL. C 8-JAN-92 

Modified Compeititve Learning with Chaos. 

- The rule of response in the second layer is followed 
the competitive learning. 

- The weight updating rule is a new, not the same as 
the classic one. Its idea is based on a phenomena in 
electrostatics, like pole repell and unlike pole attract. 

- Chaos idea has been implemented in the algorithm to 
show the effect. 

--------------------------------------------------------------------------*/ 
#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<conio.h> 
#include<graphics.h> 

#define 
#define 
#define 
#define 
#define 
#define 

iteration 4096 
inneuron 48 
outneuron 8 
image 6 

T 0.0001 
mass 25 

int 
float 
float 
float 
float 
float 
float 

void 
void 
void 
void 
void 
void 
void 
void 
void 
void 

main() 
{ 

X2(outneuron]; 
Xl[image](inneuron]; 
DWW(outneuron)(outneuron]; 
DWX[outneuron][image]; 
IL[ image); 
Wl[outneuron)[inneuron); 
WN[outneuron); 

chaos (void); 
forward respond(void); 
inputpattern(void); 
learning(void); 
loadinput(void); 
normalization(void); 
normalize image(void); 
testing(void); 
weight init(void); 
weight=norm(void); 

int iterate; 
int index; 
void print weight(); 
load input ( ) ; 
normalize image(); 
weight init(); 
for(iterate=O; iterate<iteration; iterate++) 

68 



{ 
/*printf(".", iterate);*/ 
learning ( ) ; 
weight norm(); 
normalization(); 
index=iterate%256; 
if (index==O) { printf("\n\n 

print weight( ) ; 
forward respond(); 
printf("\n\n" ) ; 
chaos (); } 

%d ---\n\n",iterate); 

} 

printf("\n\n --- %d ---\n\n",iterate); 
print weight(); 
forward respond(); 
} -

void loadinput() 
{ 
char xc; 
int i,j,k; 
int xx; 
FILE *input; 

/*input=fopen("mcl.dat","r");*/ 
input=fopen("charOl.dat","r"); 
for(k=O; k<image; k++) 

{ for(i=O; i<inneuron; i++) 
{ xc=getc(input); 

xx=atoi(&xc); 
Xl[k] [i]=xx; 

} 
getc(input); 

} 
fclose(input); 
} 

void weight_init() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
for(j=O; j<inneuron; j++) Wl[i][j]=random(B); 

weight norm(); 
normalization(); 
} 

void 
{ 
int 
int 
float 
float 

forword_respond() 

i,j,k; 
maxneuron; 
S; 
Smax; 

69 



for(k=O; k<image; k++) 
{ 
printf("\nimage %d\n", k+l); 
Smax=O; 
maxneuron=O; 
for(i=O; i<outneuron; i++) 

{ 
S=O; 
for(j=O; j<inneuron; j++) S=S+Wl[i][j]*Xl[k)[j); 
if(S>Smax) { Smax=S; maxneuron=i; } 

} 

} 
for(i=O; i<outneuron; i++) 

{ 
X2[i]=O; 
if(i==maxneuron) X2[i]=l; 
printf(" %d", X2[i)); 
} 

printf(" %f", Smax); 
} 

void separation() 
{ 
int i,k,l; 
float d,dd; 

for(k=O; k<outneuron; k++) 
for(l=O; l<outneuron; l++) 
{ d=O; 

} 

for(i=O; i<inneuron; i++) 
{ dd=Wl[k][i]-Wl[l][i]; 

d=d+dd*dd; 
} 

DWW[k][l]=d; 

for(k=O; k<outneuron; k++) 
for(l=O; !<image; l++) 

} 

{ d=O; 

} 

for(i=O; i<inneuron; i++) 
{ dd=Wl[k][i] - Xl[l][i]; 

d=d+dd*dd; 
} 

DWX[k][l]=d; 

void learning() 
{ 
int i,j,l; 
int pn; 
float f; 

float F[outneuron)[inneuron); 

separation(); 
pn=random(4); 

for(i=O; i<outneuron; i++) 

70 



for(l=O; l<inneuron; 1++) 
{ F[i][l]=O; 

for(j=O; j<outneuron; j++) . . . 
{if (jJ=i) ( f=(Wl[i][l]-Wl[J][l])/DWW[i][J]i 

F[i][l]=F[i][l]+f; 
} 

} 

f=(Xl{pn][l]-Wl[i][l])/DWX[i)[pn]; 
F[i][L]=F[i][L]+mass*f; 

} 

for(i=O; i<outneuron; i++) 
for(l=O; l<inneuron; 1++) Wl[i][l]=(l-T)*Wl[i][l]+T*F[i][l]; 

} 

void print_weight() 
{ 
int i,j,k; 

for(i=O; i<outneuron; i++) 
{ 

} 
} 

for(j=O; j<inneuron; j++) 
printf(" %f", Wl[i][j]); 
printf("\n"); 

void weight_norm() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
{ 
WN[i]=O; 
for(j=O; j<inneuron; j++) WN[i]=WN[i]+Wl[i][j)*Wl[i][j]; 
WN[i]=sqrt(WN(i]); 
} 

} 

void normalization() 
{ 
int i,j; 
float norm; 

for(i=O; i<outneuron; i++) 
{ 
norm=WN[i]; 
for(j=O; j<inneuron; j++) Wl[i][j]=Wl[i][j)/norm; 
} 

} 

71 



void normalize_image() 
{ 
int i,j; 
float norm; 

for(i=O; i<image; i++) 
{ 
IL(i]=O; 
for(j=O; j<inneuron; j++) IL[i]=IL[i]+Xl[i][j]*Xl[i][j); 
IL[i]=sqrt(IL[i]); 
} 

for(i=O; i<image; i++) 
{ 
norm= IL [ i] ; 
for(j=O; j<inneuron; j++) Xl[i][j)=Xl[i][j)/norm+0.05; 

} 
} 

voi d chaos() 
{ 
int n l ,n2 ; 

nl=random(inneuron) ; 
n2=random(outneuron) ; 
Wl[n2][nl]=O; 
} 

72 



< APPENDIX A(ii) > 

/*------------------------------------------------------------------------
MCL. C 6-JAN-92 

Modified Compeititve Learning 

- The rule of response in the second layer is followed 
the competitive learning. 

- The weight updating rule is a new, not the same as 
the classic one. Its idea is based on a phenomena in 
electrostatics, like pole repell and unlike pole attract. 

--------------------------------------------------------------------------*/ 
#include<stdio.h> 
#include<stdlib.h> 
#include<math . h> 
#include<conio.h> 
#include<graphics.h> 

#define 
#define 
#define 
#define 
#define 
#define 

iteration 4096 
inneuron 48 
outneuron 8 
image 6 

T 0.0001 
mass 25 

int 
float 
float 
float 
float 
float 
float 

void 
void 
void 
void 
void 
void 
void 
void 
void 

main() 
{ 
int 
int 
void 

X2[outneuron]; 
Xl[image][inneuron); 
DWW[outneuron][outneuron]; 
DWX[outneuron][image]; 
IL[image]; 
Wl[outneuron][inneuron]; 
WN[outneuron]; 

forward respond(void); 
inputpattern(void); 
learning(void); 
loadinput(void); 
normalization(void); 
normalize image(void); 
testing(void); 
weight init(void); 
weight=norm(void); 

iterate ; 
index; 
print_weight(); 

loadinput(); 
normalize image () ; 
weight init(); 
for(iterate=O; iterate<iteration; iterate++) 

{ 
/* printf("." , iterate);*/ 

learning(); 
weight norm () ; 
normalization () ; 
index=iterate%256; 

73 



if (index==O) { printf("\n\n --- %d ---\n\n",iterate); 
print weight(); 
forword respond(); 
printf <"\n\n"); } 

} 
printf("\n\n --- %d ---\n\n",iterate); 
print_weight(); 
forword_respond(); 
} 

void loadinput() 
{ 
char xc; 
int i,j,k; 
int xx; 
FILE *input; 

/* input=fopen("mcl.dat","r"); */ 
input=fopen("charOl.dat","r"); 
for(k=O; k<image; k++) 

{ for(i=O; i<inneuron; i++) 
{ xc=getc(input); 

xx=atoi(&xc); 
Xl[k][i)=xx; 

} 
getc(input); 

} 
fclose(input); 
} 

void weight_init() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
for(j=O; j<inneuron; j++) Wl[i][j)=random(8); 

weight norm(); 
normalization(); 
} 

void 
{ 
int 
int 
float 
float 

forword_respond() 

i,j,k; 
maxneuron; 
S; 
smax; 

for(k=O; k<image; k++) 
{ 
printf("\nimage %d\n", k+l); 
Smax=O; 
maxneuron=O; 
for(i=O; i<outneuron; i++) 

{ 
S=O; 
for(j=O; j<inneuron ; j++) S=S+Wl[i][j]*Xl[k][j]; 
if(S>Smax) { Smax=S; maxneuron=i; } 
} 

for(i=O; i<outneuron; i++) 

74 



{ 
X2[i]=O; . 
if(i==maxneuron) X2[i]=l; 
printf(" %d", X2[i)); 
} 

printf (" %f", Smax); 
} 

} 

vo i d separation() 
{ 
int i,k,l; 
float d,dd; 

for(k=O; k<outneuron; k++) 
for(l=O; l<outneuron; l++) 
{ d=O; 

} 

for(i=O; i<inneuron; i++) 
{ dd=Wl[k][i]-Wl[l][i]; 

d=d+dd*dd; 
} 

DWW[k][l]=d; 

for(k=O; k<outneuron; k++) 
f or(l=O; l<image; l++) 
{ d=O; 

} 

} 

for(i=O; i<inneuron; i++) 
{ dd=Wl[k][i]-Xl[l][i]; 

d=d+dd*dd; 
} 

DWX[k][l]=d; 

void learning() 
{ 
int 
int 
float 

i,j,l; 
pn; 
f; 

float F[outneuron}[inneuron}; 

separation(); 
pn=random(4); 

for(i=O; i<outneuron; i++) 
for(l=O; l<inneuron; l++) 
{ F[i][l]=O; 

for(j=O; j<outneuron; j++) 
{if (j!=i) { f=(Wl[i][l]-Wl[j][l] )/DWW[i][j]; 

F[i][l]=F[i][l]+f; 

} 

} 
} 

f=(Xl [pn][l] -Wl[i][l])/DWX[i][pn}; 
F[i][ l] =F[i][ l]+mass*f; 

75 



for(i=O; i<outneuron; i++) 
for(l=O; l<inneuron; l++) Wl[i][l]=(l-T)*Wl[i][l]+T*F[i][l]; 

} 

void print_weight() 
{ 
int i,j,k; 

for(i=O; i<outneuron; i++) 
{ 

} 
} 

for(j=O; j<inneuron; j++) 
printf(" %f", Wl[i][j]); 
printf("\n" ); 

void weight_norm () 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
{ 
WN[i)=O; 
for(j=O; j<inneuron; j++) WN[i]=WN[i]+Wl[i)[j)*Wl[i)[j); 
WN[i)=sqrt(WN[i )) ; 
} 

} 

void 
{ 
int 
float 

normalization( ) 

i,j; 
norm; 

for(i=O; i<outneuron; i++) 
{ 
norm=WN[i]; 
for(j=O; j<inneuron; j++) Wl [ i][j)=Wl[i][j)/norm; 
} 

} 

void normalize_image() 
{ 
int i,j; 
float norm; 

for(i=O; i<image; i++) 
{ 
IL[i]=O; 
for(j=O; j<inneuron; j++) IL[i]=IL[i]+Xl[i][j]*Xl[i][j]; 
IL[i)=sqrt(IL[i)); 
} 

for(i=O; i<image; i++) 
{ 
norm=IL[i]; 
for(j=O; j<inneuron; j++) Xl[i][j]=Xl[i][j]/norm+0.05; 
} } 

76 



< APPENDIX A(iii) > 

/*-----------------------------------------------------------------------
MPROl. C 28-JAN-92 -

Machine Part Recognition (Part l) 

Function : Parts Classifi cation 
Reject Defective Parts 
Testing 

I nput : MPRGOl . DAT 
MPRDOl.DAT 

-----------------------------------
# include < s tdio.h> 
# include<s tdlib.h> 
# include <math.h> 
#include<conio.h> 
#include <graphics.h> 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

int 
int 
int 
i nt 
i nt 
f l oat 
float 
float 
float 
float 
float 
float 
f loat 

void 
void 
void 
void 
voi d 
vo i d 
voi d 
v o i d 
voi d 
void 
voi d 
void 
void 
void 
void 
void 

iteration 128 
inneuron 48 
outneuron 2 
image 
d e fnum 
T 
t 
p 
l e v e ll 
mass 

Super; 

2 
2 
0.0001 
0.01 
0.05 
1 
25 

X2[outneuron]; 
X3[outneuron); 
X4 [ outneuron]; 
XS [ out neuron]; 
Xl [image][inneuron]; 
TI [inneuron); 
DWW [outneuron)[outneuron); 
DWX [outneuron)[ima ge ) ; 
IL[ i mage ]; 
Wl [ outneuron][inneuron ) ; 
W2 [ outneuron)[inne uron ) ; 
WN [ outneuron]; 

a u t otesting(void ) ; 
forward respond(void); 
GenerateX2(void); 
GenerateX3(void); 
GenerateX4(void); 
GenerateXS(void); 
i nputpattern(void); 
l earn12 (void); 
learn13(void); 
l oaddefect(vo i d) ; 
loadinput( void); 
normalization(voi d); 
normalize i mage(void) ; 

normalize w2(void); 
testing (void); 
test i nput(void) ; 

---------------------------------------* / 



void 
void 

main() 
{ 
int 
int 
int 
i nt 
void 

weight init(void); 
weight=norm(void); 

i,j; 
def no; 
iterate; 
index; 
print_weight(); 

Super=O; 
loadinput () ; 
pr i ntf (" loadinput completed ... \n"); 
norma lize image ( ); 
printf ( " norma lization completed ... \n"); 
we ight init () ; 
print f1 " uns upe rvised learning started ... \n"); 
for (iterate=O; iterate<iteration; iterate++) 

{ 
l earnl2 () ; 
we ight norm () ; 
norma lization () ; 
inde x =ite r a te%128; 
i f ( i ndex ==O) { printf ("\n %d ---\n",iterate); 

forword_respond( ) ; } 
} 

printf("\n --- %d --- " ,iterate ) ; 
forward respond () ; 
printf(~\n\n u ns upervised l earning completed ... \n"); 
printf(" loading d e f e ctive pattern ... \n"); 
loaddefect(); 
pri ntf( " normal i ze defective pattern ... \n"); 
normalize image () ; 
printf(" supervised earning started - learn defectvie item •.. \n"); 
/* printf(" de f ect "ve item = %d \ n", defnum); */ 
Super=l; 
for(iterate=O; iterate< t eration ; iterate++) 

{ 
defno=random (defn 
printf("\n%d • .. \n•, de~ o ) ; 
for(i=O; i<inneuro; i - ) -- [ i]=Xl [defno)[i ] ; 
GenerateX2(); 
GenerateX4(); 
learnl3(); 
GenerateX3(); 
GenerateX5(); 

} 

printf("\n"); 
for(j=O; j<outneuro~; printf("%d" , X2 [ j ]) ; 
printf(" "); 
for(j=O; j<outneuron; print f ( " %d", X3 [j]) ; 
printf(" "); 
for ( j=O; j<outneur o ; -- pr · nt f ( "%d" , X4 ( j )) ; 
printf(" "); 
for(j=O; j<outneur on; -- pr.:.nt f ( "%d" , X5 [j]) ; 

printf("\n supervised e~ -:; :; 
printf(" Auto-Test ing St~ec -: 
normalize W2(); 
autotesting(); 

ete d ... \n\n" ) ; 

getchar (); 
} 

78 



void 
{ 
char 
int 
int 
FILE 

loadinput ( ) 

xc; 
i,j,k; 
xx; 
*input; 

i nput=fopen( "mprgOl.dat","r"); 
for ( k=O; k<image; k++) 

{ for ( i=O; i<inneuron; i++) 
{ xc=getc(input); 

xx=atoi( &xc ) ; 
Xl[k][i] =xx; 

} 
getc(input) ; 

} 
fclose (input); 
} 

void loaddefect () 
{ 
char 
i nt 
int 
F ILE 

xc; 
i, j I 

xx; 
*defect; 

defect=fopen("mprdO .dat","r"); 
for ( k=O; k<de fnum; k+T ) 

{ for (i=O ; i<inneuron; i++) 
{ xc=g etc(defect ) ; 
xx=a t o i(&xc); 
Xl[k][i ] =xx; 

} 
getc(defect ); 

} 
fclose(defect ); 
} 

v o i d weight_init () 
{ 
int i, j; 

for (i=O; i<outne ron; i++) 
f or(j=O; j<inne ran; j++ ) Wl[i][ j)=random(8); 

we i ght norm ( ) ; 
normalization( ); 

for(i=O; i<outne ro ; i++) 
for(j=O; j<inne r n; j++) W2 [ i )[j] =O; 

} 

voi d 
{ 
int 
int 
float 
float 

forword_ r espond() 

i,j,k; 
maxneuron; 
s; 
Smax; 

79 



for(k=O; k<image ; k++) 
{ 
printf("\nimage %d\n" , k+l); 
Smax=O; 
maxneuron=O; 
for(i=O; i<outneuron; i++) 

{ 
S=O; 
for(j=O; j<inneuron; j++) S=S+Wl[i][j]*Xl[k][j]; 
printf(" %f", S); 
if ( S>Smax) { Smax=S; maxneuron=i; } 
} 

} 

for(i=O; i<outneuron; i++) 
{ 

} 

X2 [i ]=O; 
i f ( i==maxneuron) X2[i]=l; 
} 

vo id separation() 
{ 
i nt 
f loat 

i,k, l ; 
d,dd; 

fo r(k=O; k<outne u ron; k++) 
for(l=O; l<outneuron; l++) 
{ d=O; 

for(i=O; i<inneuron; i++) 
{ dd=Wl [ k ][ i] -Wl[l][i]; 

d=d+dd*dd; 
} 

DWW [ k ][ l ] =d; 
} 

for(k=O; k<ou t e u ron; k++) 
for(l=O; l <ioage; l++) 
{ d=O; 

} 

} 

void 
{ 
int 
int 
f l oat 

f l oat 

for(i= O; -<inne u ron; i++) 
{ dd=W Aj[i ] -Xl[l][i]; 

d=d - dd dd ; 
} 

DWX[k ] [ J=d ; 

learn12( ) 

i ,j,l; 
pn ; 
f; 

F(outneuron)(inneuron) ; 

separation ( ); 
pn=random(image ); 

for ( i=O; i<outneuron; i++) 

80 



for(l=O; l<inneuron; l++) 
{ F [ i ) [ l ] =O ; 

for(j=O; j<outneuron; j++) 
{if (jl=i) { f=(Wl[i][l]-Wl[j)[l])/DWW[i][j]; 

F[i] [l]=F[i] [l]+f; 
} 

} 

f=(Xl[pn)[l]-Wl[i][l])/DWX[i)[pn); 
F[i)[l]=F(i][l]+mass*f; 

} 

for(i=O; i<outneuron; i++) 
for(l=O; l<inneuron; l++) Wl[i][l]=(l-T)*Wl[i][l]+T*F[i][l]; 

} 

void learnl3() 
{ 
int it j i 

for (i=O; i<outneuron; i++) 
for (j =O; j<inneuron; j++) W2[i][j]=(l-t)*W2[i][j]+p*TI(j]*X4[i]; 

} 

void ·eig ~ arm() 
{ 

n , . 
- I I 

for ( = ~< ne u ron; i++) 
{ 
WN[ i 
for (j = ; J< "nneuron; j++) WN[i]=WN[i]+Wl[i](j]*Wl[i)(j); 
WN[i ] =sqrt: 1'N[i]) ; 
} 

} 

void normalize_W2() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) 
{ WN[i]=O ; 

for(j=O ; j<inneuron; j++) WN[i]=WN(i]+W2[i)(j]*W2[i][j); 
WN[i)=sqrt (WN [i]); 

} 

for(i=O; i<outneuron; i++) 
for(j=O; j<inneuron; j++) 

{ if ( WN [ i] ! =O) W2 ( i )[ j ] =W2 ( i )[ j ) /WN [ i) i } 
} 

81 



void normalization() 
{ 
int 
float 

i,j; 
norm; 

for(i=O; i<outneuron; i++) 
{ 

norm=WN[i]; 
for(j=O; j<inneuron; j++) Wl[i][j]=Wl[i][j]/norm; 
} 

} 

void 
{ 
int 
float 

normalize_image() 

i, j; 
norm; 

for(i=O; i<image; i++) 
{ 

IL[i ) =O; 
for (j =O; j<inneuron; j++) IL[i]=IL(i]+Xl[i][j)*Xl[i][j); 
IL[i)=sqrt(IL[i]); 
} 

for (i=O; i<image; i++) 
{ 
norm=IL [i) ; 
for(j=O; j < inneuron; j++) Xl[i)[j)=Xl[i)[j)/norm+0.005; 

} 
} 

void testinput() 
{ 
int j; 
float TI:; 

TIL=O; 
for(j=O; j<inne ron; j++ ) TIL=TIL+TI[j)*TI(j]; 
TIL=sqrt(TIL); 
for(j=O; j<inne ron; j++) TI[j)=TI[j)/TIL+0.05; 
} 

void GenerateX2() 
{ 
int 
int 
float 

Smax=O; 

i,j; 
Winner; 
Smax,S; 

for(i=O; i<outneuron ; i++) 
{ S=O; 

for(j=O; j<inneuron; j++) S=S+Wl[i][j]*TI[j] ; 
if(S>Smax ) { Smax=S; Winner=i; } 

} 
for(i=O; i<outneuron; i++) 

{ X2[i]=O; 
if(i==Winner ) X2[ i]=l; 

} 

82 



} 

void 
{ 
int 
float 

GenerateX3() 

i,j; 
S; 

for(i=O; i<outneuron; i++) 
{ S=O; 

for(j=O; j<inneuron; j++) S=S+W2[i][j]*TI[j]; 
X3[i]=O; 

} 
if(S>=levell) X3[i]=l; 

} 

void 
{ 
int 
float 

GenerateX4 () 

i,j; 
S• I 

for(i=O; i<outneuron; i++) 
{ X4[i]=O; 

} 
if((Super==l)&&(X2[i]==l)) X4[i]=l; 

} 

void GenerateXS() 
{ 
int i,j; 

for(i=O; i<outneuron; i++) XS[i]=X2[i]-X3[i]; 
} 

void autotesting() 
{ 
int i,j,k; 

loadinput(); 
normalize image(); 
Super=O; -
for(k=O; k<image; k++) 

{ for(i=O; i<inneuron; i++) TI[i)=Xl[k][i]; 
GenerateX2(); 

} 

GenerateX4 (); 
GenerateX3(); 
GenerateXS(); 
printf("\n"); 
for(j=O; j<outneuron; j++) printf("%d", X2[j]); 
printf(" "); 
for(j=O; j<outneuron; j++) printf("%d", X3[j]); 
printf(" "); 
for(j=O; j<outneuron; j++) printf("%d", X4[j]); 
printf(" "); 
for(j =O; j<outneuron; j++ ) printf("%d", XS[j]); 

loaddefect(); 
normalize_image(); 

83 



Super=l; 
for(k=O; k<image; k++) 

{ for(i=O; i<inneuron; i++) TI [ i) =Xl [ k) [ i); 
GenerateX2(); 
GenerateX4(); 
GenerateX3(); 
GenerateXS(); 
printf("\n"); 
for( j=O; j<outneuron; j++) printf("%d", X2 [ j ) ) ; 
printf(" " ) ; 
for ( j=O; j<outneuron; j++) printf("%d", X3[j]); 
printf(" " ) ; 
for ( j=O; j<outneuron; j++) printf("%d", X4 [ j) ) ; 
printf(" " ) ; 
for ( j=O; j<outneuron; 

} 
j++) printf("%d", XS [ j ) ) ; 

} 

84 



< APPENDIX A(iv) > 

Here is the content of the file CHAROl.DAT ( for use in MCL.C / CMCL.C ) 

111100001100010010010010111111110011100001100001 
111110110011110011111110111110110011110011111110 
011111111111110000110000110000110000111111011111 
111111111111110000111111111111110000111111111111 
001110010010010010010010010010010110010110001111 
110011110011110011111111111111110011110011110011 

Here is the content of the file CHAR02.DAT. The last two lines are dummy. ( for 
use in MCL.C / CMCL.C ) 

111110100001100001100010111100100110100011100011 
111100100110100010100010111110100000100000100000 
111100001100010010010010111111110011100001100001 
111110110011110011111110111110110011110011111110 
011111111111110000110000110000110000111111011111 
111111111111110000111111111111110000111111111111 
001110010010010010010010010010010110010110001111 
110011110011110011111111111111110011110011110011 

Here is the content of MPRGOl.DAT ( good machine part for MPR.C ) 

111111110011110011100001100001110011110011111111 
000000001100001100011110011110001100001100000000 

Here is the content of MPRDOl.DAT ( defective machine part for MPR.C ) 

110111110011110011100001100000110011110011111111 
000100001100001100011110011110001100001100001000 

85 



< APPENDIX B: Bibilography > 

Amari S-I ( 1977) . Neural theory of association and concept­
formation. Biological Cybernetics 26, ppl75-185, 1977. 

Amari S-I (1988). Associative Memory and Its Stati stical 
Neurodynamical Analysis . In Haken (1988). 

Anderson J.A. (1983). Cognitive and Psychological Computation 
with Neural Models. IEEE Transactions on System, Man, and 
Cybenetics, SMC-13, 799-815, 1983. 

Anderson J.A. and Rosenfeld E. (1988). Neurocomputing, Foundation 
of Research. MIT Press, 1988. 

Bachmann C.M., Cooper L.N., Dembo A. and Zeitouni o. (1987). A 
Relaxation Model for Memory with High Storage Density. 
Proceedings of the National Academy of Sciences, USA 84 , 7592-
7531, 1987 . 

Carpenter G.A. and Grossberg s. (1986). Neural Dynamics of 
Category Learning and Recognition: Attention, Memory 
Consolidation, and Amnesia, in Brain Structure, Learning, and 
Memory. edited by J. Davis, R. Newburgh and E. Wegman, AAAs 
Symposium series, 1986. 

6 Carpenter G.A. and Grossberg s. (1987a). A Massively Parallel 
Architecture for a Self-Organizing Neural Pattern Recognition 
Machine. Computer Vision, Graphics and Image Processing 37 , 1987. 

Carpenter G. A. and Grossberg s. ( 1987b). ART 2: self-organization 
of stable category recogni tion codes for analog input pattern. 
Applied Op t i cs, VOL. 26, N0.23, 4919-4946, 1987. 

c arpenter G.A. et. al. (1987). Technical Comments on Computer 
with Neural Networks. Science, VOL. 235, 1226-1229, 1987. 

carpenter G.A. and Grossberg S. (1988). The ART of Adaptive 
Pattern Recognition by a Self-Organization Neural Network . IEEE 
Computer, Vol 21, No 3, March, 77-88, 1988. 

Churchland P.S., Koch C. and Sejnowski T.J. (1990). What Is 
Computational Neuroscience? In Computational Neuroscience , edited 
by Eric L. Schwartz, Chapter 5. 1990. 

Cohen M.A. and Grossberg S. (1983). Absolute Stability of Global 
Pattern Formation and Parallel Memory Storage by Competitive 

86 



Neural Networks. IEEE Transactions on System, 
Cybernetics, SMC-13, 815-826, 1983. 

Man and 

Griffith J.s. (1971). Mathematical Neurobiology. An Introduction 
to the Mathematics of the Nervous System. Academic Press, 1971. 

Grossberg S. (1976). Adaptive Pattern Classification and 
Universal Recording: I. Parallel Development and Coding of Neural 
Feature Detectors. Biological Cybernetics 23: 121-134, 1976. 

Grossberg S. (1980a). How does a brain build a cognitive code. 
Psychological Review 87:1-51, 1980. 

Grossberg . s. (198?b). Mathematical Psychology and 
Psychophysiology. American Mathematical Society, 1980. 

Grossberg 8. (1980c). Adaptive resonance 
perception and cognition. In Mathematical 
psychophysiology, edited by Grossberg s., AMS, 

in development, 
Psychology and 

1980. 

Grossberg S. (1987). Competitive Learning: From Interactive 
Activation to Adaptive Resonance. Cognitive Science 11, 23-63, 
1987. 

Hebb D. O. (1949). The Organization of Behavior, Wiley, 1949. 
Introduction and Chapter 4 are also appeared in Neurocomputing, 
edited by J.A.Anderson and E.Rosenfeld, 45-56, MIT Press , 1988. 

Hebb D. O. ( 1972) . Textbook of Psychology. 3rd ed. Saunders 
company, 1972. 

Hebb D.O . (1980) . Essay on Mind. Lawerence Erlbaum Associate. 
1980. 

~ p 

{~Hecht-Nielsen R . (1990). Neurocomputing. Addison Wesley, 1990. 

Hertz J., Krogh A. and Palmer R.G. (1991). Introduction to the 
=:eory of Neural Computation. Addison-Wesley. 1991. 

~-p:ield J.J. ( 1982). Neural networks and physical systems with 
:-ergent collecti ve computational abilities. Proceesings of the 
.·a-cional Academy of Sciences 79: 2554-2558. 1982. 

Hopfield J.J. (1984). Neurons with graded response have 
c ollective computational properties like those of t wo-state 
n e urons. Proceedings of the National Academy of Sciences USA 81, 
May 1984, 3088-3092, 1984. 

Hui C. C. 
etwork. 

(1991). An Error Correcting Algorithm for Hopfield 
(Unpublished paper from CUHK) 1991 . 

EE (1992). special Issues on Neural Networks in Control 
sys-cems. IEEE control systems, Vol. 12, No. 2, April, 1992. 

Kandel R.E. and Schwartz H.J. (1982). Molecular Biology of 
d 1 t . f Transmi'tter Release. Science, Vol 218, Learning: Mo u a i on o 

87 

-~ 



433-443, 1982. 

Kandel R.E. and Schwartz H.J. (1985). Principles of Neural 
Sciences, 2nd ed., Elsevier, 1985. 

Kosko B. (1992). Neural Networks and Fuzzy Sysytems. Prentice 
Hall, 1992. 

Lee C.K., Sum P.F. and Tam P.K. (1992a). An Unsupervised Learning 
Algorithm for Character Recognition. (To be presented in IJCNN92, 
Baltimore, USA, June 8-11, 1992). 

Lee C.K., Sum P.F. and Tam P.K. (1992b). Hierarchical Neural 
Network for Machine Part Recognition. (To be presented in IEEE 
ETFA'92, Melbourne, Australia, August 11-14, 1992) 

4-Lippamnn R.P. (1988). An Introduction to computing with Neural 
Nets. in Neural Networks, Artificial Neural Networks: Theoretical 
Concepts, edited by V. Vemuri. IEEE Computer Society Press 
Technology Series, 1988. 

McCleland J.L. and Rumelhart D.E. (1981). An Interactive Model 
of Context Effects in Letter Perception: Part 1. An Account of 
Basic Finding. Psychological Review, 88, 375-407 , 1981 . 

McCleland J.L. and Rumelhart D.E. (1985). Distributed Memory and 
the Representation of Genral and Specific Information. Journal 
of Experimental Psychology: General. 159-188, 1985. 

McCleland J.L. and Rumelhart D.E. (1987). Parallel Distribution 
Processing. Explorations in the Microstructure of Cognition. 
Volume 2: Psychological and Biological and Models. 

McCulloch W. S . and Walter P. (1943). A Logical calculus of the 
ideas immanent in nervous activity. Bulletin of Mathematical 
Biophysics 5:115-133. 1943. 

Nguyen D.H. and Widrow B. (1990). Neural Networks for Self­
Learning Control System. IEEE Control Systems Magazine (April) , 
18-23, 1990. 

Pinel J.P. J. (1990) . Biopyschology. Allyn & Bacon. 1990. 

-~~ts W. and McCulloch W.S. (1947). How we know universals: the 
~ e::-ception of auditory and visaul forms. Bulletin of Mathematical 
3_ophysics 9:127-147 , 1947. 

_ ose b latt F. (1958). The Perceptron: The Probabilistic Model for 
=~= rmation storage and Organization in the Brain. Psychological 
. e-:_ew , 65, 386-408, 1958. 

7 se:l.blatt F. (1960). Perceptual Generalization over 
-:"!'."a:-sformation Groups. in Proceeding of an Interdisciplinary 

:-=erence: Self-Organizing Systems. edited by M.C. Yovits and 
. ~-eron, Pergamon Press, 1960. 

88 



Rosenblatt F. (1962) . Principles of Neurodynamics : Perceptrons 
and the Theory of Brain Mechanisms. Spartans Book s . 1962 . 

Rose nblatt F. (1964). A Model for Experiential Storage in Neural 
Network. in computer and Information Science , edited by J . T. Tou 
and R.H. Wilcox. Spartan, 1964. 

Rosenblatt F., Farrow J.T . and Herblin W.F . (1966 ) . Tranfer of 
Conditioned Responses from Trained Rats to Untra ined Rats by 
means of a Brain Extract. Nature, Jan , 46-48 , 1966 . 

Rosenblatt F . {1967). Recent Work on Theoretical Models of 
Biological Memory. in Computer and Information Science-II, edited 
b y J . T. Tou , Aca demic Press, 1967. 

Rume lhart D.E . and McCleland J.L. (1982). An Inter active 
Activation Mode l of Context Effects in Letter Perception: Part 
2 . The context ual Enhancement Effect and Some Test s and 
Entens i ons of the Model. Psychological Review , Vol 89 , 6094, 
1982. 

Rumelhart D.E. and Zipser D. (1985) . Feature Discovery by 
Competitiv e Learning. Cognitive Science 9 , 75-112 , 1985 . 

Rumelhart D.E. and McClelland J . L. (1987) . Parallel Distributed 
Processing. Explorations in the Microstructure of Cogn ition. 
Vo lume 1: Foundation . 

Tou J. T . a nd Wilcox R.H. (1964) . Computer and I nfor amtion 
Sc ience. Spartan , 19 64. 

Tou J. T . (1967) . computer and Information Science-I I , Ac ademic 
Press, 19 67 . 

sum P. F . , Lee C.K . and K.S.Tam (1992), Machine Part Recognition 
using Layer Nets. (To be presented in Automation'92 , Taiwan, July 

- 4, 1992). 

~·asserman P. D. ( 1989) . Neural Computing. Theory and Practice. van 
·ostrand Reinhold, 1989 . 

Yovi t s M.C. and Cameron c . (1960). Self-Organization Systems. 
?e~gamon Press, 1960. 

FU.rther References 

.-ti) ..... - . ostafa Y.S. and Jacques J.-M. ST. (1985) . Information 
Capaticity of the Hopfield Mod e l. IEEE Transaction on Infor mation 
=~eory , Vol. IT-31, N0.4 , 461 - 46 4 . 1985. 

n8~_ey D.H., Hinton G.E. and Sej nowski T.J . (19 85). A Learning 
~:gor ithm for Boltzmann Machine. Cognitive Sci ence 9 , 147-169, 
:.9 s . 

89 



Ahmed N. and Rao K.R. (1975). Orthogonal Transforms for Di gital 
Signal Processing, Springer-Verlag , 1975. 

Aiyer S.V.B., Niranjan M. And Fallside F. (1990}. A Theoretical 
I nvestigation into the Perfromance of the Hopfield Model . IEEE 
Transaction on Neural Networks, Vol 1, No 2, 204-215, 1990. 

Albus J.S. (1991). Outline for a Theory of Intelligence . IEEE 
Transaction on SMC, vol 21, No 3, 473-509. 1991. 

Andrews H.C. (1972). Introduction to Mathematical Techniques in 
Pattern Recognition, John Wiley and sons, 1972. 

Ar bib M.A . (1987) . Brains, Machines and Mathematics., 2nd ed. 
Springer- Verlag, 1987. 

Atkinson R.L., Atkinson R.C., smith E . E., Bern D.J . and Hilgard 
E.R. (1990 ) . Introduction to Psychology. 10th ed. Ha rcourt Brace 
J ovanovich Publishers. 1990 

Bacon W.F. and Egeth H. E. (1991). Local Processes i n Preatt entive 
Feature Detection. Journal of Experimental Psychology. Lea rning, 
Memory a nd Cognition, 77 -90, 1991 . 

Barto A.G . and Anandan P. (1985). Pattern-Recognizing Stochastic 
Learning Auto~ata. IEEE Transactions on System, Man and 
Cybernetics, SMC- 15, 360- 375, 1985. 

Block H. D. (1962). The Perceptron: A model for Brain Funct ioning 
I. Review o f Modern Phys ics , Vol 34, 123-135, 1962 . 

Bl ock H.D., Knight B. W. Jr and Rosenblatt F . (1962} . Analysis o f 
a Four -Layer Series-Coupled Perceptron II. Review of Modern 
Physics . Vol 34, 135- 142, 1962. 

B~ock ~.D ., Nilsson N. J. and Duda R.O. (1964). Determination and 
Di:ection o~ Features in Patterns . in computer and Information 
Science, edited by J.T. Tou and R.H. Wilcox, spartan , 19 64 . 

Burke L.I .• (1991) . Clustering Charaterization o f Adaptive 
Resonance. eura etworks, Vol 4 , pp. 485-491, 1991 . 

Bullock D. and Grossberg S ( 1988) . Self o · · Arch ' t t & • - rganizing Neural 
i . e c ~es ~or Eye Movements, Arm Movements and Eye-Arm 

~oordinat o . : Haken (1988) . (The term circular reacti on has 
e7n quoted. rt_so a book called "The origins o f int 11' · 

chi dren 11 h · h · d · t e ige nce 1n . - ~ w ic _s e i ed by Prof. Jean Piaget has also been 
nc~ ded in Re=erences.) ' 

Ca:::-pe ter G.A. ard Grossberg S (19 88) Self or · · - - - - ,..k · · • - gani z ing Neural 
. e~ __ - Architectures for Real Time Adaptive Pattern Rec ogniti' on 

~ake (1988 . · 

Ca~:.ter G. A., Grossber~ S. and Rosen D.B. (1991). ART 2 - A: An 
:-.c.-p .... ~~e . Resonace A ogr1thm for Rap i d category Learning and 
?e~ gn1t1on. Neura etworks, Vol 4, pp. 493-504. 1991 . 

90 



Caudill Maureen (1991). Expert Networks. Byte October, 1 08-116, 
1991. 

Cesari L. (1971). Asymptotic Behavior and Stabil i ty Problems in 
ordinary Differential Equation. Springer-Verlag, 1971. 

Chan L.W. (1990). Efficacy of Different Learning Algorithms of 
the Back Propagation Network. Proceeding of IEEE Region 10 
Conference on Computer and Communication system, 23-27 , 1990. 

Changeux J.P and Dehaene s . (1989). Neuronal Model of cognitive 
Functions. Cognition 33 1 63-109, 1989. 

Cheung C.W. (1990). The Study of the Application of Neural 
Networks. Unpublished Final Year Project Report in Dept. of 
Electronics Enginnering, code 7a90, 1990. 

Coburn H.E. (1951). The Brain Analogy. Psyschological Review, 
155-178, 1951. 

Coburn H.E. (1953a). The Brain Analogy: Transfer of 
Differentiation. Psychological Review, 413-422, 1953. 

Coburn H.E. (1953b). The Brain Analogy: Association Tracts. 
Psychological Review, 197-208, 1953. 

Coddington E.A. (1974). An Introduction to Ordinary Differential 
Equation. Prentice Hall, 1974. 

Davis G.W.Jr. Sensitivity Analysis in Neural Net Solutions . I EEE 
Transaction on SMS, Vol 19 , No 5, 1978-1082, 1989 . 

Domany E., van Hemmen J.L. and Schulten K. (1991). Model of 
Neural Networks. Springer-Verlag, 1991. 

Ede lman G.M. (1989). Neural Darwinism. The Theory of Neuronal 
Group Selection. Oxford University Press, 1989. 

Farah M. J . and McClelland J . L. (1991) . A Computational Model of 
Sema nt i c Memory Impairment : Modality Specificity and Emergent 
Ca t egory Specificity. Journal of Experimental Psychology: 
Ge neral, Vol 120, No 4, 339-357, 1991. 

Gema n S. and Geman D. (1984 ) . Stochastic Relaxation, Gibbs 
Di s tribution and the Bayesian Restoration of Image . IEEE 
Trans act i ons on System, Man and Cybernetics , SMC-14 , 72 1-741, 
1984. 

Gonzalez R. c. and Wintz P . ( 1987) . Digita l Image Processing, 
Addison- Wesley , 1987. 

Grims dale R.L. , Sumner F.H. , Tunis C.J. and Kilburn T . (1959). 
A System for the Automatic Recognition of Patterns . Proceeding 
o f IEE , 106 Part B, 210-221, 1959 . 

Grossberg S . and Kuperstein M. (1 989). Neural Dynamics of 

91 



Adaptive Sensory-Motor Control, Pergamon, 1989. 

Guyon I. , Alberecht P. , Le Cun Y. , Denker J. and Hubbard w. 
(1991). Design a Neural Network Charater Recognizer for a Touch 
Terminal. Pattern Recognition, Vol 24, No. 2, 105-119, 1991. 

Haken H. ( 1988) . Neural and Synergetic Computer. Springer-Verlag 
1988. , 

Hale :J·K· and LaSalle :J.P. (1967). Differential Equation and 
Dynamic Systems. Academic Press, 1967. 

Haykin S. ( 1984) . Introduction to Adaptive Filter. Macmillan 
Publishing company. 1984. 

Hendler J.A. (1989) Marker-Passing over Microfeatures: Towards 
a Hybrid Symbolic/Connectionist Model. Cognitive Science 13, 79-
106, 1989. 

Hinton G.E. and Sejnowski T.J. (1983). Optimal Perceptual 
inference. Procee ding of IEEE Conference on Pattern Recognition 
and computer Vision, 448-453, 1983. 

Hopfield J.J. and Tank D.W. Computing with Neural circuits: A 
Model. Science 233, 625-632. 

Hulse S.H., Egeth H. and Deese J. (1980). The Psychology of 
Learning. 5th ed. McGraw Hill. 1980. 

IEEE (1990a). Special Issue on Neural Networks I. Proceedings of 
IEEE, VOL. 78, N0.9, 1990. 

IEEE (1990b). Spe cial Issue on Neural Networks II. Proceedings 
of IEEE, VOL. 78, N0.9, 1990. 

IEEE (1991). Spe cial Iss ue on Aritificial Neural Networks. IEEE 
Transaction on Computers Vol 40, No 12, 1991. 

Ikeda N. and Torioka T. A Model of Associative Memory Based on 
Adaptive Feature- Detecting Cells. IEEE Transactions on System, 
Man and Cybernetics, Vol. 20, No. 2, 436-443. 1990. 

Jacobs R.A., Jordan M.I. and Barto A. (1991). Task Decomposition 
Through Competition in a Modular Connectionist Architecture: The 
What and Where Vision Tasks. Cognitive Science 15, 219-250. 
(1991). 

Jordan D.W. and Smith P. (1977). Nonlinear Ordinary Differential 
Equations. Oxford University Press, 1977 

Kan w.K., Wong K.H. and Law H.M. (1990). Non-Overlapped Trees of 
Probabilistic Logic Neuron. Proceeding of the IEEE Region 10 
conference on Computer and Communication Systems, 37-39, 1990. 

Kohonen T. ( 1977) . Associative Memory. A system-theori ti cal 
approach. Springer-Verlag. 1977. 

92 



Kohonen T. ( 1982) . Self-organized formation of topologically 
correct feature maps. Biological Cybernetics 43:59-69, 1982. 

Kohonen T. (1988). Self-Organization and Associative Memory. 2nd 
ed. Springer-Verlag. 1988. 

g Kong S-G. and Kesko B. (1991). Differential Competitive Learning 
for Centroid Estimation and Phoneme. IEEE Transaction on Neural 
Networks, VOL. 2, 118-124. 1991. 

Kesko B. (1987). Adaptive bidirectional associative memories. 
Applied Optics, VOL. 26, NO. 23, 4947-4960, 1987. 

Kesko B. (1990). Unsupervised Learning in Noise. IEEE Transaction 
on Neural Networks, VOL. 1, NO. 1, 44-57, 1990. 

Kesko B. (1991). Stochastic Competitive Learning. 
Transaction on Neural Networks, VOL. 2, 522-529, 1991. 

IEEE 

LaSalle J.P. (1967). An Invariance Principle in the Theory of 
stablity. In Differential Equation and Dynamic systems, edited 
by J.K.Hale and J.P.LaSalle. Academic Press, 1967. 

McEliece R.J., Posner E.C., Rodemich E.R. and Venkatesh S.S. 
(1987). The Capacity of the Hopfield Associative Memory. IEEE 
Transaction on Information Theory, VOL. IT-33, N0.4, 461-482, 
1987. 

Minsky M.L. (1967). Computation: Finite and Infinite Machine. 
Prentice Hall. 1967. 

Minsky M, Seymour P. (1972). Perceptrons 
Computational Geometry. MIT Press. (1972) 

An Essay in 

Milner P.M. (1957). The Cell Assembly: MARK II. Psychology 
Review, 64, 242-252, 1957. 

1 Pao Y. H. ( 1989) . Adaptive Pattern Recognition and Neural Network, 
Addison-Wesley, 1989. 

scalero R.S. and Tepedelenlioglu N. (1992). A Fast New Algorithm 
for Training Feedforward Neural Networks. IEEE Transact i ons on 
Signal Processing, vol 40, No 1, 202-210, 1992. 

Shapiro S.S. (1987). Encyclopedia of Aritificial Intell i gence. 
Vol 2. Wiley . 1987. 

Shavlik J.W., Mooney R.J. and Tonell G.G. (1991). Symbol ic and 
Neural Learning Algorithms: An Experimental Comparison. Machine 
Learning, 111-143, 1991. 

Tank D.W. and Hopfield J.J. (1986). Simple Neural Optimi zation 
Networks: An A/D converter, Signal Decision Circuit and a Linear 
Programming Circuit. IEEE Transactions on Ci rcuits and System. 
533-541, 1986. 

93 



Taylor W.K. (1959). Pattern Recognition by Means of Automatic 
Analogue Apparatus. Proceeding of IEE, 106 Part B, 198-209, 1959. 

Time-Life Books (1989). Alternative Computer, 1989 . 

Torioka T. and Ikeda N. (1990). Consideration on Pattern­
Separating Function in a Generalized Random Nerve Net Consisting 
of Two Layers. IEEE Transaction on SMC, VOL . 20, NO. 3, 619-627 
1990. I 

von der Malsburg Chr. (1973). Self-organization of orientation 
sensitive cells in the stria ta cortex. Kybernatik 14: 85-100. 
1973. 

Vemuri V. {1988). Aritificial Neural Networks: An Introsuction. 
in Neural Networks, Artificial Neural Networks: Theoretical 
Concepts, edited by V. Vemuri. IEEE Computer Society Press 
Technology Series, 1988 . 

Widrow B. and Smith F.W. (1964). Pattern-Recognizing Control 
systems. in Computer and Information Science, edited by J . T. Tou 
and R.H. Wilcox, Spartan, 1964. 

Widrow B., Gupta , Maitra, (1973). Punish/Reward: Learning with 
a Critic in Adaptive Threshold Systems . I EEE Transact i on on 
system, Man and cybernetics, SMC-3, 455-465, 1973. 

Widrow B., McCool J.M., Larimore M.G. and Johnson C.R. , Jr. 
(1976). Stationary and Nonstationary Learning Charateristics of 
LMS Adaptive Filter. Proceedings of IEEE, Vol 64, NO 8, August 
1976, 1151-1162. 

Wyckoff B.L.Jr. (1954). A Mathematical Model and An Electronic 
Model for Learning. Psychology Review, 61, 89-97, 1954. 

94 



STRUCTURE OF NETWORK 

Consider a neural network consisting of 48 neurons in the 
first layer and 8 neurons in the second layer. We set the 
constants q 1 and q2 to be 25 and 1 respectively. The step 
size, 'Y, is 0.0001. The threshold, 8i, of each of the 
neurons in the first layer are set to 0. The update takes 
over 4096 iterations. 

(P) 

Pattern 

~8 

Synaptic 
Connection 

simulation Network Structure 

Z· 
J 

(Z) 

Response 



Test 1: General LAR approach 

In this test, we choose pattern (i) to (vi). 

Iteration Pattern# . 
max. value of yj ZJ 

0 1 01000000 0.976141 
2 01000000 0.955053 
3 01000000 1.016840 
4 01000000 1.116477 
5 10000000 1.023682 
6 00000010 1.125428 

512 1 00001000 1.159309 
2 01000000 1.157658 
3 00010000 1.146984 
4 10000000 1.253260 
5 00000010 1.194579 
6 00000010 1.290241 

4096 1 00001000 1.259999 
2 01000000 1.241957 
3 00010000 1.260759 
4 10000000 1.307193 
5 00000010 1.271767 
6 00000001 1.320562 



Test 2: Chaotic LAR approach 

In this test, we select the pattern (i) to (iv) and (vii) 
to (viii) from Fig(4.2). The network parameters are the 
same. But here we add a concept - Chaos - to the 
simulation program. 


	IMG_0001
	IMG_0002
	IMG_0003
	IMG_0004
	IMG_0005
	IMG_0006
	IMG_0007
	IMG_0008
	IMG_0009
	IMG_0010
	IMG_0011
	IMG_0012
	IMG_0013
	IMG_0014
	IMG_0015
	IMG_0016
	IMG_0017
	IMG_0018
	IMG_0019
	IMG_0020
	IMG_0021
	IMG_0022
	IMG_0023
	IMG_0024
	IMG_0025
	IMG_0026
	IMG_0027
	IMG_0028
	IMG_0029
	IMG_0030
	IMG_0031
	IMG_0032
	IMG_0033
	IMG_0034
	IMG_0035
	IMG_0036
	IMG_0037
	IMG_0038
	IMG_0039
	IMG_0040
	IMG_0041
	IMG_0042
	IMG_0043
	IMG_0044
	IMG_0045
	IMG_0046
	IMG_0047
	IMG_0048
	IMG_0049
	IMG_0050
	IMG_0051
	IMG_0052
	IMG_0053
	IMG_0054
	IMG_0055
	IMG_0056
	IMG_0057
	IMG_0058
	IMG_0059
	IMG_0060
	IMG_0061
	IMG_0062
	IMG_0063
	IMG_0064
	IMG_0066
	IMG_0067
	IMG_0068
	IMG_0069
	IMG_0070
	IMG_0071
	IMG_0072
	IMG_0073
	IMG_0074
	IMG_0075
	IMG_0076
	IMG_0077
	IMG_0078
	IMG_0079
	IMG_0080
	IMG_0081
	IMG_0082
	IMG_0083
	IMG_0084
	IMG_0085
	IMG_0086
	IMG_0087
	IMG_0088
	IMG_0089
	IMG_0090
	IMG_0091
	IMG_0092
	IMG_0093
	IMG_0094
	IMG_0095
	IMG_0096
	IMG_0097
	IMG_0098
	IMG_0099
	IMG_0100
	IMG_0101
	IMG_0102
	IMG_0103
	IMG_0104
	IMG_0105
	IMG_0106
	IMG_0107
	IMG_0108
	IMG_0109
	IMG_0110
	IMG_0111
	IMG_0112
	IMG_0113
	IMG_0114
	IMG_0115
	IMG_0116
	IMG_0117
	IMG_0118
	IMG_0119
	IMG_0120
	IMG_0121
	IMG_0122
	IMG_0123
	IMG_0124
	IMG_0125
	IMG_0126
	IMG_0127
	IMG_0128
	IMG_0129
	IMG_0130
	IMG_0131
	IMG_0132
	IMG_0133
	IMG_0134
	IMG_0135
	IMG_0136
	IMG_0137
	IMG_0138
	IMG_0139
	IMG_0140
	IMG_0141
	IMG_0142
	IMG_0143
	IMG_0144
	IMG_0145
	IMG_0146
	IMG_0147
	IMG_0148
	IMG_0149
	IMG_0151
	IMG_0152
	IMG_0153
	IMG_0154
	IMG_0155
	IMG_0156
	IMG_0157
	IMG_0158
	IMG_0159
	IMG_0160
	IMG_0161
	IMG_0165
	IMG_0166
	IMG_0168
	IMG_0170
	IMG_0171
	IMG_0172
	IMG_0173
	IMG_0174
	IMG_0175

