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1 Introduction

Structural equation model (SEM) is a statistical model to analyze the data collected
from a batch of questionnaires. The data collected is assumed to be linear related to
some latent variables which are unobservable (or unmeasurable). Schematically, a SEM
consists of a pair of input/output (z,y) which are observable, Figure 1. The output
vector y is linear related to a vector of latent factors . The input vector x is linear
related to a vector of latent factors €. The latent vector n is linear related to . From
another perspective, the observable facts (z,y) are generated (equivalently governed) by
those latent factors &, n and the noise factors ¢, € and 4.

Figure 1: Schematic diagram of a structural equation model.

A good exposition on SEM can be referred to [5]. Although this book focuses on
Bayesian SEM, it has two introductory chapters (Chapter 2 and 3) on SEM, its relations
to other models such as CFA Model and Bentler-Weeks Model [2] and the theorems for
understanding the properties of different estimators.

Generally speaking, the methodology for conducting a management research could
follow the steps as shown in Figure 2.

Conceptual model design: Based upon literature survey, the relationships (equiva-
lently the implications) amongst factors should be put together as the hypotheses
of a conceptual model. Some of these factors could be observable (equivalently
measurable) and some might be invisible (equivalently non-measurable). Almost
in all management researches, the factors appeared in a conceptual model are
assumed to be invisible. These factors indeed are the n and £ in Figure 1.

Questionnaire design: Questions are designed to reveal the quantities of the factors,
including both measurable and non-measurable. Special care has to be taken for
those non-measurable. Multiple questions should be designed for a single factor.



Model Assessment

Model Intepretation

Figure 2: Steps for conducting survey research.




These questions are the variables x and y in Figure 1. Therefore, the factors in the
conceptual model and the questions designed in the questionnaire are the variables
in the structural equation model.

Data collection: Once a questionnaire has been carefully designed, the questionnaires
would be distributed for data collection.

Statistical analysis: After sufficient samples has been collected, an objective function
for estimation have to be defined. Precisely, estimation refers to finding the pa-
rameters in the matrices B, I, A, and A;; the covariance matrices for 9, &, ¢, €
and 0, as stated in (1), (2) and (3). The objective function could be defined based
on comparison between the elements of the sample covariance matrix and the es-
timated covariance matrix. It could also be defined based on likelihood function.
Then, the analyst has to select amongst different optimization techniques the one
that can search an optimal solution efficiently.

Model assessment: An analyst can also conduct multiple-search for more than one
solution and assess the models’ viability with reference to model assessment indices.

Implications: While the best model has been selected, further analysis and interpre-
tation on the model can be made.

In the rest of the paper, except on the design of questionnaire and data collection method,
various steps in using SEM as a tool for survey research will be summarized.

1.1 SE Model Definition

In accordance with the terminologies in SAS, a structural equation model (SEM) can
be defined as follows :

n = Bn+T€+(¢ (1)
y = Ayn+e (2)
T = A+, (3)

where n € R, £ € R", y € RP and £ € R?. In which, the elements in 7 correspond
to endogenous latent variables. Elements in € correspond to exogenous latent variables.
Elements in vectors y and x correspond to the manifest variables that are observable (or
measurable). Vectors ( € R™, € € RP and § € R? are the error vectors of mean zero.

B is an m x m matrix with diagonal elements all zeros. Its off-diagonal elements
specify the interaction amongst the endogenous latent variables. I' is an m X n matrix
specifying the dependence of the endogenous variables on exogenous variables. Without



loss of generality, the expectations of random vectors n, &, y and = are all zeros. That
is,

E[’?] =0, E[ﬂ =0, E[y] =0, E[.’L‘] = 0.

While the covariance matrices for the random vectors &, €, 6 and ¢ are depicted as
follows :

El¢¢") =@, Elee'] =6, E[66"]=6;5, E[((T]=1.

By convention, it is assumed that O, ©5 and ¥ are diagonal matrices, meaning that the
random variables in €, § and ( are all independent. Furthermore, the random vectors (,
€ and 4 are independent of n, £, y and x.

E[’?CT] =0, E[fCT} =0, E[yeT] =0, E[QS(ST] = 0.

Given B, T', Ay, A;, ®. O, ©5 and ¥, the covariance matrices for 9, y and = can
readily be deduced.

Em'] = (I-B)'Ter’(I-B) " +(I-B)"v(I-B)", (4)
Elyy"] = AyEm'IA; + 6, (5)
Elzz"] = A, ®AL +6;. (6)

For simplicity, we let 8 be the parametric vectors augmenting all the parameters in B,
I, Ay, Ay, @, O, ©5 and ¥. Besides, the covariance matrix for random variables 7, &,
y and z are denoted by Xy, e, Xy, Xy, Ygz, Lyp and Xy,

1.2 Standardized form

Note that the model parameters specified by Equations (1) (2) and (3) has any restric-
tion. Except that there are a few mild conditions on the latent vectors and the error
vectors, such as mean zeros on 7 and ¢. The covariance between latent vectors and error
vectors are independent.

In such case, a model can have infinite many equivalent representation which leads
to a confusion in comparison amongst different models. Let us have a simple example.
Suppose we define

n=n/2, §=¢/2, (=(/2, Ay=2Ay, A;=2A,,
the aforementioned model will be equivalent to the following model.
n/ — B"]/ +F£l +<—/

Yy = Aly"/"’e
x = N +6.

6



In such case, the impact of the endogenous variables on y will be confused.

One approach to circumvent such confusion is by standardization. In which, the
variances of the elements in the random vectors 9, &, , y, x, € and § are set to unity.
This standardization can be accomplished by the following steps.

First, evaluate the covariance matrix for 9, y and « by using B, ', Ay, A;, ®, O, 65
and W.

Spm = (I-B) ' (Ter” +w) (I -B)T, (7)
Sy = AZpAl + 6, (8)
See = A PAL + 6. 9)

Second, define random vectors 7/, &, ', ¥/, «’, € and &', and the diagonal matrix V,,
Ve, Ve, Vy, Vg, Ve and Vi such that

n=Vy, £E=V, =V, y=Vyf, 2=V, e=Ve, §=Vs"

Denote (M);; be the i*" diagonal element of a matrix, the diagonal matrix can then be
obtained by the following equations.

Vy = diag{y/ @i Ehn /Sl |- (10)
Ve = diag{ v/ (®)11, vV (®)22, - ,\/(Q)nn}. (11)

0V @+ (B | (12)

{
g { v
v, = dlag{ iy (S, m} (13)
(Ve NS
oz { V@, |

(Zyy

T o 1) (o } (14)
VB 100}
Vs — dlag{w<ea>n,¢<ea>m7--~,\/<ea>qq}. (16)

Then, substitute the above equations to the original model, we can have that

Vo' = BV, +TV L +V.(,
V' = AV + Ve
mel = AmV§§I + V,s(S’.



Equivalently,

n = V,'BVy +V, TV +V, 'V (', (17)
y = VAV 1V, Ve (18)
¥ = VAV +V, V6. (19)

In the last step, the standardized form of the SEM can readily be obtained by setting
B = V;IBV,,, | S V;IPV§,

Ny=V/ AV, N,=V_]'AV,
The model will then be given by

n = B +T€+(", (20)
yl — Alynl+6”, (21)
¥ = N & +§". (22)

In which, " = V'V (', € = V'V and §" = V'Vsd'. By standardization, the
covariance matrix for the latent vectors and the observable vectors will have the form of
diagonal elements all ones, i.e.

1 % *
* 1 *
* ok ... 1

A 7%” symbol in the matrix corresponds a real number element.

1.3 Variants of SEM

Apart from defining the latent vectors and the measurement vectors have a linear relation
with the latent vectors, the model can be defined in many other ways. Basically, an SEM
(linear or nonlinear) can be defined following form.

n = fn,§Cl0;y), (23)
Yy = g("%e’ag)v (24)
x = h(£4)6)). (25)

In which, f(-), g(-) and h(-) are nonlinear vector functions with corresponding parametric
vectors 0, 6, and 6),.



Particular attention has to be paid when this model is applied. One reason is because
no standard software tool has developed for this type of model. Even for a simple
nonlinear model with single output (p = 1) like this.

n = Bn+(,
y = n'Gn+e

Researcher usually defines an extended vector

N = (0, M2s s s ML T2, 5 Ml s Do) -

The model is re-expressed in the following form :

n = Bn+(,
y o= A
and then apply standard software to solve the problem. Special care has to be aware as

the elements in * are no longer Gaussian distributed. Analysis results obtained from
this setting can only be a reference. Further analysis is needed.

2 Parametric Estimation

Normally, the true model is unknown. One can have a set of observations, D =
{z),yr}_,. Remind that z; and y, are g-vector and p-vector. For clarification, we
denote the elements in z; and y, by

T
T = (Th1, Tho, 5 This 5 Thg)

Y = Ukt Yr2, s Ykir - 7ykp)T-

Let 8 € RP+2)x(P+a) he the sample covariance matrix for D. Without loss of generality,
we assume that the mean of z; and vy, are zero vectors. Then,

N N
S — % 2%21 '!Jk:y;}r % 2%21 ykfl?{ } (26)
1 .
N k1 TR N Dkt ThTE

In accordance with Equations (7) to (9), the respective covariance matrix of a model
with parametrix vector @ (denoted by ¥(8)) will be given by,

Ay(I = B)™ (T®IT + W) (I — B) "AT + 6, A (I — B)'®A!

z(0) = A®(I — B)TAT A @AT + 65 ] - @)



To estimate the true model parameters, a few common objective (fitting) functions
(to be minimized) are usually applied.

Fiso) = Tr{(S—£0)7}. (
Fio8) = log[S0)]+ Tr{S=1(9)). (29
Fun®) = log|2(0)] — log|S| + T {S576)} — (p + ). (
Fpr(8) = Tr{(S—32(0))"} +Rpr(6). (
Fap(@) = log|Z(0)]+ Tr{SZ7'(0)} + Rap(0). (32

The subscripts LS, LL, LR, PL and LB stand for least square, log likelihood, log of
likelthood ratio, penalized least-square and log a posterior.

w
S
—_— — — — —

2.1 Unweighted least squares

The first objective evaluates the deviation between the estimated covariance matrix X(0)
and the sample covariance matrix S in the sense of sum square errors. That is,

p+q pt+q

Tr {(S—%(0))°} = > > (S;; —Z(0)iy)*. (33)

i=1 j=1

2.2 Log likelihood

The second objective applies under the normality assumption. Consider the sample
vectors in the dataset D are random drawn from a Gaussian distribution which is given
by

1

1 Ty -1
J2n)ero[(0)] exP{‘Q Tr{ww X (0)}}}, (34)

where w = (y” 7). The log-likelihood of D conditioned that the covariance matrix is
3(0) is given as follows :

N(p+q)

Pr(w|f) =

L(D) = — log(27) — glog =(6)] — gTr (STO).  (35)

Thus, the second objective function F7 (@) has a direct relation to log-likelihood given
by the following equality.

Fi1(6) = - {£(DI6) ~ (p + q) log(2n)}.

Besides, it can be shown that the maximum of £(D|#) in Equation (35) is attained at
¥(0) = S. (See p.62 of [1] for the proof!)

—N(p2+ %) log(27) — N log || — (p+q). (36)

L(DIS) = — 5



2.3 Log likelihood ratio
The third objective function Fr(6) has a direct relation to £(D|S) and L(D|0).

Fin(6) = — {£(DIS) ~ £(DI6)}

The beauty of Frr(0) is that its value can be used for likelihood ratio test to reject or
accept a model 0 [3, 4].

N
Likelihood Ratio = exp {_EFLR(G)} .
Since p, ¢ and S are independent of @, minimizing F; will give the same solution as
minimizing Frg. That is,
arg moin {FL.(0)} = arg Irbin {FLr(0)}.

For some advanced techniques, like feature selection and model reduction, the solutions
obtained by minimizing F7; will be different from the solution obtained minimizing F7 g.

2.4 Regularized ULS

The last two objective functions are basically a natural extension of the Frs and Fpr,
by adding constraints on the parametric vector ). The additional terms are called
regularizer which has the following properties.

(i) R(@) > 0 for all ||@|| > 0. Equality holds when ||@]] = 0.
(i) R(¢") > R(0") if [|6"]| > |6"]].
A common choice for R(#) is that
R(#) = cont. x 8RS,

where R is a positive definite matrix.

2.5 Log a posterior probability

For Fj;4p, the regularization term plays a role as adding a logarithm of a prior proba-
bility (log Pr(8)) to the log-likelihood (log Pr(D|#)) for the evaluation of the fitness of a
model. The idea is essentially the same as evaluating the model fitness by its a posterior
probability. Consider the a posterior probability of getting 6 given D.

Pr(D|0) x Pr(0)
Pr(D)

Pr(9|D) =

11



By virtue that the solution of max{Pr(8|D)} is identical to the solution of max{log Pr(4|D)},
we consider the logarithm of the above equation for simplicity.

log Pr(8|D) = log Pr(D|0) + log Pr(0) — log Pr(D). (37)
—— N——
Likelihood Prior
Define the a prior distribution as follows :
Pr(0) =k 'exp {-R(0)} . (38)
Here r is the normalization constant, i.e. k£ = [exp{—R(#)}df. Together with the
Equation (35),

logPr(0|D) = —g log |£(0)| — gTr {SE7'(6)} — R(#) — constant. (39)

The constant term is equal to m log(27) + log Pr(D). Hence,

Friap(0) = Fr(0) + R(0) + constant. (40)

3 Solution Space for F7j;

Although the objective function provides a mean for searching an optimal estimator,
there might exist infinite number of estimators that have the same optimality.

¢
O

s O—F 20—
& n

Figure 3: Simple SEM.

3.1 Casel:d <d

To explain such situation, let us have the following simple SEM, Figure 3. All variables
and parameters are scalars.

n=v+¢ y=ant+e x=p+0.

12



By convention, we assume that the variance of random variables n and £ are unity, it
is not difficult to show that the covariance matrix for (y z)7 is a Gaussian distribution
with

a2 +0, ayf

ayB FP+6s |’
In this example, it is clear that d’ = 3 and d = 8. Without further constraints on model
parameters, the total number of equations is small than the total number of parameters.
Suppose, the sample covariance for y and x are obtained as follows :

Sy =1, Sap =225, N, =%, =15.

Using either Fy; or Frr to be the objective function, the optimal solution for € will be
the one satisfying the following condition.

2(0) =

E(0) = { 1%5 21.255 } ‘

With an addition condition that

E[n?] = 1 orequivalently 7?¢+ V¥ =1, (41)

E[¢*] = 1 orequivalently ¢ =1, (42)
the variables «, v and § will fulfill the following system of equations.

a?=1-0,, ayf=15p*=225—06;. (43)

As a result, there are five equations for the determination of eight parameters. There
will have infinite many solutions for the model.
After simple algebraic manipulation on Equations (41), (42) and (43),

) 2.25
T T 09225 -0,
Taking ©. and O be the free parameters with the constraints that
0<0, <, =1 and 0<0; <3, =2.25,

the projection of the solution surface (manifold) on the (a?,+?%, 5%)-Space is shown in
Figure 4. As all the points on the surface have the same optimal Fr; (and Fpr) val-
ues. Different initial estimate on the parameters or different stopping criteria for an
estimation method could come up with different solutions.

It should also be noted that the surface shown in Figure 4 is in the (a?, 2, 5%)-Space.
For («, v, §)-Space, there will have more than one surface because there is no restriction
on the signs of a, v and 5. They can take both positive as well as negative values.
With reference to the above example and given (O, ©s), there are four solutions, in-
cluding (o, 7, B), (—a,v, —B), (—a, =7, ) and («a, —v, —f3), satisfying the equalities in
Equation (43). The solution set appears as four surfaces in the («,~y, 5)-Space. Discon-
tinuities exist at either a = 0 or § = 0.

13
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For the previous example, Wé’shavg

0.2

d" < d. Next, we will investigate on the case that
we define the input as a vector of three elements

g = 3) and output as a vector of

a

(i.e.

two elements (i.e. p = 2). The model is defined in a similar fashion as before.

an+e, x=p+0.

y:

n =5+,

Given the sample covariance matrix, the MLE will be the solution satisfies the following

matrix equations,

<t
<

Y

Trx

0
<t

TY)

N}
<t

T

P)
Py
P

aa’l +O6, =

vyap' =

BB" +6;

under the constraints that

Vop+T¥ =1 and ¢=1.

Since the covariance matrices ©, and Os are diagonal matrices, the total number of
parameters excluding ¢ and W (i.e. d — 2) will be 12. The total number of equations d’

is 15. It should have enough information for the determination of the parameters.
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However, it has no guarantee. It can have three possible situations : (1) no solution,
(2) one solution and (3) infinite many solution. While a model has been estimated, one
can investigate on the RMR index to identify whether ¥(0) = S. If it is non-zero and
the magnitude is large, one can increase the complexity of the model by adding more
parameters. So that the possibility of getting a close to optimal solution can be made.

4 Optimization Techniques

Once an objective function has been defined for optimality, two questions are remained
for answer.

(1) How to find this optimal estimator 6 in the parametric space RPT? 7
(2) Whether there are more than one optimal solution.

The answer for the first question relies on the use of optimization technique. For the
second question, we provide an answer in the Appendix. Suppose the objective function
is defined as log likelithood, there might exist infinite many optimal solutions. As the
analysis on the uniqueness of optimal solution is always a complicated problem, we
leave it open here.

To find an optimal solution for an objective function, it is simply a problem in
optimization. In accordance with optimization theory, many techniques can be applied.
For a smooth function, gradient descent and Newton’s method are two common iterative
procedures that can search step by step and eventually reach to an optimal solution. In
the context of parametric estimation, the idea of applying optimization technique can
be visualized by Figure 5.

® Initial Guess

Solution Space

Figure 5: The idea of optimization search.
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To explain the idea mathematically, let us introduce ¢ as the index for the number
of iteration steps and p as the step size. The search can be viewed as a realization of
a sequence {0(t)|t = 1,2,---} such that lim, ,,, 6(¢) is an optimal solution based on an

initial guess 6(0).
0(0) > 0(1) 5 0(2) = ... = 00t) = 0(t+1)— ...

For gradient descent, the arrow corresponds to the following iteration.

O(t+1)=0(t) — M%F(é(t)). (47)
For Newton’s method,
Blt+ 1) =8(0) 1 | g O] 5P (18)

The success of applying gradient descent and Newton’s method rely on the conditions
that

(1) F(0) is differentiable, and

(2) 82—20F (G(t)) should not be near-singular

for all 8. One should be aware that these conditions might not always be ensured,
especially Condition (2). In this regard, various techniques extended from Newton’s
method have been proposed. Interested reader can refer to any optimization theory
textbook for detail.

As there might have infinite optimal solutions for an objective function, (i) different
search techniques, (ii) different initial guesses, (iii) different step size p and (iv) different
stopping criteria might lead to different estimators for 6.

Certainly, optimization technique is not the only approach for the search. For some
situations, (see Appendix for an example), analytical equations can be obtained for the
solution. Iterative procedures in numerical method could be applied.

5 EM Algorithm

EM (expectation-maximization) algorithm is an iterative procedure that can maximize
the marginal log-likelihood of a model with missing information, i.e.

(Y10) = / Pr(Z|0)log Pr(Y|Z,6)dZ, (49)

by repeating the following E-Step and M-Step until converge. Here 8 denotes the
parametric vector of the model.

16



E-Step : Evaluate the expectation of log Pr(Y, Z|0) on Z using Pr(Z|Y,8").

QoY 8 = / Pr(Z|Y.6,) log Pr(Y, Z|6)dZ.

M-Step : Maximize Q(0]Y) and set

9! = arg max{Q(6]Y)}.

Here Y = {y;.}1, is the set of observable data. While Z = {z;}1_, is the set of missing
information. In the following text, the function Q(0]Y, ") is also denoted by Q(8|0") or
Q(0]Y, Z") for simplicity.

5.1 Factor analysis model

A FA model is a model which output y € RP is depended on an un-observed latent
factors n € R™, i.e.
y=p+An+e (50)

[ is a constant vector representing the mean of y. A is the matrix of factor loadings. By
convention, g is assumed null. Besides,

n~N@Omn,Inxm) and €~ N(0,0). (51)

For presentation simplicity, those subscripts in £0 and I will not be shown.

Since the latent factor n and € are Gaussian, the marginal probability distribution
of y given € and the conditional probability distribution of z|y are also Gaussian. In
accordance with the model defined in Equation (50) and the conditions depicted in

Equation (51), )
ol ([o] [ h o) £

Using the results in the conditional probability, the mean and variance of the conditional
probability distribution of n given y is given by

Elnly,0] = AT(AAT +©)7'y, (53)
Em'ly,0) = I—AT(AAT +©)7'A. (54)
= (I+A"e&7'A) (55)

The last equality is based on Equation (107). It should note that the conditional covari-
ance matrix is independent of y. (Surprise!) The complete information log-likelihood

17



can then be expressed as follows :

p+m 1 1
log Pr(ye,mil@) = — 5 1og27r—§log|6|—§Tr{ykyZ}

+ Tr {myi©'A}
1
— ST {mrl (I + ATO 1A}

Now we let Z* bet the set of posterior estimation of {n%}_, given Y in the " step,
Yy = % Zyky£>
k

u, = %Z Enilyx, 0ly?

i
£, = > Bl 0"

[
nt, = %Z E i} |y 0].

k

The superscript t in the matrices are with the same meaning as for Zt. The expected
complete information log-likelihood can thus be obtained.

Qe 2y = — P 0r Nigje) - Tmeis,)
+ N {8,074 - g’I‘r (8,0 +a0N) . (50)

Taking the gradient of Q(0|Y, Zt) with respect to matrices A, and setting it to null,
one can get that

A T N
t -1 —IASE
(Znye ) —67AY, =0.
As © is symmetric, its inverse is also a symmetric matrix. This implies that
_ st st \—1
A=% (%) (57)

For the matrix ©, which is a restricted to a diagonal matrix with positive elements.
Using Equation (120) and Equation (57), and setting the gradient of Q(0|Y, Z") with
respect to null, one can obtain that

O = diag {Af)fw} . (58)

As a result, the EM algorithm for maximizing the marginal log-likelihood, Equa-
tion (49), can be accomplished by running the following steps iteratively.

18



E-Step : Evaluate ZAIZW and f)fm conditioned on Y, A" and ©°.
M-Step : Evaluate A™™! and O by
t+1 St st \—1
AT = 3 ()
el = diag {Atﬂ(f)tyn)T} .

5.2 Confirmatory FA model

Above formulation applies for a factor loading matrix in which all elements are free
parameters. For a CFA model, certain factor loadings are either 0 or set to a constants.
In such case, modification on the M-Step will be needed for running above EM algorithm.

The simplest way to describe this modification is better from an example. Suppose
a factor loading is defined as follows :

1 0 O
921 0 0
A= as3yp as2 0 . (59)
0 ag 0.5

0 as2 ass

It corresponds to an FA model with y € R® and n € R3. After the E-Step, we have the
values for f) and X. So, what we need to do next is to determine the parameteric values
for a1, asi, ass, a2, asz and ass.

Consider the output of ys,

Y3 = as1”M + asaM2 + €3,

which is independent of other parameters. For notation simplicity, we denote the pos-
terior expectation by (-).

((ys — asim — az2me)®) = Y3 + a3, () + a3, (n3) — 2a31 (ysm)
— 2a32(ysn2) + 2a31a32(M172)

The derivative of Q(0|Y, Zt) with respect to as; and asy will be given by

%};Z) = (2a3:(n3) — 2{ysm1) + 2a32(mna))/Osa,
7t
w = (26L32<77§> — 2<y3772> + 2as1 <771772>)/633.
a3z
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Setting both gradients to zero, one will obtain two equations for two variables. Sum up
for data k =1,2,--- , N, the update for as; and ass, can be realized by

-1

{ @31 1 — ?771771 ?7}1772 [ N7t Zgzl y3(k)f]1(k) ' (60)
a32 2772771 2,72772 N~ Zk:l y3(k)ﬁ2<k)

So, the update of parameters in M-Steps for factor loading A has to be done row

by row. For the i'" row, let a; = (@imys Qinyy**+ , Gim,) be the parametric vector to be
estimated. Construct a submatrix M from ,, and a vector Y such that
0. - (o). o
) N
Vo= NS g (k). (62)
k=1

Then, the estimation of @; can be accomplished by
altt = My, (63)

The above procedure repeats until i = p. As a result, the EM algorithm for maximizing
the marginal log-likelihood, Equation (49), can be accomplished by running the following
steps repeatedly until converge.

E-Step : Evaluate f)tyn and i)fm conditioned on Y, At and ©°.

M-Step : Evaluate the row vectors of A**! by Equation (61), Equation (62) and Equa-
tion (63), and then evaluate ©'*! by

t+1
A - )

0! — diag {AtH(f)Zn)T}.

5.3 Structural equation model
Recall that an SEM is defined as follows :
n = Bn+T{+(¢

y = Apn+e
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where n € R™, &€ € R", y € RP and x € R?Y. The logarithm of the joint probability
Pr(y,z,n,£|0) for the k' data is given by

log Pr(yy, xr, i, &xl0) = logPr(yi|ne, &k, 0) + log Pr(n|§:,0) (64)

+ log Pr(zx|&x, 0) + log Pr(£;10). (65)

As all the probabilities follow Gaussian distribution and let A = (I — B)™!, the log-
probability terms in the above equations can be written in either sum of square errors
form or in matrix trace form. In the former case,

—2log Pr(yy|-,-,0)
—2log Pr(nyl-,0).
—2log Pr(z|-,0).

—2log Pr(&.10).

While in the latter case, Equation (65) will be expressed as follows :

log Pr(-,-,-,-|6)

log {(2m)™ O]} + (yr — Ayn) O (yr, — Ayny,) (66)
log {(2m)?|®|} + (n), — By, +T€) ¥ (i, — By — TE,[67)
log {(2m)9|05} + (@1 — Asi) O ' (xr — Asky) (68)
log {(27)" @[} + £, @ €5 (69)
1 1 .
—5(]9 +q+m+n)log(2m) — 5108 O|[65]|AVA™[|®|
1
— §Tr ( Yy O — 2myl O\, + x12] O !
— 262,05 Ay + iy (AJO'A, + (AVAT) )
— 26,1y (AWAT) T AT
%fggwwﬁmmﬂrmr+gbym+¢)y (70)

Let @' be the estimated model parametric vector, the posterior estimation of latent
vectors  and €, and their related covariance matrices are given in the following.

f)fw = %ZE :nk|yk,xk,ét] Yi. (71)

. 1 k;l - .

BLo= 2 F [Gyemi 8 2], (72)
1 k;l _ A

X = NZE _nkn?f\yk,xkﬂt]- (73)
1 k;l - A
1 k;l _ A

Bto= O E el lyn a6 (75)

h=1



The @ function can thus be expressed as follows :

" N N
QBID,0") = ——(p+q-+m+n)log(2r) — - log|O.]6;(|ALAT @]

N X .
— ETr [ 2,0, — 22;y6;1Ay +3..0; ' — 25,6 'A,

+ 5], (ATO'A, + (AVAY) ) — 25 41T
+ Sl (T7AT(AVAT) AT + AJB; A, +8) ] (76)

Maximizing the above equation is thus equivalent to minimizing the following £(8]8")
function.

L£0)6") = log|e.||6s/|AvAT||®|
+Tr [zyyegl — 28 O7'A, +%,,6;' — 25 6, A,

ny e
+3¢ (ATO'A, + (AVAT) 1) — 28, ATU'T
+ 8L, (TTAT(AUAT) AT + AT6;'A, + @) ] . (77)

As a result, the EM algorithm for obtaining the MLE estimate of 8 can be accom-
plished by the following iterative steps until converge.

21&

E-Step : Evaluate 3¢ %t -

St W
nyr &z 265 and Evm'
M-Step : Obtain 6+ which is

6! = arg min {E(GW)} .

0

After the M-Step, set t =t + 1 and then goto E-Step again.
To derive analytical equations for the estimation of the conditional expectation of
the latent vectors in the E-Step and their covariance matrices, we let

SHEESH|

Besides, we also let

. I 3, ~ At 0 A 6 0
sito— | Tm Tng Al = y o d 6t — c - .
LA R A lo A;]an [0 eg]




For f]fq, one can readily obtain that

a _ Atf\tci,t(Atft)T+At\i,t(At)T ATt dt
H = é,t(Atf\t)T ot (78)
Thus, the covariance matrix for the (w!,wl)? can thus be obtained.
w, I 3t (AT
C =| .4 aan A A |- 79
o ([ w; D Ay, Ay (AT + 6 (79)

The conditional expectation of n and € can be obtained by the following equations.

L] - mdyrasdreen | B 0
k k

In sequel, flfw and f)gz can be obtained by the following equations.

N
. 1 .
S o= v oMk (81)
k=1
| N
N £t T
Yoo = N;kak (82)

The conditional covariance matrix for w, can thus be obtained by the following equations.
N A A AL A AN\ 1A A
Cov (ww?|D,0) = £, — 5t (AYT (Atthw)T + e) A,
N T
1 M ] lﬁ% ]
+ = o ~ ) 83
N 2 )k (83)
Equation (78), (80), (81), (82) and (83) are applied to the evaluation of ﬁfw, 221«:
2277’ 226 and 2%,7 in the E-Step.

For the M-Step, we need to evaluate the matrices ©., ©s, ¥, ®, B, I', A, and A,

that minimize the value of £(8]"). By convention, we set ® to be an (m x m) identity
matrix, i.e.

® = Inxm)- (84)

To obtain A, ©., A, and Oj, the same approach as for FA model is applied. Using the
technique in matrix derivative (see Appendix) and setting dL/0X be zero matrix, it can
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obtain that
Rt = (TS (
6! — diag{S, - (&,)7(S,) 5, ] (
At = (L)L (87
6! — diag{%, - (BL) (L)L} (
For the factor loading matrices, if there are elements that are fixed to a constant, the

method described in Equation (61) and (62) will be needed. Note that the negative log
probability of n; given & is also given as follows :

—2log Pr(ny/éx, -) = mlog(27) +log [W| + > (0 — > Birtti = > 7isEs)*/ Vis.

i=1 r#£i s
This is the only likelihood term depended on B and I'. Let

2
€; = (772‘ - Z Birty — Z%gfs) /‘I/u
T4 s

It is clear that

N m

1 A _ 2 e

T elk) = T {me(A\IfAT) P28 AT
k=1 i=1

+ 5 (A7 (APAT) 1 AD) |

where (e;(k)) is the conditional expectation of ¢;(k) given yy, z; and .
Similar to the situation in confirmatory FA model,

(e) = )+ BRI+ A

r#i s
r#i r#i S

Taking the derivative of the above equation with respect to all 3;, (r # i) and ~;,, one
will obtain (m 4+ n — 1) linear equations for solving (m + n — 1) variables. Hence, the
matrix B'*! and I can be determined accordingly.

Taking the matrix derivative of £(0|6") with respect to ¥, it is readily shown that

U = diag {AS), A" - AS{TT TS AT 4+ TSLIT ) (89)

Putting the matrices B and I' obtained in the previous step, Wi+l can thus be obtained.
A sample Matlab code for this EM algorithm is added in the Appendix for reference.
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6 Predictive Inference

Once the true (or the estimated model) parameters have been given (obtained), the
prediction of y and x can be found.

6.1 Prediction of y given x

Since the joint probability of (y,z) is Normal distribution with mean vector equals to
null, the conditional probability of y given « is also a Normal distribution. The posterior
estimation of y given & (denoted by ¢) will be equal to the mode of the conditional
distribution. That is,

§ = argmax{Pr(y|z, %(9))}. (90)

In Normal distribution, the mean and mode are in the same location. So,
§ = D, (91)
= A,(I - B)'®AT (A,@AL + 65) 'a. (92)

Please refer to the Appendix for the equations as well.

It should be noted that the prediction g is valid only for Pr(+|-) is Normal distribution.
For other distribution, the maximum a posterior estimation of § might not be equal to
the mean vector of the conditional probability. In such case, other techniques will be
needed for the prediction.

6.2 Prediction of factor scores (n,§)

Let § and & be the posterior estimation (i.e. prediction) of y and z. Moreover, we let

o [2] o [2]

As the mean vectors of n and € are null, the prediction can then be conducted by the

following equation.
W, = arg max{Pr(w,|y,z,%(0))}. (93)

By the same technique being applied for the prediction of y,
’If)l = 2122(0)_1’102, (94)
where
(I-B)! (I‘<I>I‘T + \I') I — B)‘TAg (I — B)"'T®AL
or (I — B)*TAg DAL
and X(0) is given by Equation (27).

2:12 =
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Table 1: List of assessment indices.

Index Defnition
GFInr 1 -Tr{(Z7'S —1)?}/Tr{(X'S)?}
GFILs 1 —Tr{(S — X)?}/Tr{S?}

AGFI — 4 (1 - GFI)

RMR \/z@*q S (Sy — %)

LL Meta) Jog(2r) — Ylog [2()] — gTr{s I )}
LLR -3 {logIE( )| —log S|} — ST {S £71(9)} + Y52
LPO log Pr(DI0,) — log Pr(D|6;) + logPr(6;) — log Pr(«92)

PE(train) 32, (yx — A (0)%) /IDtrainl
PE(test) > (4t — A(@)2')* /| Dyt

7 Model Assessment

Once a model § has been obtained, the next step is to evaluate its goodness of fit. As the
true underlying model is an unknown, we can make comparison only with the observable
dataset D{(yx,zx)r_,}. Two pieces of information available are the sample mean that
is assumed to be a null vector, and the sample covariance matrix,

N N
S — % 2%21 yky;{ % 2%21 ykxf (95)
1 .
N ket TRYE N g1 ThTE

Before proceed, one should understand that the purposes of an objective function
and the fit-index are very different. The former is used for the search an estimated model
which is what we call an optimal solution in the previous section. The latter is used for
assessing the goodness of that estimated model. In many occasions, one would like to
use an objective function that has direct connection to the fit-index. For examples, Frg
and Fpr are two of them which have such direct links. While the objective functions,
F4p will have no such linkage. As a preview, a list of common assessment measures are
depicted in Table 1.

7.1 Covariance matrix-based

To compare the fitness based on the covariance, Goodness-of-fit index (GFI), the ad-
justed goodness-of-fit index (AGFI) and the root mean square residual (RMR) are three
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Cco1mmon measures.

CT{(E5 - 1))

GFlus = 1=~ e e (96)
GFls — 1—% (97)
AGFI::].—%(L—GFU. (98)

1 (pt+a) i )
RMR = |~ SN (S - (99)

i=1 j=1

Here d’ is the total number of elements in the lower (or upper) triangle of the matrix S.
While d is the total number of free parameters in the model 0, i.e.

g - dim{(y,2)})(dim{(y,2)} + 1)
2
(p+q)p+q+1)
5 .
d = dim{6}.

7.2 Likelihood-based

Another approach to assess the goodness of a model or compare different models is based
on the log likelihood or the log likelihood ratio, which have been defined in Equation (35)
and Equation (30).

L(DIB) = —w log(27) — glog 20)] — g’l‘r (S510) .
£(6,5D) — _g {log[£(8)] —log |S|} — gTr (S210)} + NQ’T“).

To explain their differences, let us define 8, and 65 are two models to be compared.
The true underlying model is with covariance matrix Sy. The first likelihood tells us
how likely (in probability sense) does a model 8 generate the data set D. In other words,
what is the probability that D is generated if model @ is the true model. Therefore, we
prefer 6, to 65 if

L(D|6,) > L(D|hs).

Without loss of generality, we replace 8; by ¥(6,) and 6, by S. L(0,S|D) tells us
the difference between how likely does a model ¥(6,) generate the data set D and how
likely does a model S generate the data set D. Moreover, it is assumed that the true
model is specified by ¥, i.e. § =Sy. We then accept 8, to S if L(0,S|D) > 0.
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7.3 Bayesian decision-based

Likelihood-based assessment assumes no a prior information about the models to be
compared. The only information we have is D. For N is large, we usually believe
that the information from D is rich for us to obtain a good model. How about if (1)
the sample size is small, (2) the accepted model is very complex in compared with
the rejected model, and (3) the parametric values of an accepted model are of large
magnitudes ?

Example 1 : Let us have a simple example to show that idea. Suppose we have to
estimate the parametric values for two models, namely 6; and @5, which correspond to
two different model structures. Before estimation starts, we would need to ask ourself
how much information we know about the model. If we do not have any information,
we could simply assume that these two structures are equally likely. After parametric
estimation, we evaluate that

Pr(D|6,) =0.3. and Pr(D|f,) =0.2.

By comparing their likelihoods (or by likelihood ratio test), one can conclude that 6, is
better than 6,.

Example 2 : Certainly, analyst normally will a belief on the structure of a model.
This belief can be built upon an extensive literature survey, or simply a gut feeling. In
any case, this belief turns out to be a weighting factor affecting the judgement how good
a model is. In Bayesian statistics, this belief is called a prior probability. With the same
results and assuming that the a prior probabilities for the models are 0.3 and 0.7. The
probabilities (formerly called posterior probabilities) will be given by

Pr(D|,) x Pr(f;) 0.3 x 0.3

Pr6.[D) = Pr(D) = Pr(D)
Pr(D|;) x Pr(f,) 0.2 x0.7
Pr(6./D) Pr(D) ~ Pr(D)

As the factor Pr(D) is common to both, 85 will be preferred to 6.
Therefore, the comparison between two models can be made by considering the
following ratio.

Pr(6,[D) _ Pr(D6,)  Pr(fy) (100)
Pr(0,|D) Pr(D|6,) ~ Pr(6,)
—— —— —

Posterior Odds  Bayes Factor Prior Odds
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Taking log on both sides, above equation can be rewritten as follows :

LPO(6,,60:) = logPr(D|0,) — logPr(D|0,)
+ logPr(6,) — log Pr(6,). (101)

Thus, model 6, is preferred to model 65 if LPO(6,,05) > 0.

7.4 Prediction error-based

Prediction error is a popular technique being used in assessing a nonlinear model and it
has a tight relationship with another assessment method called cross-validation. Predic-
tion error is defined as the square error between the predicted § and the actual y. Here
g is under the condition that the input z is given, Equation (92).

§ = A,(I — B)'®AT (A,®AL + 6;5) ' z.
Let
A(0) = Ay(I — B)'®AL (A, @A +6;) "

The relation between the prediction § given input x is simply be a linear equation. Then,
the prediction error of a model @ can be defined as follows :
X

PE= 13 (i~ A@))* (102)

Clearly, this value can be very small if the model over-fits the sample data. A better
criteria is based on cross-validation. Let us partition the data set D into two subsets,
namely Dypqiy and Diegt. Only the data in Dy,ip, will take part in the estimation of
the model parameters.

To differentiate the training data and the testing data, we denote (yi,z)) be a data
in Dyiyaip and (¥, 2";) be a data in Dyggp. Then the prediction errors with respect to
the training and testing data sets will be given by

1 2

PEtrain Drain] ; (yr — A(0)zr)” (103)
1 2

PEtest [Drost| ; (v, — A0)2"))", (104)

where | Dy qip| and |Dyegt| correspond to the number of training data and the number
of testing data respectively. The value PE;qnq¢ is also called the cross-validation error.

Prediction error and cross-validation error are not limited to be used for SEM. For
other models that are not suitable for GFI assessment and log likelihood ratio test,
prediction error can be applicable.
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7.5 Parameter significance

To remove insignificant parameters is a way to reduce the complexity of a model. For
SEM, the significant of a parameter can be determined by its value and its standard
error (t-value in SAS programming) which is defined by the following formulae.

7 = 0:/\/55, (105)

where s;; is the i diagonal element of the Hessian matrix of the negative log-likelihood
function at the MLE 6. 52

a=———L(0). 106

. ) (106)

Note that this Hessian matrix is an approximation of the Information Matrix for MLEs.
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A Useful Mathematics

A.1 Matrix

Let A, B and D are non-singular square matrix. Matrix Inversion Lemma is useful for

derivation of conditional probability.

(D—-AB'ATY" ' =D ' 4+ D'A(B - ATD'A)tATD

(107)

To compute the log of the determinant of a matrix, log(| - |), the following equation can

be employed.
log|D + AB™*A”| = log |D| — log | B| + log |B + A" D' A|.

Let us denote

(%), = T,

The following equations are useful for dealing with matrix derivative.

0
—log|A] = AT,
94 og | Al

0
—Tr{BTA} = B.
oA {B" A} B
9 T
a—ATr{BA CA} = 20AB.
For X is not square and A is symmetric, then
IXTAX| - 7
- 21 XTAX|XT,
iTr(AXB) = BA
0X N ‘
9 T
a T _ T
8—XT1"(X BX) = BX+ B'X.
aiXTr(AXBX) = A'XTBT 4+ BTXT AT,
aiXTr(AXBXTC) = ATCTXB" + CAXB.
%Tr [(XTCX)'A] = —CX(XTOX) M(A+AT)(XTCxX)™
0
—Tr(AX'B) = —(X'BAX HT.
S THAX'B) = )
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Besides, we let B be a (n x n) diagonal matrix with positive elements A1, Ao, ..., Ay.
Ais a (nxn) square matrix defined as (@;;)nxn. Define a scalar function f(B) as follows :

f(B) =log|B|+Tr{AB~'}.
It is readily shown that

giif(diag{/l}) o, (120)

foralli=1,2,...,n.

A.2 Conditional Probability

Let (w?,wl)T be a random vector from a multi-dimension Normal distribution, i.e.
wq w, Y X
~N o, . 121

The conditional probability of w; given wy, = a is also a Normal distribution N (1, 211),
where

'l.z)l = w + 2122;21 (a — ’lI)Q) (122)
Y = B - EpXn . (123)

By Matrix Inversion Lemma, the inversion of the covariance matrix ¥;; can also be
expressed as follows :

S =30 + S0 E0Es - EaEn'Ee) S B
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B Matlab Codes for EM Algorithms

B.1 Maximum Likelihood Confirmatory FA

T

% In this program, you need to assign the number for RUN

h

QQ = -1;
while (QQ < 0)

YA
% Sample Data Generation

A

% Te = 0.25, Td = 1; Psi = 1, Phi = 1;

pA
pA
N = 200;
LX0 = [[1 1 1]’ zeros(3,2);
zeros(3,1) [2 2 2]’ zeros(3,1);
zeros(3,2) [0.8 0.8 0.8]°];
XI0 = randn(N, 3);
X = XIOxLX0’ + 0.5%randn(N, 9);
SS = X’*X/N;
q=9;
LiHmax = (g*log(2*pi) + log(det(SS)) + q);

T

.

% Model Structural Definition

yA

% XX-Mask: Element ’1’ corresponds to a parameter
% m: Number of latent variable \eta

% n: Number of latent variable \xi

h

A

n = 3;

LXMask = sign(abs(LX0));
YA

b

b
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% Load Data File & Initialize X and Y

yA

% The matrices SIG_Y_Y and SIG_X_X are defined for

% the M-Step.

yA

yA

P=9 9=09;

Xbar = mean(X);

X = X - kron(Xbar,ones(N,1));

SIG_X_X = (X’*X)/N;

yA

pA

pA

% Initialize Parametric Matrices

pA

yA

Phi = eye(n);

Td = 0.1xeye(q);

LX = 0.01*abs(randn(q,n)) .*LXMask;

pA

yA

Q = zeros(RUN,1); LiH = zeros(RUN,1);

it=1; QQ =1; u-=1;

while ((QQ>0)&& (i t<RUN+1))
yA
% E-Step
yA
yA
% Posterior Estimation of \xi
XIH = X*xinv(LX*LX’+Td) ’*LX;

% Posterior Estimation of \Sigma_xi_x
PSIG_XI_X = (XIH’*X)/N;

% Posterior Estimation of the Covariance Matrix \Sigma_xi_xi
PSIG = eye(3) - LX’*inv(LX*LX’ + Td)*LX;

PSIG_XI_XI = PSIG + XIH’*XIH/N;

T
T
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pA
% M-Step
pA
yA
for r=1:q,

[Value Loc] = setdiff (LXMask(r,:).*x[1:1:n], 0);

Sig_tmp = PSIG_XI_XI(Loc,Loc);

Y_tmp = PSIG_XI_X(Loc,r);

LX(r,Loc) = Y_tmp’*inv(Sig_tmp)’;

Td(r,r) = X(:,r)’*X(:,r)/N - 2xX(:,r) ’*(XIH*LX(r,:)’)/N;

Td(r,r) Td(r,r) + LX(r,:)*PSIG_XI_XI*LX(r,:)’;

% Likelihood Calculation

COV_EST = LX*LX’+ Td;
LiH(it)=qg*log(2*pi)+log(det (COV_EST))+trace (SS*inv(COV_EST)) ;
LiH(it)=LiH(it)-LiHmax;

Qtmpl = (g+n)*log(2*pi) + log(det(Td));

Qtmp2 = trace(SIG_X_X*inv(Td) -PSIG_XI_X’*LX’*inv(Td));
Qtmp2 = Qtmp2 - trace(LX*PSIG_XI_Xx*inv(Td));
Qtmp3 = trace(PSIG_XI_XI*LX’*inv(Td)*LX + PSIG_XI_XI);
Q(it) = (Qtmpl + Qtmp2 + Qtmp3) - LiHmax;
QQ = Q(it);
pA
yA
it = it + 1;
end

end
figure(1); semilogy([Q LiH]); legend(’Q’, ’LiH’)
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B.2 Maximum Likelihood SEM

T

% Model Structural Definition

yA

% XX-Mask: Element ’1’ corresponds to a parameter
% m: Number of latent variable \eta

% n: Number of latent variable \xi

yA
yA
m=3; n= 3

BMask = [0 1 0; 000; 11 0];
TMask = [1 01; 01 1; 10 1];
LYMask = kron(eye(m), [1;1;1]);
LXMask = kron(eye(n), [1;1;1]);
yA

h

T

% Load Data File & Initialize X and Y

yA

% The matrices SIG_Y_Y and SIG_X_X are defined for
% the M-Step.

b
b
load CPI_12_2008.txt;
PI = CPI_12_2008;
clear CPI_12_2008;

X_index [2 45 12 13 15 8 10 11];
Y_index [24 25 26 18 20 21 30 31 32];

X = PI(:,X_index); Y = PI(:,Y_index);

[N Q] = size(PI);

X = X - kron(mean(X) ,ones(N,1));

Y =Y - kron(mean(Y) ,ones(N,1));

p = length(Y_index); q = length(X_index);
SIG_Y_Y = (Y’*Y)/N;

SIG_X_X = (X’*X)/N;

yA

T
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yA
% Initialize Parametric Matrices
yA
yA
ETA = zeros(N, m); XI = zeros(N, n);
B = randn(m,m) .*BMask; BOO = B;

T = randn(m,n) .*TMask; TOO = T;
LY = randn(p,m).*LYMask; LYOO
LX = randn(q,n) .*LXMask; LX00
Psi = 0.1xeye(m);

Phi = eye(n);

Te = 0.1xeye(p);

Td = 0.1xeye(q);

o~

LY;
LX;

h

b
for run = 1:100,
YA
% E-Step
b
YA
A = eye(m)-B;

LAM = [LY zeros(p,n); zeros(q,m) LX];
THETA = [Te zeros(p,p); zeros(q,q) Td];

SIG_ETA_ETA = AxT*Phi*T’*A’+AxPsix*A’;
SIG_ETA_XI = AxTx*Phi;

SIG_XI_ETA = PhixT’x*A’;

SIG_XI_XI = Phi;

SIG_H = [SIG_ETA_ETA SIG_ETA_XI; SIG_XI_ETA SIG_XI_XI];

% Posterior Estimation of \eta and \xi

ETA_XI = [Y X]*inv(LAM*SIG_H*LAM’+THETA) ’*LAM*xSIG_H’;
ETAH = ETA_XI(:,[1 2 3]);

XIH ETA_XI(:,[4 5 6]);

% Posterior Estimation of \Sigma_eta_y and \Sigma_xi_x
PSIG_ETA_Y = (ETAH’*Y)/N;
PSIG_XI_X = (XIH’*X)/N;
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% Posterior Estimation of the Covariance Matrices

% \Sigma_eta_eta, \Sigma_eta_xi, \Sigma_xi_xi and \Sigma_xi_eta
PSIG = SIG_H - SIG_H*LAM’*inv(LAM*SIG_H*LAM’ + THETA)*LAM*SIG_H’;
PSIG = PSIG + ETA_XI’*ETA_XI/N;
PSIG_ETA_ETA = PSIG(1:m,1:m);
PSIG_ETA_XI PSIG(1:m,m+1:m+n);
PSIG_XI_ETA PSIG(m+1:m+n,1:m);
PSIG_XI_XI PSIG(m+1 :m+n,m+1:m+n);

A
h

A
% M-Step
h
A

% (For the Y Equation)
for r=1:p,
[Value Loc] = setdiff(LYMask(r,:).*[1:1:m], 0);
Sig_tmp = PSIG_ETA_ETA(Loc,Loc);
Y_tmp = PSIG_ETA_Y(Loc,T);
LY(r,Loc) = Y_tmp’*inv(Sig_tmp)’;
end

% (For the X equation)
for r=1:q,
[Value Loc] = setdiff(LXMask(r,:).*[1:1:n], 0);
Sig_tmp = PSIG_XI_XI(Loc,Loc);
Y_tmp = PSIG_XI_X(Loc,r);
LX(r,Loc) = Y_tmp’*inv(Sig_tmp)’;
end

% (For the latent ETA equation)

for r=1:m,
[Value Loc_etal = setdiff(BMask(r,:).*[1:1:m], 0);
[Value Loc_xi] = setdiff(TMask(r,:).*[1:1:n], 0);
Sig_11 = PSIG_ETA_ETA(Loc_eta, Loc_eta);
Sig_12 = PSIG_ETA_XI(Loc_eta,Loc_xi);
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Sig_22 = PSIG_XI_XI(Loc_xi,Loc_xi);
Sig_21 = Sig_127;
Sig_tmp = [Sig_11 Sig_12; Sig_21 Sig_221;
Y_tmp = [PSIG_ETA_ETA(Loc_eta,r); PSIG_XI_ETA(Loc_xi, r)];
BT_tmp = Y_tmp’*inv(Sig_tmp)’;
le = length(Loc_eta);
1x = length(Loc_xi);
B(r,Loc_eta) = BT_tmp(1,1:1e);
T(r,Loc_xi) = BT_tmp(1l,le+l:le+lx);
end

Te = diag(diag(LY*PSIG_ETA_Y));

Td = diag(diag(LX*PSIG_XI_X));

A = eye(m)-B;

TMP = A*PSIG_ETA_ETA*A’-T*PSIG_XI_ETA*A’-A*PSIG_ETA_XI*T’+T*PSIG_XI_XI*T’;
Psi = diag(diag(TMP));

h
h

end

39



References

1]

2]

Anderson T.W., An Introduction to Multivariate Statistical Analysis, 2nd Ed. Wiley,
1984.

Bentler P.M. and D.G. Weeks, Linear structural equations with latent variables,
Psychometrika, Vol.45, 289-308, 1980.

Joreskog K.G., Some contributions to maximum likelihood factor analysis, Psy-
chometrika, Vol.32, 443-482, 1967.

Joreskog K.G. and D. Sorbom, Recent developments in structural equation model-
ing, Journal of Marketing Research, Vol.19(4), 404-416, 1982.

Lee S.Y. Structural Equation Modeling: A Bayesian approach, Wiley, 2007.

Rao S.S., Optimization Theory and Applications, 2nd Edition, Wiley, 1984.

40



