
國立中興大學科技管理研究所

碩士學位論文

MyNext：利用集體智慧開發適用於台灣研究所
招生考試之社群查榜系統

MyNext: A Collective Intelligence Enabled
System for Cross-Checking Entrance

Exam Results

指導教授：沈培輝博士 Dr. John Sum
研究生：蔡智強 Chih-Chiang Tsai

中華民國一百零一年七月

國立中興大學科技管理研究所

碩士學位論文

MyNext：利用集體智慧開發適用於台灣研究所
招生考試之社群查榜系統

MyNext: A Collective Intelligence Enabled
System for Cross-Checking Entrance

Exam Results

指導教授：沈培輝博士 Dr. John Sum
研究生：蔡智強 Chih-Chiang Tsai

中華民國一百零一年七月

National Chung Hsing University
Graduate Institute of Technology Management

Master Thesis

MyNext: A Collective Intelligence Enabled
System for Cross-Checking Entrance

Exam Results

Advisor: Dr. John Sum
Student: Chih-Chiang Tsai

Date: July, 2012

MyNext: A Collective Intelligence Enabled System for Cross-Checking
Entrance Exam Results

誌謝

很快的兩年過去了，本論文也終於可以順利完成！在此要感謝許許多多促成本

論文順利完成的人。首先就是最辛苦的 John。雖然我常讓你找不到人，電話也很
難通，讓您很擔心，但是您還是每次都很有耐心的給予我不同的建議和新的研究

方向。對我來說，您不但是位好老師，更是一位可以無所不談的好朋友。此外，

也感謝擔任口試委員陳同孝老師以及張啟昌老師。因為你們的許多寶貴建議與指

導，讓本論文可以更加完善。

謝謝跟我同班了兩年的同學們：一樣愛 Apple 的史蒂芬、愛耍帥的居米、像媽
媽一樣的莊莊、講話很吵的恬恬、驚喜不斷的一節、上課最認真的 Joy、有model
身材的小沾、來自泰國的王子 Ty、沒去到慕谷慕魚的洪書緯、吃不胖的賣口、脾
氣很好的羅倫斯、還有籃球超強的冠軍隊長廖仲強。因為大家的幫忙和互相漏氣

求進步，一起趕報告到天亮或者一起出遊玩樂，讓我兩年的研究所生活更加精

采！另外還要感謝我的好學弟 Luke。我這個學長實在是很不盡責，一直到我快畢
業前兩三個月才慢慢跟你混熟。但是你真的幫了我很多，可以讓我放心的衝刺論

文。口試當天你也抽空出來幫忙我佈置場地、處理一些 paperwork 等等。另外還
要謝謝美莉姊，雖然您很愛虧我，但是還好有您的細心提醒才不會讓我忘記選課

而無法畢業。還有 Anna、Lili、元達、鴻康、Sony、W 以及其他科管所的夥伴

們，因為有你們讓我在台中的生活能夠過得更順利。謝謝我的工作伙伴沈士棋這

段時間的包容。謝謝 AB 的一些建議還有屎豪的幫忙測試。還有我許許多多的好
朋友們，感謝你們一路上的關心與幫助。

再來要感謝的是一路都很支持我的 Jennie。雖然你當初為了我而在台北找了工
作，可是我卻很不爭氣的考上台中的研究所。但是這兩年來，你總是在我身邊陪

伴著我。不管是一同分享著喜悅或者是聽著我抱怨，有時候更會晚上一起陪著我

忙到半夜。感謝這段時間你的包容和支持，讓我可以順利完成研究所的學業。

最後，我要感謝最愛我的家人們。感謝大舅舅讓我在台中念書的這兩年不用擔

心住的問題。感謝同樣在中興念書的妹妹在學校的時候會不時的跑來關心我。感

謝我的爸爸、媽媽，您們的支持讓我可以毫無後顧之憂的完成我人生階段中的一

個小小里程碑。

謹此致上我最誠摯的謝意，謝謝。

Denny 中華民國一零一年七月於台中

i

摘要

在台灣，每年的春天是研究所考試的季節。由於各校分別舉行考試，因此考

生通常會報考多所學校來增加自己錄取的機會。放榜時，表現好的學生便會出現

錄取超過一間學校的重榜情形。對於備取的考生來說，交叉查榜是一個非常重要

的工作。目前已經有一些線上服務可以提供備取生線上查榜。但是這些現有的服

務都有著一些共同的缺點像是版面設計不良以及無法提供備取生額外的協助。本

研究基於現有服務的一些缺失，開發了一套更先進的交叉查榜服務 –MyNext。
MyNext 提供了一個全新設計的查榜介面讓考生更容易使用。運用 Facebook 社
群網路，MyNext 可以讓考生更容易的與他們的朋友互相連結來取得查榜上面的
協助。考生們和其他的使用者可以在MyNext 上面交換意見、進行上榜預測、提
供建議，備取生可以從這些資訊中來更加準確的推測上榜的機會。運用了集體智

慧的精神，一些在現有系統難以解決的問題如考生同名問題，也可以藉由考生們

的過濾來加以辨識。藉由與 Facebook 的整合及運用集體智慧的概念，考生們可
以以合作的方式更有效率的交叉查榜，並且建立一個研究所考生的線上社群網

路。

關鍵字：網路應用程式、研究所入學考試、交叉查榜、線上社群、集體智慧

ii

Abstract

In Taiwan, graduate school entrance exams are conducted on Spring term each
year and results are released shortly after the exams have finished. Students could
thus browse the corresponding school websites for the releases. In recent years,
some online cross-checking systems have been developed for one-stop checking.
However, these systems are usually badly designed and they do no provide infor-
mation on if a short-listed student will give up the offer. In this regard, we present
in this paper an advanced cross-checking system called MyNext. MyNext provides
threemajor functions. First, it provides an interface for a student to cross-check the
lists. Second, by connecting with Facebook, an interface has been developed to let
the students seeking advices from their friends. The interface allows their friends
leaving comments and giving recommendations. This collective intelligence (com-
bining comments, recommendations and other advices) would definitely be ben-
eficial to a student on justifying how likely he/she will be admitted to the applied
programs. Besides, friends can tell if the applied programs are really suitable for
the student. Finally, owing to resolve the problem of two or more students with the
same name, a simple function has been developed to let a student to cross out the
programs he/she has not applied. In such case, the system could distinguish who
is who on the list and thus make cross-checking more effective and reliable.

Keywords: Webapplication, graduate school entranceexam, cross-checking,
online social network, collective intelligence

iii

Contents

誌謝 i

摘要 ii

Abstract iii

Contents iv

List of Figures vii

List of Tables viii

List of Listings ix

1 Introduction 1
1.1 Project Goals . 3
1.2 Organization of the Thesis . 5

2 Background 6
2.1 Cross-Checking System (CCS) . 6
2.2 Collective Intelligence . 7

2.2.1 Wiki . 8
2.2.2 Social Bookmarking . 9
2.2.3 Recommendation . 10
2.2.4 Online Dating . 10

2.3 Social Networking Service (SNS) . 11

3 Services of MyNext 12
3.1 The Use-Case of MyNext . 12
3.2 Workflow of the Use-Case . 14

3.2.1 Browsing Lists by Program 14
3.2.2 Searching for a Name . 15

iv

3.2.3 Voting for Possible Outcome 15
3.2.4 Filtering Common Name . 17
3.2.5 Leaving Comment to a Program 17

4 System Architecture 19
4.1 System Design . 19

4.1.1 Administrative Operation . 19
4.1.2 Three-Tier Architecture of MyNext 19

4.2 Infrastructure . 21
4.2.1 Hardware . 21
4.2.2 Operating System . 22
4.2.3 Web Server . 22
4.2.4 Database Server . 22
4.2.5 Web Application Framework 23
4.2.6 Client-Side Scripting . 23
4.2.7 The MyNext Stack . 23

4.3 Data Models . 24
4.3.1 User model . 24
4.3.2 FBAccount model . 24
4.3.3 School model . 26
4.3.4 Program model . 26
4.3.5 Record model . 26
4.3.6 Vote model . 26
4.3.7 Filter model . 26
4.3.8 Correction model . 26
4.3.9 Comment model . 27
4.3.10 Underlying Datastore . 27

4.4 Program Design . 27
4.4.1 Parsers . 27
4.4.2 Object Generator . 28
4.4.3 Batch Update Module . 28
4.4.4 List Browsing Module . 29
4.4.5 Multiple Offer Getter Module 29
4.4.6 Search Module . 30
4.4.7 Watchlist Module . 30
4.4.8 Prediction Voting Module . 30
4.4.9 Comment Module . 31
4.4.10 Common Name Filtering Module 31

v

4.4.11 Intelligent Prediction Module 33
4.4.12 Facebook Authentication Module 33

5 User Interface 36
5.1 Homepage . 36
5.2 Login Page . 37
5.3 School Page . 38
5.4 Program Page . 38
5.5 Search Results Page . 41
5.6 Admin Console . 41
5.7 Usage Examples . 41

5.7.1 Searching for a Student . 42
5.7.2 Using the Intelligent Prediction 43

6 Conclusions 45

References 48

vi

List of Figures

1.1 Activity Diagram of the Fill-Up Process. 2
1.2 Popular Online Cross-Checking Systems. 4

2.1 Duplicate Results of Daso. 7
2.2 Distracting Banners on iCross. 8
2.3 A Common Name Example. 9
2.4 Examples of Modern Web applications with Collective Intelligence. . . 10

3.1 Use-Case Diagram of MyNext. 13
3.2 Sequence Diagram of Browsing Lists by Program. 15
3.3 Sequence Diagram of Searching for a Name. 16
3.4 Sequence Diagram of Voting for Possible Outcome. 16
3.5 Sequence Diagram of Filtering Common Name. 17
3.6 Sequence Diagram of Leaving Comment to a Program. 18

4.1 Flow Chart of the Administrative Operation. 20
4.2 The Three-Tier Architecture of MyNext. 21
4.3 The MyNext Stack. 24
4.4 Class Diagram of MyNext. 25

5.1 Screenshot of the Homepage. 36
5.2 Screenshot of the Watchlist. 37
5.3 Screenshot of the Login Page. 37
5.4 Screenshot of the Facebook Login Page. 38
5.5 Screenshot of the School Page. 39
5.6 Screenshot of the Program Page. 40
5.7 Screenshot of the Search Results Page. 41
5.8 Screenshot of the Admin Console. 42
5.9 Illustration of Searching for a Student. 42
5.10 Illustration of Using the Intelligent Prediction. 44

vii

List of Tables

4.1 System Infrastructure of MyNext. 22
4.2 List of the Programs. 28

6.1 Feature Comparison Table of MyNext, Daso and iCross. 46

viii

List of Listings

4.1 Pseudocode of Parsers. 28
4.2 Pseudocode of Object Generator. 29
4.3 Pseudocode of Batch Update Module. 29
4.4 Pseudocode of List Browsing Module. 29
4.5 Pseudocode of Multiple Offer Getter Module. 30
4.6 Pseudocode of Search Module. 30
4.7 Pseudocode of Watchlist Module. 31
4.8 Pseudocode of Prediction Voting Module. 31
4.9 Pseudocode of Comment Module. 32
4.10 Pseudocode of Common Name Filtering Module. 32
4.11 Pseudocode of Intelligent Prediction Module. 34
4.12 Pseudocode of Facebook Authentication Module. 35

ix

Chapter 1

Introduction

In Taiwan, graduate schools take new admissions in a very uniqueway. There are
no standardized exams like the Graduate Record Exam (GRE) or the GraduateMan-
agement Admission Test (GMAT) (Keith-Spiegel &Wiederman, 2000). Instead, en-
trance exams are held independently by different schools. The exams are usually
conducted during the Spring term each year and students can take any number of
exams in accordance with their interests and time schedules. The results of the
exams are released shortly after in the format of short-lists and waiting-lists. For
students on the short-list, they will be requested to indicate if they accept or turn
down the offer before a specific deadline set by each school. If a student declines
the offer, the school would then fill up the vacancy by the student on the top of the
waiting-list. Same question will be asked (usually over the phone) by the school.
If the fill-up student declines the offer, the next student on the waiting-list will be
asked for their willingness to take the offer. The process is repeated until either
(i) the quota of student intakes has been filled or (ii) there are no more students on
the waiting-list. Figure 1.1 is a diagram illustrates the fill-up process.

During the fill-up process, some schools will update the lists to reflect the lat-
est changes. In such cases, students on the waiting-list can follow the status of the
fill-up process. However, only a few schools will provide these updates and even if
they provide updates to the lists, the frequency of updates is usually unpredictable.
Normally, the fill-up process can take months, and in some extreme cases it can
even last till just a few days before the new school year begins. During this indef-
inite period of time, students on the waiting-list could only wait and pray for the
best. For those students do not want to just wait and pray, they could check out the
students on the lists and see if they get offers from other programs. By gathering
this information, students can make assumptions on how likely they can be admit-
ted. The process of gathering information on students with multiple offers is called

1

Start fill-up process
for a program

Get the next student on
the list

Request student's willingness
to take the offer

Put the student to the final
admission list

Check if the admission
quota is met

Start with the short-list

Switch to waiting-list

Done

[switched]

[accept]

[quota is met]

[already switched
to waiting-list]

[got student]

[end of list]

[quota not met]

[decline]

Figure 1.1: Activity Diagram of the Fill-Up Process.

2

cross-checking. Cross-checking is like searching over a big tree structure with the
student himself/herself as the root. Clearly, it is a tedious and time consuming task
as students have to check from each individual school to collect all the information.
Add that to the anxiety of the students, the process is more stressful than one could
possibly imagine.

To relief the pain of cross-checking, some online cross-checking systems (CCS)
have been built and make available for the anxious students. Two of the most pop-
ular CCSs, Daso and iCross, are shown in Figure 1.2. However, these systems share
some common shortcomings including (i) inadequate page layouts, (ii) unable to
distinguish common names and (iii) provide little information to help students on
waiting-lists to predict how likely they will get admitted. The details of these sys-
tems and their shortcomings will be discussed in the next chapter.

1.1 Project Goals

In view of the shortcomings of current CCSs, we are going to implement a more
powerful CCS called MyNext. MyNext is able to (i) provide the necessary functions
for cross-checking, (ii) provide user-friendly and simple interface, (iii) able to re-
solve common names and other disambiguations and (iv) provide assistance for
students to determine their chances of getting admitted. To accomplish to first two
goals, existing web technologies can be readily applied. To accomplish the last two
goals, the concept of collective intelligence is applied. Collective intelligence is a
shared or group intelligence formed when collaborating and making decisions. By
letting students to form a collective intelligence on exam results, cross-checking is
no longer an one-man activity, but rather a collaborative effort. However, none of
the existing systems have embraced the advantage of collective intelligence.

Online social networking services (SNS) have forever changed how we commu-
nicate and interact. This is especially true for college students. By integrating with
themost popular SNS, Facebook, friends of the students on lists can add comments,
make recommendations, and vote for the programs that are the best for the students
on the lists. These pieces of information can be regarded as the collective intelli-
gence of exam results formed by students and their friends which can use to provide
further assistance on cross-checking. The concept of collective intelligence will be
further explained in the next chapter as well.

3

(a) Daso

(b) iCross

Figure 1.2: Popular Online Cross-Checking Systems.

4

1.2 Organization of the Thesis

The rest of this thesis is divided into five chapters. Chapter 2 will elaborate more
about CCSs and their shortcomings. The concept of collective intelligence will be
introduced and how social networking services facilitate collective intelligent ac-
tivities are discussed. Chapter 3 will elucidate the services delivered by MyNext.
Its potential users are identified. To ease the presentation, the services will be de-
scribed in term of use-cases. Their workflows are elaborated by using sequence
diagrams. The system architecture including the system design, the infrastructure
supporting the services and the data model will be presented in Chapter 4. Chap-
ter 5 will describe the user interface of MyNext. Accompanied by screenshots, how
students can use the system will be described. Most importantly, how the system
can facilitate collective intelligence will be illustrated. Finally, Chapter 6 will draw
some conclusions of the project, and discuss about some possible future develop-
ments of the system.

5

Chapter 2

Background

In this chapter, we will first describe some of the existing cross-checking sys-
tems. Their shortcomings will be highlighted. Second, the concept of collective
intelligence will be introduced. Finally, how social networking services can facili-
tate collective intelligent activities will be described.

2.1 Cross-Checking System (CCS)

An online cross-checking system is a system that can help students to cross-
check. These systems work by storing all the lists in the databases and joining the
results together by students’ names. Once a student has queried for exam results of
a specific program, the system not just returns the short-list and waiting-list of the
requested program, but also lists out all the multiple offers for each student on the
lists. Two of the most popular CCSs are Daso and iCross. Daso is also the name of
the famous cram school who built the system. While these systems have facilitated
the students searching for the lists, they share some common shortcomings.

The first shortcoming is that their table-based layouts are not simple enough to
read. For Web applications, a clean and uncluttered user interface is preferred over
messy and overwhelming ones (Friedman & Lennartz, 2009). One of the conven-
tional CCS, Daso, has a confusing layout that seems to just pile a bunch of things
together. Also, instead of just providing the results from the database, they also
allow students to search from the raw lists. So the returned results are actually du-
plicated sometimes. Figure 2.1 shows the duplicate searching of Daso. iCross, on
the other hand, contains some really big banner advertisements at the top of each
page so students have to scroll down for the content that they are interested in.
There are also advertisements placed in the middle of the page as well, which can
further interfere with browsing. The problemwith iCross is illustrated in Figure 2.2.

6

Figure 2.1: Duplicate Results of Daso.

Furthermore, both CCSs list the results in a table format which can make the list
look terribly long and overwhelming.

The second shortcoming is that these systems are unable to distinguish com-
mon names. People with same names are very frequent in Chinese language while
some names are more likely to appear than others. These “Market Names” (Tai-
wanese slang term) or common names can cause confusion when grouping related
records by students’ names. They would just list all of the records together under
the same namewithout considering if they are actually belong to different students.
Figure 2.3 shows a common name with more than 60 records but clearly belong to
more than one person due to the diversity of programs.

The third shortcoming is that these systems provide little information to help
a student on the waiting-list to predict how likely he/she will get admitted. They
just merely repeat the results from the original lists with a single feature added,
cross-checking. They do not provide any help on how likely a student on the short-
list would give up an offer. What students on the waiting-list want to know from
cross-checking are their chances of being admitted and these systems fail to provide
assistance. So after cross-checking, students on the waiting-lists still have to figure
out on their own about their chances. This makes cross-checking not very efficient.

2.2 Collective Intelligence

Collective intelligence is a shared or group intelligence formed when collaborat-
ing and making decisions (United Nations, 2008). Traditionally collective intelli-
gence refers to groups of individuals acted collectively in ways that seem intelligent.
It is a concept of solving problems collaboratively. Nowadays, collective intelligence

7

Figure 2.2: Distracting Banners on iCross.

can be best shown by the rise of modern Web applications. Many modernWeb ap-
plications are built with collective intelligence inmind (O’Reilly, 2007). By applying
collective intelligence, modern websites not only let their visitors consume the in-
formation on the site, but also let them share and contribute. The following are
some forms of the collective intelligence found on modern web applications.

2.2.1 Wiki

A wiki is a web application that all of its content is created and modified by
its users (Wagner, 2004). The content of wikis can vary from knowledge to note-
taking. There are also several expert-moderated wikis on different areas such as
medical wikis (Barsky & Giustini, 2007). Wikipedia is currently the largest wiki
encyclopedia in theworld. Visitors fromall around theworld have created hundreds
of thousands of pages containing valuable knowledge to just about everything.

8

Figure 2.3: A Common Name Example.

2.2.2 Social Bookmarking

Social bookmarking services such asDel.icio.us are also a formof collective intel-
ligence known as the folksonomy system. Folksonomy is a system of classification
derived from the tags created by users to categorize and organize different pieces
of information (mainly different websites and links) (Peters, 2009). By using so-
cial bookmarking, not only users can access their favorite websites from anywhere,
but also users are able to discover similar websites more easily due to the power of
folksonomy (Halpin, Robu, & Shepherd, 2007).

9

2.2.3 Recommendation

By collecting users opinions and comments, recommendations are commonly
found on electronic commerce websites. One of the strongest points of Amazon,
the largest online store in the world, is its powerful recommendation system. The
review system let its customers to share the experiences they have with the prod-
ucts. These reviews can become the determining factor when a potential customer
makes his/her buying decisions (Linden, Smith, & York, 2003).

2.2.4 Online Dating

Online dating can be considered as the earlier form of the current social net-
working services. Online dating services utilize data mining techniques to catego-
rize their users into different groups (Heino, Ellison, & Gibbs, 2010). Unmoderated
matchmaking is the key feature provided by online dating services. The system can
match people with similar interests together by the information gathered from user
profiles. Some of the leading online dating services include AOL Personals, Yahoo!
Personals and Match.com.

Figure 2.4: Examples of Modern Web applications with Collective Intelligence.

10

2.3 Social Networking Service (SNS)

A social networking service is an online platform that focuses on building social
relationships among people who share interests, activities, backgrounds, or real-
life connections. SNSs can also be considered as a form of collective intelligence.
Typically, a SNS consists several features such as (i) categorizing users into differ-
ent groups by their regions, former schools, or working environments, (ii) recom-
mending new friends based on the classification mentioned and (iii) providing a
systematic way for users to share their thoughts and generate content by using text,
images, videos and other types of media. Facebook is the most widely used SNS in
the world. It consists of over 901 million active users all around the world. It is also
the most popular SNS among students (Pempek, Yermolayeva, & Calvert, 2009).
Because of its wide adoption, Facebook is also considered the most powerful plat-
form to promote new ideas and spread information. By bringing SNS to education,
students can gather information faster, and their voices can be heard. There are
already many applications of using Facebook on education such as building discus-
sion forums and study groups.

11

Chapter 3

Services of MyNext

3.1 The Use-Case of MyNext

A CCS is necessary to have the ability to (i) provide the necessary functions for
cross-checking, (ii) provide user-friendly and simple interface, (iii) able to resolve
common names and other disambiguations and (iv) provide assistance for students
to determine their chances of getting admitted. MyNext is designed to accomplish
all the above goals. There are three main groups of MyNext users: students, friends,
and administrators. Figure 3.1 illustrates the use-case of the system.

MyNext provides students to browse the lists of programs offered by each school
and search for names in all lists. These basic functions do not need students to
login. In order to have access to more advanced functions of the system, students
are required to login using their Facebook accounts. After students logged in, the
system will then get their friends list and check if their friends are also using the
system. Students then gain access to functions like personalization, suggestions,
and list corrections. Suggestions is themain feature that stands out fromother CCSs
because it provides a prediction of how likely a student on the waiting-list can get
the offer. List corrections is also another use of the collaborative effort to correct the
lists since occasionally there are typos or missing characters in the names. Students
can also vote down potential common names to make the multiple offers display
more meaningful and realistic.

Students’ friends can use MyNext to help the students and also help the system
to make more accurate and meaningful suggestions. The systems provides several
functions for the friends of the students. First, they can vote for the best outcome
they suggest for the students. For example, if student A has got multiple offers
from five different programs, his friends can vote among those programswhich they
think is the best for him. Second, they can vote for the possible outcomes for other

12

Student

Administrator

Friend

Login

Search

Browse lists

Vote for the
most likely offer

Comment on
lists

Make
recommendations

Facebook
Connect

«extends»

«extends»

«extends»

Provide
recommendations

«includes»

Lists
maintenance

Suggest list
corrections

Filter common
names

Correct typo or
missing character

«extends»

«extends»

Upload lists

Update lists

«extends»

«extends»

List
personalization

«extends»

Figure 3.1: Use-Case Diagram of MyNext.

13

students on the list. Continuing from the example above, base on the observations
of the lists, personal opinions, and probably some known facts about the multiple
offers of other students on the list, friends of student can vote for their predictions
on the possible outcomes of other students on the list. This can also help student
A to eliminate other students that are before him on the list. Finally, friends can
also help to improve the lists by making corrections and filtering common names.

The third group of MyNext’s users are the administrators. Due to the fact that
there are just too many format for the results (mostly one for each school), some
manual processes are needed to import the lists into the system. An administrator
needs to obtain the lists released by each school in PDF format and upload those
files to the system. Next, he/shemust observe the list format patterns and input the
patterns to the system. Finally, he/she runs the command to parse and generate the
records into objects and store them in the system datastore from the admin console.

The detail information of each function and program will be explained in the
following chapters.

3.2 Workflow of the Use-Case

In this section, we will describe the main functions of MyNext in detail. The
main functions of the system are (i) browsing lists for a program, (ii) searching
for a student’s name, (iii) voting for possible outcome for a student, (iv) filtering
common names and (v) leaving comments to a program. The implementations
and designs of specific programs mentioned in this section will be discussed in the
later chapters.

3.2.1 Browsing Lists by Program

The sequence diagramof this function is illustrated in Figure 3.2. An user (whether
a student or a friend) can request lists for a specific program from the website by
clicking on the program link (user interface). The interface will then process the
user interaction, and send out the request to the application programs. The appli-
cation programs will tell the Record entity to get a list of records whose program is
the requested program. The Record entity will return the records requested. The
application programs will format the records into a list and pass it back to the in-
terface. The interface will then display the records on the page, and the user will
finally see the lists for the program.

14

RecordUser User Interface Application Programs

click(program_link)
parseId(program_link)

getRecords(program_id)

Records(program=program_id)

records

formatOutput(records)

recordList

showRecords(recordList)

recordPage

Figure 3.2: Sequence Diagram of Browsing Lists by Program.

3.2.2 Searching for a Name

The sequence diagram of this function is shown in Figure 3.3. An user (whether
a student or a friend) input a name into the search field. The interface will send a
search query with the name entered by the user to the application programs. The
application programs will request a list of records whose name is the requested
name from the Record entity. The Record entity will return the matching records.
The application programs will format the records into a list and pass it back to the
interface. The interface will then display the records on a search results page for
the user.

3.2.3 Voting for Possible Outcome

The sequence diagramof this function is displayed in Figure 3.4. Anuser (whether
a student or a friend) casts a vote on his/her prediction of possible outcome for a

15

RecordUser User Interface Application Programs

search(name)

searchForName(name)

Records(name=name)

records

formatOutput(records)

recordList

recordPage

showRecords(recordList)

Figure 3.3: Sequence Diagram of Searching for a Name.

VoteUser User Interface Application Programs

vote(name, record)

userVote(name, record)

new Vote(name=name, record=record)

Figure 3.4: Sequence Diagram of Voting for Possible Outcome.

16

student. The interface will send a request with the user’s vote to the application
programs. The application programs will create a new Vote containing the name of
the student and the outcome voted by the user. Since this function is done asyn-
chronously, there are no return values.

3.2.4 Filtering Common Name

FilterUser User Interface Application Programs

filter(record, from_record)

new Filter(record=record, from=from_record)

filterCN(record, from_record)

Figure 3.5: Sequence Diagram of Filtering Common Name.

The sequence diagramof this function is illustrated in Figure 3.5. An user (whether
a student or a friend) filters out a record from a student’s multiple offers. The inter-
face will send the filter with the filtered record and the source record to the appli-
cation programs. The application programs will create a new Filter containing the
filtered record and the source record that it was filtered from. Similar to the voting
function, this function is also done asynchronously.

3.2.5 Leaving Comment to a Program

The sequence diagram of this function is shown in Figure 3.6. An user (whether
a student or a friend) leaves amessage in the comment section of a program. The in-
terface will send out a request with the message and the program to the application
programs. The application programs will create a new Comment with the message
and the program that the message was left on. This function is also asynchronous,
so there are no return values.

17

CommentUser User Interface Application Programs

comment(msg, program)

new Comment(msg=msg, program=program)

leaveComment(msg, program)

Figure 3.6: Sequence Diagram of Leaving Comment to a Program.

18

Chapter 4

System Architecture

4.1 System Design

The operations of MyNext can be split up into two parts: administrative op-
eration and the main three-tier architecture of website operation. Administrative
operation is mainly list maintenance such as uploading new lists or batch update
lists. The main website operation follows the three-tier architecture model.

4.1.1 Administrative Operation

Data maintenance is the main objective of administrative operation. Adminis-
trators need to manually download the lists released by schools from their respec-
tive websites for the system to process. The lists are usually released in the Portable
Document Format (PDF), while some of them are just plain webpages (HTML). The
raw lists are then processed by parsers with different patterns that are specifically
written for a type of lists (which is usually lists released by one school). The pro-
cessed lists are stored in a comma-separated values (CSV) file that will be feed to
the object generator in the next step. The parsing processes of different lists are
grouped into a batch update module that can be called to mass update the lists.
Object generator takes the formatted CSV file, generates data objects for the list
records and finally stores them into the datastore. The entire administrative oper-
ation is illustrated in Figure 4.1.

4.1.2 Three-Tier Architecture of MyNext

Three-tier architecture is a client-server architecture in which the user interface,
process logic, data storage and data access are developed as independent modules
(Eckerson, 1995). The three tiers are (i) presentation tier, (ii) logic tier and (iii) data

19

Raw lists
(PDF)

Raw lists
(PDF)

Raw lists
(PDF)

Parser

Parser

Parser

Parsed lists
(CSV)

Parsed lists
(CSV)

Parsed lists
(CSV)

Object Generator

Batch Update Module

Data
objects

Datastore

Figure 4.1: Flow Chart of the Administrative Operation.

tier. The website user interface is considered as the presentation tier, application
programs developed to process the requests belong to the logic tier, and finally the
data models and the backend datastore are regarded as the data tier. Figure 4.2
shows the three-tier architecture of MyNext.

The user interface of MyNext is in the presentation tier which is the closest to
the users. It is designed with responsiveness in mind to let users have the best ex-
perience. By utilizing the latest Web technologies, the user interface is both simple
and intuitive. The user interface will be explained in great detail in Chapter 5.

Logic tier contains all the application programs of MyNext. The role of these
application programs is to process the requests from the user and also retrieve data
from the data tier. The application programs are further divided into three sections:
list query section, interaction section and social network integration section. The
list query section contains the core programs that can be use to retrieve list records
from the datastore based on different criteria specified by users. The interaction
section consists of programs that enable user to vote, leave comments, and do list
corrections. Programs in the social network integration section are in charge of
connecting to Facebook and retrieving details of users.

Finally, the data tier is where all the records are stored. MyNext uses datamodels
as the abstraction to store data in an object-oriented way. Therefore, the underlying
database engine only serves as the datastore of the data models and objects. Data
models also provide interfaces and methods for the logic tier to retrieve and update

20

Internet

Students Friends

Data tier

Presentation tier

Logic tier

User Interface

Application programs

Data Models/Datastore

Figure 4.2: The Three-Tier Architecture of MyNext.

records. The details of the implementation of each program are provided later in
the chapter.

4.2 Infrastructure

In this section, each component of the MyNext will be described. The infras-
tructure of MyNext is summarized in Table 4.1.

4.2.1 Hardware

MyNext is powered by a virtual private server (VPS). Using a VPS instead of a
traditional dedicated machine is more cost efficient and more flexible. A VPS is a
virtual machine running on a more powerful server. It has its own resources and

21

Table 4.1: System Infrastructure of MyNext.

Component Technology/Implementation

Hardware Virtual Private Server
Operating System Linux
Web Server Apache
Database Server PostgreSQL
Web Application Framework Django
Client-side Scripting JavaScript & AJAX

hard disk space just like a real machine. Since service providers can run multiple
VPSs on a single physical server, the cost of VPSs is only a fraction of the cost of a
dedicatedmachine. The configuration of VPSs can also be upgraded or downgraded
at any time with minimum system downtime. This enables MyNext to scale up or
down if needed with almost no effort.

4.2.2 Operating System

For the best stability and compatibility, MyNext has chosen Linux as its underly-
ing operating system. Linux is a proven server platform for Web applications. As of
August 2011, over 60% of the Web servers were running Linux (Q-Success, n.d.). As
an interesting fact, over 90% of the supercomputers in the world are running cus-
tomized Linux distributions, too. This means that whenever stability is required,
Linux is the number one choice.

4.2.3 Web Server

Just like Linux, Apache is often coupled with Linux as the de facto standard of
Web servers. Over 65% of the websites are served by Apache (Netcraft Ltd, n.d.).
Since it is so widely used, there is a wide variety of extensions to choose from to
further extend the functionality of Apache. MyNext uses mod_wsgi to run all of its
application programs and other server-side code written in Python.

4.2.4 Database Server

PostgreSQL is an open source relational databasemanagement system (RDBMS).
It is served as the underlying database engine for MyNext data models. One very
important feature that makes MyNext chose PostgreSQL over other RDBMSs is the
support of UTF-8 4-byte characters. Because there are just way to many charac-
ters exist in Chinese, MyNext needs to store some of the extremely rare characters

22

found in some names that are UTF-8 4-byte encoded. Out of all stable versions of
the well-known RDBMSs, only PostgreSQL fully supports UTF-8 4-byte characters.
It is also the recommended RDBMS by Django, theWeb application framework that
MyNext is built on.

4.2.5 Web Application Framework

Due to the need of rapid development, Web application frameworks are the
trend of Web development in the past few years. Django is a Web application
framework for perfectionists with deadlines (Kaplan-Moss &Holovaty, 2007). It has
covered everything that is difficult and tedious such as maintaining database con-
nections and parsingHTTP requests so developers can focus onwriting the applica-
tion itself. The applications built on Django follow a Model-Template-View (MTV)
paradigm which makes them very easy to maintain. Some of the well-known appli-
cations built onDjango areDISQUS, Bitbucket and Instagram. MyNext usesDjango
to built all of its application programs and some parts of the admin console.

4.2.6 Client-Side Scripting

JavaScript and Asynchronous JavaScript and XML (AJAX) are really what make
the entire Web application business possible (Paulson, 2005). Instead of serving
content page-by-page, JavaScript and AJAX enabled applications behave just like
desktop applications where updates only take place to the part of the page that
needed them. Because the communication is asynchronous, users do not have to
wait for server’s reply before doing other actions. This generally makes Web ap-
plications more responsive and user friendly. MyNext uses JavaScript and AJAX
throughout to improve the responsiveness of the user interface.

4.2.7 The MyNext Stack

A technology stack refers to the different layers of components that are used
to provide a system. Figure 4.3 illustrates the entire MyNext stack. At the bottom
is the operating system, Linux. Running on top of Linux are the web server and
the database server, Apache and PostgreSQL respectively. Python is running on
top of Apache using mod_wsgi extension. Django is running on top of mod_wsgi
and facilitates PostgreSQL as its underlying datastore. Finally, all the application
programs and the admin console are built on top of Django.

23

Linux

PostgreSQL

Apache

Python/mod_wsgi

Django

Application Programs Admin Console

Figure 4.3: The MyNext Stack.

4.3 Data Models

Data models are the abstraction layer on top of the datastore. Data is stored
as an object. There are several data models in MyNext. Data models also provide
interface andmethods for the application programs to interact with data. Figure 4.4
gives an overview of all data models in the form of a class diagram.

4.3.1 User model

This model stores the users of MyNext. Users are those who have logged in
with their Facebook account. Therefore an User object also has a FBAccount ob-
ject. User model is also in charge of keeping track of user comments, votes, correc-
tions, and common name filters. The base User model is provided by the Django
django.contrib.auth package.

4.3.2 FBAccount model

This model is one-to-one related to the User model because one User object can
only link to one FBAccount. This model has interfaces to Facebook that can retrieve
additional information such as friends list. It also handles the authentication of
Facebook account and logs the user in using the local User object.

24

ui
d

re
al
_n
am

e
em

ai
l

FB
A
cc
ou
nt

us
er
na
m
e

pa
ss
w
or
d

fir
st
_n
am

e
la
st
_n
am

e
em

ai
lU
se
r

1
1

na
m
e

lo
go

w
eb
si
teSc
ho
ol

na
m
ePr
og
ra
m

gr
ou
p

lis
t_
ty
pe

ra
nk
in
g

te
st
_i
d

ex
am

in
ee

R
ec
or
d

1.
.*

1
1.
.*

1

re
co
rdVo

te
0.
.*

1

0.
.*

0.
.*

re
co
rdFi
lte
r

0.
.*

1

0.
.*

1

co
rre
ct
io
n

C
or
re
ct
io
n

m
es
sa
ge

C
om

m
en
t

0.
.*

1

0.
.*

1

0.
.*

1

0.
.*

1

Fi
gu
re

4.
4:

C
la
ss
D
ia
gr
am

of
M
yN

ex
t.

25

4.3.3 School model

This model stores the basic information of a graduate school. It has interfaces to
retrieve list of programs of the school. Basically a list of School objects is displayed
on MyNext’s home page for browsing purposes.

4.3.4 Programmodel

This model stores the information about a program. A Program object is owned
by a School object. It has interfaces to retrieve the lists of the program, and also the
list of comments left by the users about the program.

4.3.5 Record model

This model stores all the records of the exam results. The Record objects are
owned by the Program object that they belong to. This is the coremodel with all the
important interfaces such as querying for list of records, searching through records,
retrieving corrections and common name filters, and aggregating the votes of each
record.

4.3.6 Vote model

This model stores the votes for possible outcome predicted by the users. The
Vote objects are owned by the User object who casted them and are many-to-many
related to Record objects. It has interfaces to casting votes and preventing duplicate
votes for a student. It also can retrieve a list of votes by all users or just by user’s
friends.

4.3.7 Filter model

This model stores the common name filters done by the users on multiple offer
records. Filter objects are owned by the User object who created them and are
many-to-one related to a Record object. It has similar interfaces to the Vote model
because Filter objects behave very much like Vote objects.

4.3.8 Correction model

This model stores the correction made by users on a record. Correction ob-
jects are owned by the User object who made them and are many-to-one related

26

to a Record object. The model has interfaces for the admin console to review the
corrections and apply them if the corrections are approved by administrators.

4.3.9 Comment model

This model stores the comments made by users on a program. Comment ob-
jects are owned by the User object who left them and are many-to-one related to
a Program object. It has interfaces for users who left the comment to remove the
comment. Also has interfaces to enable commentmoderation in the admin console.

4.3.10 Underlying Datastore

Although the data models are object-oriented, the underlying storage is rela-
tional. Therefore an object-relational mapping (ORM) is needed to map the data
objects to database records. Fortunately, Django provides a powerful ORM that
perfectly abstracts the datastore away. Only the ORM was used to manipulate
with all the data in the datastore, this makes MyNext portable to any underlying
database engine if a switch of underlying database is ever needed. MyNext chooses
the database server recommended by Django as its underlying datastore, which is
PostgreSQL.

4.4 Program Design

MyNext is coded entirely in Python, which is a dynamic programming language
developed by Guido van Rossum. MyNext chooses Python because of its clean syn-
tax, it makes use of indentations and code blocks, and most importantly the ability
to build on top of Django.

In this section, we describe the implementation detail of application programs
and other modules of MyNext. The summary of the programs in both admin con-
sole and application programs subsystems is presented in Table 4.2.

All the pseudocode snippets are written using Python syntax. Functions used
in the pseudocode snippets might not exist in real Python. Most of them are just
made up to illustrate the logic.

4.4.1 Parsers

Parsers are in charge of converting and parsing the raw lists. Because the raw
lists are usually in PDF format, text contents are first extracted out from the PDF.
Then the text is parsed using a few regular expressions with the patterns written

27

Table 4.2: List of the Programs.

Admin Console Application Programs

Parsers List browsing module
Object generator Multiple offer getter module
Batch update module Search module

Watch list module
Prediction voting module
Comment module
Common name filtering module
Intelligent prediction module
Facebook authentication module

specifically for the list format. Finally the parsed data are formatted in comma-
separated values and save to an external file. Listing 4.1 shows the pseudocode of
parsers.

input_filename = ’nchu.pdf’
output_filename = filename_without_ext(input_filename) + ’.csv’
input_pdf = open(input_filename)
input_txt = pdf.extract_text(input_pdf)
patterns = [

Patterns with the format of the specific list
...

]

for pattern in patterns:
matches = re.findall(pattern, input_txt)

if matches:
for match in matches:

csv.write(output_filename, match)

Listing 4.1: Pseudocode of Parsers.

4.4.2 Object Generator

Object generator focuses on generating data objects from CSV files. It loops
through CSV files in a location and generate data objects out of them. Listing 4.2
shows the pseudocode of object generator.

4.4.3 Batch Update Module

The batch update module is based on the parsers and the object generator. This
module can be used to batch update the lists. The module will loop through all the

28

for csv_file in csv_directory:
reader = csv.read(csv_file)
for row in reader:

record = generate_object(row)
record.save()

Listing 4.2: Pseudocode of Object Generator.

PDF files, run parser for each PDF file, and finally run object generator to generate
data objects from the parsed CSV files. Listing 4.3 shows the pseudocode of batch
update module.

for parser in parsers:
return_code = run_parser(parser)
if return_code:

Error occured, log the error list and move on to the next list
...

run_object_generator()

Listing 4.3: Pseudocode of Batch Update Module.

4.4.4 List Browsing Module

Thismodule belongs to the list query section of the application programs. It will
show a list of programs if a school is received from the user, or show the lists of the
program if a program is received from the user. When there is nothing received from
the user, a list of graduate schools is displayed. Listing 4.4 shows the pseudocode
of this module.

query = request.POST.get(’query’)
if query is not None:

if typeof(query) == typeof(School):
return Program.objects.filter(school=query)

elif typeof(query) == typeof(Program):
return Record.objects.filter(program=query)

else:
return School.objects.all()

Listing 4.4: Pseudocode of List Browsing Module.

4.4.5 Multiple Offer Getter Module

This module belongs to the list query section of the application programs. After
a list of records for a program is obtained, multiple offers are checked one-by-one

29

for each record on the list using the multiple offer getter module. The module uses
the interface provided by the Record model to get a list of multiple offers by that
record. If multiple records are found, they are cached to a non-persistent property
of the record. Listing 4.5 shows the pseudocode of multiple offer getter module.

for record in records:
Interface provided by Record model
offers = record.get_multiple_offers()

record._multiple_offers = offers

Listing 4.5: Pseudocode of Multiple Offer Getter Module.

4.4.6 Search Module

This module belongs to the list query section of the application programs. This
module takes the name or test ID entered by the user and queries the Recordmodel
using the interface it provides. It returns a list of results if any. Listing 4.6 shows
the pseudocode of search module.

query = request.POST.get(’query’)
if query is not None:

results = list(Record.objects.filter(examinee__name=query))
results.append(Record.objects.filter(test_id=query))
return results

else:
return None

Listing 4.6: Pseudocode of Search Module.

4.4.7 Watchlist Module

Thismodule belongs to the interaction section of the application programs. This
module can create, delete, and return a list of items in an user’s watchlist. Listing 4.7
shows the pseudocode of watchlist module.

4.4.8 Prediction Voting Module

Thismodule belongs to the interaction section of the application programs. This
module is used for users to cast votes of their prediction for students with multiple
offers. The module uses interfaces provided by the Vote model to create and delete
votes. Before casting a vote for a student, the module needs to check for duplicate

30

def create(program):
w = WatchItem(user=request.user, program=program)
w.save()

def remove(program):
w = WatchItem.objects.get(user=request.user, program=program)
if w:

w.delete()

Listing 4.7: Pseudocode of Watchlist Module.

votes of the user on that student. Listing 4.8 shows the pseudocode of prediction
voting module.

def cast_vote(name, record):
Check for existing vote first
v = Vote.objects.get(user=request.user, name=name)
if v:

v.delete()

v = Vote(user=request.user, name=name, record=record)
v.save()

def remove_vote(name, record):
v = Vote.objects.get(user=request.user, name=name, record=record)
if v:

w.delete()

Listing 4.8: Pseudocode of Prediction Voting Module.

4.4.9 Comment Module

Thismodule belongs to the interaction section of the application programs. This
module is in charge of user comments. It allows users to add comments and delete
their own comments. It also enables administrators to delete comments. Listing 4.9
shows the pseudocode of comment module.

4.4.10 Common Name Filtering Module

Thismodule belongs to the interaction section of the application programs. This
module provides several functions such as adding and removing the common name
filter for records from a source record and demoting the position of the filtered
records when displaying multiple offers. Filtered records are moved to the bottom
of the list and are sightly faded out. Listing 4.10 shows the pseudocode of common
name filtering module.

31

def add_comment(message):
c = Comment(user=request.user, message=message)
c.save()

def delete_comment(id):
Check if the comment belongs to the user
c = Comment.objects.get(user=request.user, pk=id)
if c:

c.delete()

def admin_delete_comment(id):
Check if the user is an administrator
if request.user in administrators:

c = Comment.objects.get(pk=id)
c.delete()

Listing 4.9: Pseudocode of Comment Module.

def add_filter(record, from_record):
get_or_create is a shortcut method that will only create
the object if it isn’t already existed
f, created = get_or_create(Filter, user=request.user,

record=record, from_record=from_record)

def remove_filter(record, from_record):
f = Filter.objects.get(user=request.user,

record=record, from_record=from_record)
if f:

f.delete()

def demote_offers(records):
Get filters of the user that are filtered from these records
filters = Filter.objects.get(user=request.user,

from_record__in=records).values(’record’)

for record in records:
for offer in record._multiple_offers:

Demote the record to the last of the multiple offer list
if offer in filters:

move_to_bottom(offer)

Listing 4.10: Pseudocode of Common Name Filtering Module.

32

4.4.11 Intelligent Prediction Module

Thismodule belongs to the interaction section of the application programs. This
module makes predictions based on the collective intelligence of MyNext users and
their friends. It will determine which program each student with multiple offers
would go based on users’ votes. By default, only votes from friends of the user are
counted, but an user can also choose to use all votes. The module will calculate the
position on the waiting-list for the requested student. If the position is 0, then it
means that the student will get the offer for sure. Listing 4.11 shows the pseudocode
of intelligent prediction module.

4.4.12 Facebook Authentication Module

This module belongs to the social network integration section of the application
programs. Thismodule provides necessary functions to talk to the Facebook servers
and authenticate users using Facebook API. It will be coupled with the JavaScript
API on the client-side to log in to Facebook and record down the access token for
users. Then the system can use this access token to access to the information on
users Facebook later on such as getting users’ friends lists. Listing 4.12 shows the
pseudocode of Facebook authentication module.

33

def predict(record, friends_only=True, from_record=None):
Student on short−list always return 0
if record.list_type == 1:

return 0

Current position of the requested student
position = record.ranking

Get all the records infront of the requested student
Part 1: all the students on short−list
Part 2: all the students on waiting−list with ranking less than
the requested student
records_infront = list(Record.objects.filter(

program=record.program, list_type=1))
records_infront.append(list(Record.objects.filter(

program=record.program, list_type=2, ranking_lt=position)))

Cache the multiple offers
get_multiple_offers(records_infront)

for r in records_infront:
Total offers: multiple offers + current offer
total_offers = r._multiple_offers.append(r)
Remove the from record to prevent infinite loops when
calling recursively
if from_record is not None:

total_offers.remove(from_record)
Get all votes for all offers
votes = Vote.objects.filter(record_in=total_offers)

Filter votes to only casted by friends
if friends_only:

votes = votes.filter(
user_in=request.user.fbaccount.get_friends())

Count votes for each record and get the highest voted record
highest_voted_record = votes.Count(’record’).Max()

Call predict recursively to predict the highest voted record
Bump up position if highest voted record is admitted for sure
in another program
if highest_voted_record != r:

highest_pos = predict(highest_voted_record,
friends_only, record)

if highest_pos == 0:
position = position − 1

If requested position after bumped up is 0, then
the requested student is admitted for sure.
if position == 0:

break

Return the calculated position for the requested student
return position

Listing 4.11: Pseudocode of Intelligent Prediction Module.

34

def fb_auth():
Use the JavaScript API to show login window
launch_js_api_login()

Wait for client to finish login, client will send
auth code after finished
auth = wait_for_client_auth()

Login failed
if not auth:

return False

Get account details using Facebook API
profile = fb_api.get_profile(auth)

Check if a local user existed for the account
fbaccount = FBAccount.objects.get(auth=auth)

If the account has already been linked with a local user,
log the user into the system
if fbaccount:

fbaccount.user.login()
return True

Otherwise create a new local user and link the account
to the user
else:

user = User(
username=profile.username,
first_name=profile.first_name,
last_name=profile.last_name,
email=profile.email)

user.save()
fbaccount = FBAccount(user=user, auth=auth)
fbaccount.save()
return True

Listing 4.12: Pseudocode of Facebook Authentication Module.

35

Chapter 5

User Interface

The user interface of MyNext is designed with responsiveness and user friendli-
ness in mind. By utilizing JavaScript and AJAX, MyNext is striving to bring students
best browsing experience. In this chapter, all components of the user interface will
be discussed in detail accompanied with screenshots.

5.1 Homepage

!

Search barSite bar Navigation

Browse by schools School button

User controls

Figure 5.1: Screenshot of the Homepage.

Figure 5.1 shows the key components of MyNext homepage. First of all, all the
pages in MyNext consist of an universal site bar at the top. This bar allows students
to quickly go back to the homepage, access the navigation menu, using the search
bar, and login or logout of MyNext. The rest of the homepage is a list of all the
graduate schools displayed in a grid format along with their logos. Nothing else
is on the page to bring further confusion or messiness. It is just a clean, straight

36

forward school list for students to quickly find what they want. There is however
one thing that is missing from the screen which is the watchlist because in the
screen we haven’t logged in yet with a Facebook account. Once a student has logged
in, he/she shall see the screen like Figure 5.2. Thewatchlist is basically a customized
list of items that the user is interested in. It is similar to the “bookmarks” of the
browser.

Watchlist Logged in user & logout button

Figure 5.2: Screenshot of the Watchlist.

5.2 Login Page

Figure 5.3: Screenshot of the Login Page.

Before a student can use all the features of MyNext, he/she would need to lo-
gin using his/her Facebook account. Currently MyNext does not manage its own
membership system, so it is entirely tied to the Facebook for authentication. It
has the advantage of letting the students to quickly get started on all the features
on MyNext. The initial login page is shown in Figure 5.3. After a student clicks
the Facebook login button, a pop up window like in Figure 5.4 will appear asking
him/her to login to Facebook. Finally, a permission request page will come up ask-
ing for permissions that are needed forMyNext to function properly. After a student

37

has accepted to give permissions to MyNext, they will not be asked again the next
time they login.

Figure 5.4: Screenshot of the Facebook Login Page.

5.3 School Page

After a student has clicked on a school from the homepage, he/she will then be
linked to the school page of the school he/she clicked. As in Figure 5.5, the school
page has several components. At the top of the school page, the information about
the school is displayed such as its name, English name, website, results release date,
total number of students on lists, etc. At the bottom of the school information is
a list of all programs offered by the school. There is a little statistics bar at the
bottom of each program that shows the summary of the results of that program. At
the bottom right corner there is a button for students to add the program to their
watchlists. Because the interface is AJAX enabled, all the little widgets and buttons
fire immediately after they are clicked, and the changes are updated instantly. The
school page provides a quick glance of the status of the school and its programs.

5.4 Program Page

The programpage is probablywheremost of the cross-checking and interactions
take place. The program page is divided to two sides. The left side are the short-lists
and waiting-lists for the program, and the right side is the sidebar which provides

38

Figure 5.5: Screenshot of the School Page.

several functions such as quickly jump through different groups in the program,
changing display options, toggling votes display, and a comment section for the
program.

On each record, there is a “multiple offers” list with all other records with the
same name of the student. There are several actions students can do in the “collab-
orative cross-checking” column. First is voting, once a student has logged in, he/she
can cast a vote on whether he/she thinks the student would most likely get the of-
fer from which one of the multiple offers. Second is the common name filtering,
students can mark one or more records from the multiple offers list if they think
those records do not refer to the same student. The system will then move those
records to the bottom of the multiple offers list and show them in a fade-out effect.
Third is the list correction button, a pop up dialog will appear to let students make
correction suggestions to a record. Finally, the badge indicating the list type and
the ranking is actually a button itself, and a very important one, too. This button
will initiate the system to do an intelligent prediction of that student’s calculated
position on the list. This is especially useful for those students on the waiting-list.
The system can check whether they can be bumped up or even get admitted based
on the votes collected by the system. Although this is not an accurate prediction,
it can at least provide some pointers as to how much chance the student can get

39

Sidebar

Descriptive statistics

Display options

Votes toggle

Comments

Number of votesCommon name toggleSuggest corrections

Conduct intelligent
prediction

Filtered common name
records

Multiple offers list

Figure 5.6: Screenshot of the Program Page.

admitted to the program.
On the sidebar, there are some assistant features as well. Since the sidebar stays

statically on the page even if the page is scrolled, it can be seen as the dashboard
of the program. First, it has a descriptive statistics section about the program. It
shows the number of students on the short-list, waiting-list, and who got multiple
offers in each group of the program if there are any. The display options let students
to toggle between several different views. This can help to reduce the number of
records displayed on the list so only the records that the students are interested in
are shown. Next is the toggle for votes. Because sometimes students only want to
know about their friends suggestions or sometimes they just can’t trust other peo-
ple to provide useful information, the toggle can let students to toggle the votes to
include all votes or only the votes by their friends. This toggle will also affect the
intelligent prediction results as well. At the bottom of the sidebar, there is a com-
ment section. This place is for students to communicate and share their thoughts
and insights about the program. Students can leave some insights about the fill-up
process of the program or some concrete information they got. Generally, it is just
an additional communication tool to aid the studentswhen they are cross-checking.

40

Figure 5.7: Screenshot of the Search Results Page.

5.5 Search Results Page

The search results page is pretty straight forward. This page displays the results
of a search like in Figure 5.7. The search can be conducted on the search bar located
at the site bar at the top of every page. It is sticked to the top of the window so the
search function is always available.

5.6 Admin Console

The admin console is built for system administrators to perform administra-
tive operation. The console is based on the Python interactive shell. It has several
commands available the can batch update the lists, make corrections to the list,
moderate the comments, etc. The admin console is a command line based envi-
ronment. A graphical user interface was not built because the admin console isn’t
designed for public use.

5.7 Usage Examples

In this section, we provide two usage examples on how students can useMyNext
to improve their cross-checking experience. The first example is just a search for

41

Figure 5.8: Screenshot of the Admin Console.

the name of a student. The second example is a more sophisticated application of
intelligent prediction.

5.7.1 Searching for a Student

Student A wants to know howwell did his friend, Student B, did on the entrance
exams. After the results were released, Student A log on to MyNext. He then typed
in Student B’s name in the search bar. The search results page is returned with
records of with Student B’s name. The example is illustrated in Figure 5.9.

Figure 5.9: Illustration of Searching for a Student.

42

5.7.2 Using the Intelligent Prediction

The above example is just a simple search. Now consider the following situation:
student C is on the waiting-list for a program, she does have any other offers. There-
fore she is very anxious about whether or not she can get the offer. She is on the
number four spot on the waiting-list. The three students before her all have multi-
ple offers, but she still wants to at least have some indication about her chances of
getting admitted. She logs on to MyNext, and asks her friends also to check out the
list for her. Her friends make some suggestions for her by voting. She then uses the
intelligent prediction function and finds out that her chance of getting admitted
is very likely. Additionally, there are some comments from the comment section
that say the first two students on the waiting-list have already turned down the of-
fer according to the department office. Thus, she gains more confidence on her
exam results. Figure 5.10 shows using the intelligent prediction and the comments
section.

43

Figure 5.10: Illustration of Using the Intelligent Prediction.

44

Chapter 6

Conclusions

In this thesis, we have built a new CCS called MyNext. It has several break-
through advancements such as integrating with SNS, Facebook and applying the
concept of collective intelligence. In the traditional cross-checking aspect, MyNext
is an improvement over existing CCSs by providing a better and more user friendly
user interface. By grasping the concept of collective intelligence, MyNext lets stu-
dents and their friends to collaborate on different aspects of cross-checking and
makes the process more interesting. MyNext turns a tedious work that was usu-
ally done alone by students themselves to a group activity. Cross-checking using
MyNext is no longer just blindly browsing through lists and trying to figure out the
possible outcome with no assistance. Using MyNext, students can help out each
other by voting for their predictions and leaving comments. Students’ friends can
also help out by making recommendations that they think are the best for the stu-
dents. Common name filtering can make the list simpler to interpret. And most
importantly, one of the best features of MyNext is the ability to intelligently predict
the outcome for a student based on the votes and recommendations made by all
the users of MyNext. This is collective intelligence in full swing.

Feature Comparison with Existing CCSs

Table 6.1 shows the feature comparison of MyNext, Daso, and iCross. Only ba-
sic features are provided by Daso and iCross while MyNext also has the advanced
features. One thing to note is that only MyNext does not have any advertisement
banners while the other two have massive advertisements that can greatly hinder
the browsing experience.

45

Table 6.1: Feature Comparison Table of MyNext, Daso and iCross.

CCS

Features MyNext Daso iCross

Basic
Basic cross-checking 3 3 3

Searching 3 3 3

Interaction
Watchlist 3 7 7

Outcome prediction voting 3 7 7

Common name filtering 3 7 7

Comments 3 7 7

Corrections 3 7 7

Intelligent prediction 3 7 7

SNS integration
Login with Facebook 3 7 7

Friends based interactions 3 7 7

Others
Provide descriptive statistics 3 7 7

Customized display options 3 7 7

Other personalizations 3 7 7

Banner advertisements 7 3 3

Breakthroughs and Contributions

MyNext is an advanced CCS that not only let students do cross-checking, but
it most importantly focuses on waiting-listed students. Waiting-listed students are
the ones that needed cross-checking the most because of the uncertainty of their
outcome. MyNext focuses to become a true assistant for waiting-listed students
by providing useful information provided from students’ friends and other users.
Waiting-listed students can figure out their possible directions more easily after
using MyNext.

Potential Future Improvements

Due to the nature of collective intelligence, garbage data exists aswell as valuable
information. One of the potential improvements could be implementing a trust
system. A lot of Web applications with collective intelligence have some sort of
self-governing mechanisms. For example, Wikipedia has numerous functions such
as undo edits so the junk or spam can be removed quickly by anyone. If an user’s

46

edits are removed regularly, the quality of that user’s contribution is questionable,
and in some cases, users with questionable reputations might even lose the ability
to contribute. Therefore, by implementing a trust system. Users can vote for a user’s
credibility based on their behalf and their Facebook friends can also authenticate an
user’s true identity. If user identities can be identified, further concrete information
can be provided by those authenticated students and further improve the reliability
of MyNext.

Another possible improvement is to improve the algorithm of prediction. Since
right now the predictions are based solely on students input, if a trusted source of
school or program ranking can be found, then the rankings of the schools could
probably help the prediction. Additionally, a lot more hidden information can be
collect from the system that can probably help the prediction, also. Hit count of a
program, number of comments, number of votes, and probably some other metrics
that can be found and collected from theWeb server logs can also help to determine
the popularity of different programs. User comments could be another source of
information. By using data mining, knowledge could be formed from extracting
key words from comments. The knowledge gained from comments is also a form
of collective intelligence and may even further help the predictions. By combining
statistical models and human opinions, the accuracy of MyNext predictions can be
greatly improved (Nagar & Malone, 2011).

By bringing in the latest concept of Web development as well as the latest Web
technologies, we hopeMyNext can revolutionize the current CCSs and bring online
CCSs to the next level.

47

References

Barsky, E., & Giustini, D. (2007, December). Introducing web 2.0: wikis for health
librarians. Journal of the CanadianHealth Libraries Association, 28(4), 147–150.

Brandon, D. M. (2008). Software engineering for modern web applications: Method-
ologies and technologies. IGI Global.

Eckerson, W.W. (1995). Three tier client/server architecture: Achieving scalability,
performance, and efficiency in client server applications. Open Information
Systems, 10(1).

Friedman, V., & Lennartz, S. (2009). The smashing book. Smashing Media GmbH.
Halpin, H., Robu, V., & Shepherd, H. (2007). The complex dynamics of collaborative

tagging. In Proceedings of international conference on world wide web.
Heino, R. D., Ellison, N. B., & Gibbs, J. L. (2010). Relationshopping: Investigating the

marketmetaphor in online dating. Journal of Social and Personal Relationships,
27, 427–447.

Kaplan-Moss, J., & Holovaty, A. (2007). The definitive guide to django: Web devel-
opment done right (expert’s voice in web development). Apress.

Keith-Spiegel, P., & Wiederman, M. W. (2000). The complete guide to graduate
school admission: Psychology, counseling, and related professions. Psychology
Press.

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-
item collaborative filtering. Internet Computing, IEEE, 7(1), 76–80.

Nagar, Y., & Malone, T. (2011, March). Combining human and machine intelligence
for making predictions (Tech. Rep.). MIT Center for Collective Intelligence.

Netcraft Ltd. (n.d.). March 2012 web server survey. Available from
http://news.netcraft.com/archives/2012/03/05/march-2012-web
-server-survey.html (Online; accessed 29-Mar-2012)

O’Reilly, T. (2007). What is web 2.0: Design patterns and business models for the
next generation of software. Communications & Strategies(1), 17–37.

Paulson, L. D. (2005, 10). Building rich web applications with ajax. Computer,
38(10), 14–17.

48

http://news.netcraft.com/archives/2012/03/05/march-2012-web-server-survey.html
http://news.netcraft.com/archives/2012/03/05/march-2012-web-server-survey.html

Pempek, T. A., Yermolayeva, Y. A., & Calvert, S. L. (2009). College students’ so-
cial networking experiences on Facebook. Journal of Applied Developmental
Psychology, 30(3), 227–238.

Peters, I. (2009). Folksonomies: Indexing and retrieval in web 2.0. De Gruyter.
Q-Success. (n.d.). Usage of operating systems for websites. Available from http://

w3techs.com/technologies/overview/operating_system/all (Online; ac-
cessed 26-Mar-2012)

United Nations. (2008). 2008 state of the future. Millennium Project.
Wagner, C. (2004). Wiki: A technology for conversational knowledge management

and group collaboration. Communications of the Association for Information
Systems, 13, 265–289.

49

http://w3techs.com/technologies/overview/operating_system/all
http://w3techs.com/technologies/overview/operating_system/all

	誌謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Project Goals
	Organization of the Thesis

	Background
	Cross-Checking System (CCS)
	Collective Intelligence
	Wiki
	Social Bookmarking
	Recommendation
	Online Dating

	Social Networking Service (SNS)

	Services of MyNext
	The Use-Case of MyNext
	Workflow of the Use-Case
	Browsing Lists by Program
	Searching for a Name
	Voting for Possible Outcome
	Filtering Common Name
	Leaving Comment to a Program

	System Architecture
	System Design
	Administrative Operation
	Three-Tier Architecture of MyNext

	Infrastructure
	Hardware
	Operating System
	Web Server
	Database Server
	Web Application Framework
	Client-Side Scripting
	The MyNext Stack

	Data Models
	User model
	FBAccount model
	School model
	Program model
	Record model
	Vote model
	Filter model
	Correction model
	Comment model
	Underlying Datastore

	Program Design
	Parsers
	Object Generator
	Batch Update Module
	List Browsing Module
	Multiple Offer Getter Module
	Search Module
	Watchlist Module
	Prediction Voting Module
	Comment Module
	Common Name Filtering Module
	Intelligent Prediction Module
	Facebook Authentication Module

	User Interface
	Homepage
	Login Page
	School Page
	Program Page
	Search Results Page
	Admin Console
	Usage Examples
	Searching for a Student
	Using the Intelligent Prediction

	Conclusions
	References

