
Learning with weight noise, node fault
and weight decay

John Sum

Institute of Technology Management

National Chung Hsing University

In collaboration with
Chi-sing Leung (CityU HK), Kevin Ho (Providence University)

and Allen Liang (NCHU)

Research supported in part by
Taiwan NSC Grants (No. 95-2221-E-040-009, 97-2221-E-005-050,

98-2221-E-005-048),
City University of Hong Kong Grant (No. 7002230),

HK Government General Research Fund (No.: CityU 116508)

1

OUTLINE

Fault tolerance learning

Learning with weight noise and weight decay

Learning with node fault and weight decay

Conclusions

2

PART I: Fault tolerance learning

3

Background: Fundamental problem

4

Background: Fault models

∙ Node fault – Single node fault or multiple nodes fault

∙ Weight noise (weight perturbation) – Additive or multiplicative

∙ Input noise (input perturbation)– Additive or multiplicative

∙ Other perturbation – e.g. the centers and widths in RBF, and

the parameter ¿ in the sigmoid function

∙ SEU – Single Event Upset, hardware bit flip due to radiation

5

Background: Previous approaches

Approach I (Regularization)

Step 1: Define an objective function

Step 2: Derive batch-mode or online-mode training algorithms

Approach II (Fault injection during training)

Step 1: Start with a heuristic idea

Step 2: Modify BP learning algorithm by injecting fault

Assessment

(a) Training and testing error

(b) Prediction MSE versus fault level

6

Background: Previous approaches

Learn. Algo.

Noise injection−based online training

Objective function−based online training

Noise injection after training

OUTPUTINPUT

OUTPUTINPUT

OUTPUTINPUT

Weight Noise Node Noise

Weight Noise Node Noise

Input Noise

Input Noise
NN

WD

WD

NN

WD

NN

SYSTEM

SYSTEM

SYSTEM NN: NEURAL NETWORK

WD: WEIGHT DECAY

7

Background: Motivated Questions

Question 1: Objective functions for FTL

∙ Not all existing FTL algorithms are defined based upon objective func-
tions. Some of these are designed by heuristic.

∙ Is it possible to find an objective function for them ?

Question 2: About weight decay

∙ Algorithm like weight decay has also been applied in training a NN of good
fault tolerance and generalization.

∙ Does it mean that weight decay should be an universal technique for NN
learning ?

Question 3: Connection to conventional (batch & online) learning

∙ If the objective functions are found, what are their similarities, differences
and relationships with those defined in conventional learning ?

Question 4: Theoretical framework

∙ Some research articles in the literature have summarized the previous
works in regard to fault tolerant neural networks.

∙ But, little theoretical work has been done and almost no previous work
has been done along the statistical learning point of view.

8

Previous works (1): NN learning algorithms

Sequin & Clay (1991); Bolt (1992)

– Modified backpropagation learning

– MLP

– Inject random node fault (stuch-at fault) during training

Edward & Murray (1993, 1994, 1996)

– Modified backpropagation learning

– MLP

– Weight noise injection during training

Chiu (1994)

– Modified backpropagation learning

– MLP

– Inject random node fault with random node deletion and addition

9

Cavalieri & Mirabella in (1999)

– Modified back-propagation learning

– MLP

– Weight magnitude control step

Parra and Catala (2000)

– RBF network

– Weight decay regularizer

Bernier et al (2000, 2003)

– Explicit regularization

– MLP & RBF

Leung & Sum (2005, 2008)

– FT regularizer

– RBF

– Batch-mode learning, node fault

Leung & Sum (2007)

– KL-Divergence based objective function

– RBF

– Batch-mode learning, MWN

Sum & Leung (2009)

– Fault tolerant regularizer

– RBF

– Batch-mode learning, MWN

Previous works (2): NN generation methods

Emmerson & Damper (1993); Phatak & Koren (1995)

– Network generation method

– MLP

– Adding network redundancy

Simon (2001)

– Distributed fault tolerance learning

– Optimal interpolation net

– Nonlinear programming problem

Nonlinear MinMax optimization (Single node fault)

– Max of the mean square errors over all fault models, i.e. l2-norm

(Neti et al 92)

– Max square error over all fault models, i.e. l∞-norm (Deodhare et

al 98)

10

Previous works (3): NN performance analysis

Ref. Fault NN Work
[48] Any weight noise Madaline Probability of output error
[15] Any noise Any Output sensitivity measure
[43] Any noise Madaline Precision requirement
[10] Mul. weight noise RBF Generalizaton ability
[54] Any noise RBF Output sensitivity matrix
[2] Any weight noise MLP Output sensitivity measure
[41] - - Relationship between FT,

generalization and VC dim.
[4] Any weight noise MLP Generalization ability
[19] Any weight noise FNa Error sensitivity measure

a Functional net

11

Previous works (4): NN convergence analysis

Edward & Murray (1994)

– Analysis on injecting weight noise during training

– Multiplicative/additive

– MLP

– Prediction error

– No objective function

– No convergence analysis

An (1996)

– Analysis on injecting noise during training

– Input noise, weight noise, additive

– MLP

– Objective functions

– No convergence analysis

12

Ho, Leung & Sum (2008, 2010)

– Convergence analysis, objective functions

– RBF

– Injecting noise/fault during training, weight or node

– With/without weight decay

– Theoretical analysis

Ho, Leung & Sum (2009)

– Divergence of pure weight noise injection

– MLP

– Simulations

Ho, Leung & Sum (2010)

– Convergence analysis, objective functions

– MLP

– Injecting noise/fault during training, weight or node

– With weight decay

– Theoretical analysis

PART II: Learning with weight noise and
weight decay

13

Multilayer Perceptron (MLP)

f(x,w) = DTz(ATx+ c), (1)

D = [d1,d2, ⋅ ⋅ ⋅ ,dl] ∈ Rm×l is the hidden to output weight vector

z = (z1, z2, ⋅ ⋅ ⋅ , zm)T ∈ Rm is the output of the hidden nodes

A = [a1, a2, ⋅ ⋅ ⋅ , am] ∈ Rn×m is the input to hidden weight matrix,

ai ∈ Rn is the input weight vector of the itℎ hidden node

c ∈ Rm is the input to hidden bias vector.

w in (1) is a vector augmenting all the parameters, i.e.

w = (dT
1 ,d

T
2 , ⋅ ⋅ ⋅ ,dT

l , a
T
1 , a

T
2 , ⋅ ⋅ ⋅ , aTm, cT)T .

14

Algorithms

Pure weight noise injection

w(t+1) = w(t) + ¹t(yt − f(xt, w̃(t)))g(xt, w̃(t)). (2)

w̃(t) = w(t) + b⊗w(t). (multi. noise) (3)

w̃(t) = w(t) + b. (additive noise) (4)

Here b ⊗ w = (b1w1, b2w2, ⋅ ⋅ ⋅ , bMwM)T and bi, for all i, is a mean

zero Gaussian distribution with variance Sb.

Weight noise injection with weight decay

w(t+1) = w(t) + ¹t {(yt − f(xt, w̃(t)))g(xt, w̃(t))− ®w(t)} .(5)
w̃(t) = w(t) + b⊗w(t). (multi. noise) (6)

w̃(t) = w(t) + b. (additive noise) (7)

15

−2
−1

0
1

2

−2
−1

0
1

2
0

5

10

15

20

w
2

θ = (0.1, 1) S
β
 = 0.01

w
1

Probability density function of b ⊗ w when w = (0.1,1)T and Sb =
0.01.

Objective function

Pure multiplicative weight noise

V(w) =
1

2

⎧
⎨
⎩
1

N

N∑

k=1

(yk − f(xk,w))2 +
Sb

N

N∑

k=1

M∑

j=1

w2
j gj(xk,w)2

⎫
⎬
⎭

−Sb

N

N∑

k=1

∫ w

w0

u(xk, r)dr, (8)

where

u(xk,w) = (w1g1(xk,w)2, ⋅ ⋅ ⋅ , wMgM(xk,w)2)T . (9)

Mutilplicative weight noise with weight decay

V(w) =
1

2

⎧
⎨
⎩
1

N

N∑

k=1

(yk − f(xk,w))2 +
Sb

N

N∑

k=1

M∑

j=1

w2
j gj(xk,w)2

⎫
⎬
⎭

−Sb

N

N∑

k=1

∫ w

w0

u(xk, r)dr +
®

2
∥w∥2. (10)

16

Pure additive weight noise

V(w) =
1

2

⎧
⎨
⎩
1

N

N∑

k=1

(yk − f(xk,w))2 +
Sb

N

N∑

k=1

M∑

j=1

gj(xk,w)2

⎫
⎬
⎭ . (11)

Additive weight noise with weight decay

V(w) =
1

2

⎧
⎨
⎩
1

N

N∑

k=1

(yk − f(xk,w))2 +
Sb

N

N∑

k=1

M∑

j=1

gj(xk,w)2 + ®∥w∥2
⎫
⎬
⎭ .

(12)

Convergence

Theorem 1 For the algorithm based on (5) and (6), if (i) ® > 0,

(ii) Sb < 1 and (iii) 0 < ¹(t)(®+ (1−√
Sb)m) < 1 for all t ≥ 0, then

limt→∞w(t) = w∗ exists and its elements are finite with probability

one,

Theorem 2 For the algorithm based on (5) and (6), if (i) ® > 0,

(ii) Sb ≪ 1, (iii) ¹(t) → 0 for all t ≥ 0 and (iv)
∑∞

¿=t ¹(t) = ∞ for any

t ≥ 0, then w(t) converges to the location in which

∇wV (w∗) = lim
t→∞∇wV (w(t)) = 0, (13)

where V (w) is a scalar function given by (10).

17

Simulations

Training data

−10 −5 0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Network structure: 1 input node, 10 hidden nodes, 1 output node

During training: Sb = 0.01, ® = 0.00001

During testing: Sb ∈ [0,0.04]

18

Multiplicative weight noise

Pure MWN

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

MSE

0 20 40 60 80 100
−15

−10

−5

0

5

10

15
Input Weight

0 20 40 60 80 100
1

2

3

4

5

6

7

8
Bias

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5
Output Weight

MWN with WD

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

MSE

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4
Input Weight

0 20 40 60 80 100

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Bias

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5
Output Weight

Testing error

Pure MWN MWN with WD

0 0.01 0.02 0.03 0.04
0.01

0.015

0.02

0.025

0.03

0.035

0.04
Weight Decay = 0; Sb = 0.01

0 0.01 0.02 0.03 0.04
0.01

0.015

0.02

0.025

0.03

0.035

0.04
Weight Decay = 1e−005; Sb = 0.01

19

Additive weight noise

Pure AWN

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

MSE

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

8
Input Weight

0 20 40 60 80 100
1

2

3

4

5

6

7

8

9
Bias

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Output Weight

AWN with WD

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

MSE

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3
Input Weight

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5
Bias

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Output Weight

20

Testing error

Pure AWN AWN with WD

0 0.01 0.02 0.03 0.04
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Weight Decay = 0; Sb0 = 0.01

0 0.01 0.02 0.03 0.04
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Weight Decay = 1e−005; Sb0 = 0.01

21

PART III: Learning with node fault and
weight decay

22

Normal Node

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
� Faulty Node

For a MLP with 3 hidden nodes, there are 1 fault-free and 7 faulty
structures.

23

Fault model

Let b(t) = (b1(t), b2(t), ⋅ ⋅ ⋅ , bm(t))T ∈ {0,1}m.

bi(t) =

{
1 if the itℎ hidden node is normal,
0 if the itℎ hidden node is faulty.

(14)

P (bi(t)) =

{
1− p if bi(t) = 1
p if bi(t) = 0.

(15)

For all i, j (i ∕= j), t, t′ (t ∕= t′), the random variables bi(t), bi(t
′), bj(t)

are all identical and independent.

24

Algorithm

z̃i(t) = bi(t)zi(t) (16)

f̃(xt,w(t)) =
m∑

i=1

di(t)z̃i(t) (17)

g̃i(xt,w(t)) =

⎡
⎢⎣

z̃i(t)
di(t)z̃i(t)(1− z̃i(t))xt
di(t)z̃i(t)(1− z̃i(t))

⎤
⎥⎦ . (18)

wi(t+1) = wi(t) + ¹(t)
{
(yt − f̃(xt,w(t)))g̃i(xt,w(t))− ®wi(t)

}
,

(19)

where ¹(t) > 0 is the step size at the ttℎ step and ® > 0 is called the

decay constant.

25

Theorem 3 The objective function of algorithm (19) is given by

V (w) =
1

N

N∑

k=1

(yk − f(xk,w))2 +
p

N

N∑

k=1

dT (G(xk,w)−H(xk,w))d

+
®

(1− p)
∥w∥22. (20)

The matrices G(xk,w) and H(xk,w) in (20) are given by

G(xk,w) = diag{z21(xk,w), ⋅ ⋅ ⋅ , z2m(xk,w)}, (21)

H(xk,w) = z(xk,w)z(xk,w)T . (22)

Theorem 4 For arbitrarily given w(0), w(t) defined by (19) con-

verges to {w∣
(

∂
∂wV (w)

)T
M̄(w) = 0} with probability 1.

26

PART IV: Implication and conclusions

27

Implications (It is just my thought. It could be wrong!)

IF

– Input noise, weight noise, node noise → Brain noise

– Node fault → Neuronal cell death, synapse re-connections

– Weight decay → Forgetting

THEN

– Brain noise alone → brain state instability

– Synapse re-connections → increase redundacy

– Forgetting → alleviates instability due to brain noise

Proof: Sum et al (Might appear 10 years later.)

28

Conclusions

Survey on researches in fault tolerance learning

Recent results on online weight noise injection algorithms

Recent results on online node fault injection algorithms

Implication about the importance of weight decay

29

THANK YOU

John Sum: pfsum@nchu.edu.tw

30

