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1 Introduction

Structural equation model (SEM) is a statistical model to analyze the data collected
from a batch of questionnaires. The data collected is assumed to be linear related to
some latent variables which are unobservable (or unmeasurable). Schematically, a SEM
consists of a pair of input/output (xxx,yyy) which are observable, Figure 1. The output
vector yyy is linear related to a vector of latent factors ηηη. The input vector xxx is linear
related to a vector of latent factors ξξξ. The latent vector ηηη is linear related to ξξξ. From
another perspective, the observable facts (xxx,yyy) are generated (equivalently governed) by
those latent factors ξξξ, ηηη and the noise factors ζζζ, ϵϵϵ and δδδ.

Figure 1: Schematic diagram of a structural equation model.

A good exposition on SEM can be referred to [5]. Although this book focuses on
Bayesian SEM, it has two introductory chapters (Chapter 2 and 3) on SEM, its relations
to other models such as CFA Model and Bentler-Weeks Model [2] and the theorems for
understanding the properties of different estimators.

Generally speaking, the methodology for conducting a management research could
follow the steps as shown in Figure 2.

Conceptual model design: Based upon literature survey, the relationships (equiva-
lently the implications) amongst factors should be put together as the hypotheses
of a conceptual model. Some of these factors could be observable (equivalently
measurable) and some might be invisible (equivalently non-measurable). Almost
in all management researches, the factors appeared in a conceptual model are
assumed to be invisible. These factors indeed are the ηηη and ξξξ in Figure 1.

Questionnaire design: Questions are designed to reveal the quantities of the factors,
including both measurable and non-measurable. Special care has to be taken for
those non-measurable. Multiple questions should be designed for a single factor.
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Figure 2: Steps for conducting survey research.
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These questions are the variables xxx and yyy in Figure 1. Therefore, the factors in the
conceptual model and the questions designed in the questionnaire are the variables
in the structural equation model.

Data collection: Once a questionnaire has been carefully designed, the questionnaires
would be distributed for data collection.

Statistical analysis: After sufficient samples has been collected, an objective function
for estimation have to be defined. Precisely, estimation refers to finding the pa-
rameters in the matrices BBB, ΓΓΓ, ΛΛΛyyy and ΛΛΛxxx; the covariance matrices for ηηη, ξξξ, ζζζ, ϵϵϵ
and δδδ, as stated in (1), (2) and (3). The objective function could be defined based
on comparison between the elements of the sample covariance matrix and the es-
timated covariance matrix. It could also be defined based on likelihood function.
Then, the analyst has to select amongst different optimization techniques the one
that can search an optimal solution efficiently.

Model assessment: An analyst can also conduct multiple-search for more than one
solution and assess the models’ viability with reference tomodel assessment indices.

Implications: While the best model has been selected, further analysis and interpre-
tation on the model can be made.

In the rest of the paper, except on the design of questionnaire and data collection method,
various steps in using SEM as a tool for survey research will be summarized.

1.1 SE Model Definition

In accordance with the terminologies in SAS, a structural equation model (SEM) can
be defined as follows :

ηηη = BBBηηη +ΓΓΓξξξ + ζζζ (1)

yyy = ΛΛΛyyyηηη + ϵϵϵ (2)

xxx = ΛΛΛxxxξξξ + δδδ, (3)

where ηηη ∈ Rm, ξξξ ∈ Rn, yyy ∈ Rp and xxx ∈ Rq. In which, the elements in ηηη correspond
to endogenous latent variables. Elements in ξξξ correspond to exogenous latent variables.
Elements in vectors yyy and xxx correspond to the manifest variables that are observable (or
measurable). Vectors ζζζ ∈ Rm, ϵϵϵ ∈ Rp and δδδ ∈ Rq are the error vectors of mean zero.

BBB is an m × m matrix with diagonal elements all zeros. Its off-diagonal elements
specify the interaction amongst the endogenous latent variables. ΓΓΓ is an m × n matrix
specifying the dependence of the endogenous variables on exogenous variables. Without
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loss of generality, the expectations of random vectors ηηη, ξξξ, yyy and xxx are all zeros. That
is,

E[ηηη] = 0, E[ξξξ] = 0, E[yyy] = 0, E[xxx] = 0.

While the covariance matrices for the random vectors ξξξ, ϵϵϵ, δδδ and ζζζ are depicted as
follows :

E[ξξξξξξT ] = Φ, E[ϵϵϵϵϵϵT ] = ΘΘΘϵϵϵ, E[δδδδδδT ] = ΘΘΘδδδ, E[ζζζζζζT ] = ΨΨΨ.

By convention, it is assumed that ΘΘΘϵϵϵ, ΘΘΘδδδ and ΨΨΨ are diagonal matrices, meaning that the
random variables in ϵϵϵ, δδδ and ζζζ are all independent. Furthermore, the random vectors ζζζ,
ϵϵϵ and δδδ are independent of ηηη, ξξξ, yyy and xxx.

E[ηηηζζζT ] = 0, E[ξξξζζζT ] = 0, E[yyyϵϵϵT ] = 0, E[xxxδδδT ] = 0.

Given BBB, ΓΓΓ, ΛΛΛyyy, ΛΛΛxxx, ΦΦΦ, ΘΘΘϵϵϵ, ΘΘΘδδδ and ΨΨΨ, the covariance matrices for ηηη, y and x can
readily be deduced.

E[ηηηηηηT ] = (III −BBB)−1ΓΓΓΦΦΦΓΓΓT (III −BBB)−T + (III −BBB)−1ΨΨΨ(III −BBB)−T , (4)

E[yyyyyyT ] = ΛΛΛyyyE[ηηηηηηT ]ΛΛΛT
yyy +ΘΘΘϵϵϵ, (5)

E[xxxxxxT ] = ΛΛΛxxxΦΦΦΛΛΛ
T
xxx +ΘΘΘδδδ. (6)

For simplicity, we let θθθ be the parametric vectors augmenting all the parameters in BBB,
ΓΓΓ, ΛΛΛyyy, ΛΛΛxxx, ΦΦΦ, ΘΘΘϵϵϵ, ΘΘΘδδδ and ΨΨΨ. Besides, the covariance matrix for random variables ηηη, ξξξ,
yyy and xxx are denoted by ΣΣΣηηηηηη, ΣΣΣηξηξηξ, ΣΣΣξηξηξη, ΣΣΣyyyyyy, ΣΣΣxxxxxx, ΣΣΣyxyxyx and ΣΣΣxyxyxy.

1.2 Standardized form

Note that the model parameters specified by Equations (1) (2) and (3) has any restric-
tion. Except that there are a few mild conditions on the latent vectors and the error
vectors, such as mean zeros on ηηη and ζζζ. The covariance between latent vectors and error
vectors are independent.

In such case, a model can have infinite many equivalent representation which leads
to a confusion in comparison amongst different models. Let us have a simple example.
Suppose we define

ηηη′ = ηηη/2, ξξξ′ = ξξξ/2, ζζζ ′ = ζζζ/2, ΛΛΛ′
yyy = 2ΛΛΛyyy, ΛΛΛ′

xxx = 2ΛΛΛxxx,

the aforementioned model will be equivalent to the following model.

ηηη′ = BBBηηη′ +ΓΓΓξξξ′ + ζζζ ′

yyy = ΛΛΛ′
yyyηηη

′ + ϵϵϵ

xxx = ΛΛΛ′
xxxξξξ

′ + δδδ.
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In such case, the impact of the endogenous variables on yyy will be confused.
One approach to circumvent such confusion is by standardization. In which, the

variances of the elements in the random vectors ηηη, ξξξ, ζζζ, yyy, xxx, ϵϵϵ and δδδ are set to unity.
This standardization can be accomplished by the following steps.

First, evaluate the covariance matrix for ηηη, yyy and xxx by using BBB, ΓΓΓ, ΛΛΛyyy, ΛΛΛxxx, ΦΦΦ, ΘΘΘϵϵϵ, ΘΘΘδδδ

and ΨΨΨ.

ΣΣΣηηηηηη = (III −BBB)−1
(
ΓΓΓΦΦΦΓΓΓT +ΨΨΨ

)
(III −BBB)−T , (7)

ΣΣΣyyyyyy = ΛΛΛyyyΣΣΣηηηηηηΛΛΛ
T
yyy +ΘΘΘϵϵϵ, (8)

ΣΣΣxxxxxx = ΛΛΛxxxΦΦΦΛΛΛ
T
xxx +ΘΘΘδδδ. (9)

Second, define random vectors η′η′η′, ξ′ξ′ξ′, ζ ′ζ ′ζ ′, y′y′y′, x′x′x′, ϵ′ϵ′ϵ′ and δ′δ′δ′, and the diagonal matrix VVV ηηη,
VVV ξξξ, VVV ζζζ , VVV yyy, VVV xxx, VVV ϵϵϵ and VVV δδδ such that

ηηη = VVV ηηηη
′η′η′, ξξξ = VVV ξξξξ

′ξ′ξ′, ζζζ = VVV ζζζζ
′ζ ′ζ ′, yyy = VVV yyyy

′y′y′, xxx = VVV xxxx
′x′x′, ϵϵϵ = VVV ϵϵϵϵ

′ϵ′ϵ′, δδδ = VVV δδδδ
′δ′δ′.

Denote (M)ii be the ith diagonal element of a matrix, the diagonal matrix can then be
obtained by the following equations.

VVV ηηη = diag

{√
(ΣΣΣηηηηηη)11,

√
(ΣΣΣηηηηηη)22, · · · ,

√
(ΣΣΣηηηηηη)mm

}
. (10)

VVV ξξξ = diag
{√

(ΦΦΦ)11,
√
(ΦΦΦ)22, · · · ,

√
(ΦΦΦ)nn

}
. (11)

VVV ζζζ = diag
{√

(ΨΨΨ)11,
√

(ΨΨΨ)22, · · · ,
√
(ΨΨΨ)mm

}
. (12)

VVV yyy = diag

{√
(ΣΣΣyyyyyy)11,

√
(ΣΣΣyyyyyy)22, · · · ,

√
(ΣΣΣyyyyyy)pp

}
. (13)

VVV xxx = diag

{√
(ΣΣΣxxxxxx)11,

√
(ΣΣΣxxxxxx)22, · · · ,

√
(ΣΣΣxxxxxx)qq

}
. (14)

VVV ϵϵϵ = diag

{√
(ΘΘΘϵϵϵ)11,

√
(ΘΘΘϵϵϵ)22, · · · ,

√
(ΘΘΘϵϵϵ)pp

}
. (15)

VVV δδδ = diag

{√
(ΘΘΘδδδ)11,

√
(ΘΘΘδδδ)22, · · · ,

√
(ΘΘΘδδδ)qq

}
. (16)

Then, substitute the above equations to the original model, we can have that

VVV ηηηη
′η′η′ = BBBVVV ηηηη

′η′η′ +ΓΓΓVVV ξξξξ
′ξ′ξ′ + VVV ζζζζ

′ζ ′ζ ′,

VVV yyyy
′y′y′ = ΛΛΛyyyVVV ηηηη

′η′η′ + VVV ϵϵϵϵ
′ϵ′ϵ′

VVV xxxx
′x′x′ = ΛΛΛxxxVVV ξξξξ

′ξ′ξ′ + VVV δδδδ
′δ′δ′.
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Equivalently,

η′η′η′ = VVV −1
ηηη BBBVVV ηηηη

′η′η′ + VVV −1
ηηη ΓΓΓVVV ξξξξ

′ξ′ξ′ + VVV −1
ηηη VVV ζζζζ

′ζ ′ζ ′, (17)

y′y′y′ = VVV −1
yyy ΛΛΛyyyVVV ηηηη

′η′η′ + VVV −1
yyy VVV ϵϵϵϵ

′ϵ′ϵ′, (18)

x′x′x′ = VVV −1
xxx ΛΛΛxxxVVV ξξξξ

′ξ′ξ′ + VVV −1
xxx VVV δδδδ

′δ′δ′. (19)

In the last step, the standardized form of the SEM can readily be obtained by setting

B′B′B′ = VVV −1
ηηη BBBVVV ηηη, Γ′Γ′Γ′ = VVV −1

ηηη ΓΓΓVVV ξξξ,

Λ′Λ′Λ′
yyy = VVV −1

yyy ΛΛΛyyyVVV ηηη, Λ′Λ′Λ′
xxx = VVV −1

xxx ΛΛΛxxxVVV ξξξ.

The model will then be given by

η′η′η′ = B′B′B′η′η′η′ +Γ′Γ′Γ′ξ′ξ′ξ′ + ζ ′′ζ ′′ζ ′′, (20)

y′y′y′ = Λ′Λ′Λ′
yyyη

′η′η′ + ϵ′′ϵ′′ϵ′′, (21)

x′x′x′ = Λ′Λ′Λ′
xxxξ

′ξ′ξ′ + δ′′δ′′δ′′. (22)

In which, ζ ′′ζ ′′ζ ′′ = VVV −1
ηηη VVV ζζζζ

′ζ ′ζ ′, ϵ′′ϵ′′ϵ′′ = VVV −1
yyy VVV ϵϵϵϵ

′ϵ′ϵ′ and δ′′δ′′δ′′ = VVV −1
xxx VVV δδδδ

′δ′δ′. By standardization, the
covariance matrix for the latent vectors and the observable vectors will have the form of
diagonal elements all ones, i.e. 

1 ∗ . . . ∗
∗ 1 . . . ∗
...

...
...

∗ ∗ . . . 1

 .

A ”∗” symbol in the matrix corresponds a real number element.

1.3 Variants of SEM

Apart from defining the latent vectors and the measurement vectors have a linear relation
with the latent vectors, the model can be defined in many other ways. Basically, an SEM
(linear or nonlinear) can be defined following form.

ηηη = fff(ηηη, ξξξ, ζζζ|θθθf ), (23)

yyy = ggg(ηηη, ϵϵϵ|θθθg), (24)

xxx = hhh(ξξξ, δδδ|θθθh). (25)

In which, fff(·), ggg(·) and hhh(·) are nonlinear vector functions with corresponding parametric
vectors θθθf , θθθg and θθθh.
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Particular attention has to be paid when this model is applied. One reason is because
no standard software tool has developed for this type of model. Even for a simple
nonlinear model with single output (p = 1) like this.

ηηη = BBBηηη + ζζζ,

y = ηηηTGGGηηη + ϵ.

Researcher usually defines an extended vector

η∗η∗η∗ = (η1, η2, · · · , ηm, η1η1, η1η2, · · · , ηiηj, · · · , ηmηm)T .

The model is re-expressed in the following form :

η∗η∗η∗ = B∗B∗B∗ηηη + ζ∗ζ∗ζ∗,

y = Λ∗Λ∗Λ∗η∗η∗η∗ + ϵ,

and then apply standard software to solve the problem. Special care has to be aware as
the elements in η∗η∗η∗ are no longer Gaussian distributed. Analysis results obtained from
this setting can only be a reference. Further analysis is needed.

2 Parametric Estimation

Normally, the true model is unknown. One can have a set of observations, D =
{xxxk, yyyk}Nk=1. Remind that xxxk and yyyk are q-vector and p-vector. For clarification, we
denote the elements in xxxk and yyyk by

xxxk = (xk1, xk2, · · · , xki, · · · , xkq)
T ,

yyyk = (yk1, yk2, · · · , yki, · · · , ykp)T .

Let SSS ∈ R(p+q)×(p+q) be the sample covariance matrix for D. Without loss of generality,
we assume that the mean of xxxk and yyyk are zero vectors. Then,

SSS =

[
1
N

∑N
k=1 yyykyyy

T
k

1
N

∑N
k=1 yyykxxx

T
k

1
N

∑N
k=1xxxkyyy

T
k

1
N

∑N
k=1xxxkxxx

T
k

]
. (26)

In accordance with Equations (7) to (9), the respective covariance matrix of a model
with parametrix vector θθθ (denoted by ΣΣΣ(θθθ)) will be given by,

ΣΣΣ(θθθ) =

[
ΛΛΛyyy(III −BBB)−1

(
ΓΓΓΦΦΦΓΓΓT +ΨΨΨ

)
(III −BBB)−TΛΛΛT

yyy +ΘΘΘϵϵϵ ΛΛΛyyy(III −BBB)−1ΦΦΦΛΛΛT
xxx

ΛΛΛxxxΦΦΦ(III −BBB)−TΛΛΛT
yyy ΛΛΛxxxΦΦΦΛΛΛ

T
xxx +ΘΘΘδδδ

]
. (27)
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To estimate the true model parameters, a few common objective (fitting) functions
(to be minimized) are usually applied.

FLS(θθθ) = Tr
{
(SSS −ΣΣΣ(θθθ))2

}
. (28)

FLL(θθθ) = log |ΣΣΣ(θθθ)|+Tr
{
SSS ΣΣΣ−1(θθθ)

}
. (29)

FLR(θθθ) = log |ΣΣΣ(θθθ)| − log |SSS|+Tr
{
SSS ΣΣΣ−1(θθθ)

}
− (p+ q). (30)

FPL(θθθ) = Tr
{
(SSS −ΣΣΣ(θθθ))2

}
+RPL(θθθ). (31)

FAP (θθθ) = log |ΣΣΣ(θθθ)|+Tr
{
SSS ΣΣΣ−1(θθθ)

}
+RAP (θθθ). (32)

The subscripts LS, LL, LR, PL and LB stand for least square, log likelihood, log of
likelihood ratio, penalized least-square and log a posterior.

2.1 Unweighted least squares

The first objective evaluates the deviation between the estimated covariance matrix ΣΣΣ(θθθ)
and the sample covariance matrix SSS in the sense of sum square errors. That is,

Tr
{
(SSS −ΣΣΣ(θθθ))2

}
=

p+q∑
i=1

p+q∑
j=1

(SSSij −ΣΣΣ(θθθ)ij)
2 . (33)

2.2 Log likelihood

The second objective applies under the normality assumption. Consider the sample
vectors in the dataset D are random drawn from a Gaussian distribution which is given
by

Pr(www|θθθ) = 1√
(2π)(p+q)|ΣΣΣ(θθθ)|

exp

{
−1

2
Tr{wwwwwwTΣΣΣ−1(θθθ)}}

}
, (34)

where www = (yyyT xxxT )T . The log-likelihood of D conditioned that the covariance matrix is
ΣΣΣ(θθθ) is given as follows :

L(D|θθθ) = −N(p+ q)

2
log(2π)− N

2
log |ΣΣΣ(θθθ)| − N

2
Tr
{
SSS ΣΣΣ−1(θθθ)

}
. (35)

Thus, the second objective function FLL(θθθ) has a direct relation to log-likelihood given
by the following equality.

FLL(θθθ) = − 2

N
{L(D|θθθ)− (p+ q) log(2π)} .

Besides, it can be shown that the maximum of L(D|θθθ) in Equation (35) is attained at
ΣΣΣ(θθθ) = SSS. (See p.62 of [1] for the proof!)

L(D|SSS) = −N(p+ q)

2
log(2π)− N

2
log |SSS| − (p+ q). (36)
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2.3 Log likelihood ratio

The third objective function FLR(θθθ) has a direct relation to L(D|SSS) and L(D|θθθ).

FLR(θθθ) = − 2

N
{L(D|SSS)− L(D|θθθ)} .

The beauty of FLR(θθθ) is that its value can be used for likelihood ratio test to reject or
accept a model θθθ [3, 4].

Likelihood Ratio = exp

{
−N

2
FLR(θθθ)

}
.

Since p, q and SSS are independent of θθθ, minimizing FLL will give the same solution as
minimizing FLR. That is,

argmin
θθθ

{FLL(θθθ)} = argmin
θθθ

{FLR(θθθ)} .

For some advanced techniques, like feature selection and model reduction, the solutions
obtained by minimizing FLL will be different from the solution obtained minimizing FLR.

2.4 Regularized ULS

The last two objective functions are basically a natural extension of the FLS and FLL

by adding constraints on the parametric vector θθθ). The additional terms are called
regularizer which has the following properties.

(i) R(θθθ) ≥ 0 for all ∥θθθ∥ ≥ 0. Equality holds when ∥θθθ∥ = 0.

(ii) R(θ′θ′θ′) > R(θ′′θ′′θ′′) if ∥θ′θ′θ′∥ > ∥θ′′θ′′θ′′∥.

A common choice for R(θθθ) is that

R(θθθ) = cont.× θθθTRRRθθθ,

where RRR is a positive definite matrix.

2.5 Log a posterior probability

For FMAP , the regularization term plays a role as adding a logarithm of a prior proba-
bility (logPr(θθθ)) to the log-likelihood (logPr(D|θθθ)) for the evaluation of the fitness of a
model. The idea is essentially the same as evaluating the model fitness by its a posterior
probability. Consider the a posterior probability of getting θθθ given D.

Pr(θθθ|D) =
Pr(D|θθθ)× Pr(θθθ)

Pr(D)
.
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By virtue that the solution of max{Pr(θθθ|D)} is identical to the solution of max{logPr(θθθ|D)},
we consider the logarithm of the above equation for simplicity.

logPr(θθθ|D) = logPr(D|θθθ)︸ ︷︷ ︸
Likelihood

+ logPr(θθθ)︸ ︷︷ ︸
Prior

− logPr(D). (37)

Define the a prior distribution as follows :

Pr(θθθ) = κ−1 exp {−R(θθθ)} . (38)

Here κ is the normalization constant, i.e. κ =
∫
exp {−R(θθθ)} dθθθ. Together with the

Equation (35),

logPr(θθθ|D) = −N

2
log |ΣΣΣ(θθθ)| − N

2
Tr
{
SSS ΣΣΣ−1(θθθ)

}
−R(θθθ)− constant. (39)

The constant term is equal to N(p+q)
2

log(2π) + logPr(D). Hence,

FMAP (θθθ) = FLL(θθθ) +R(θθθ) + constant. (40)

3 Solution Space for FLL

Although the objective function provides a mean for searching an optimal estimator,
there might exist infinite number of estimators that have the same optimality.

Figure 3: Simple SEM.

3.1 Case I : d′ < d

To explain such situation, let us have the following simple SEM, Figure 3. All variables
and parameters are scalars.

η = γξ + ζ, y = αη + ϵ, x = βξ + δ.

12



By convention, we assume that the variance of random variables η and ξ are unity, it
is not difficult to show that the covariance matrix for (y x)T is a Gaussian distribution
with

Σ(θ) =

[
α2 +Θϵ αγβ
αγβ β2 +Θδ

]
.

In this example, it is clear that d′ = 3 and d = 8. Without further constraints on model
parameters, the total number of equations is small than the total number of parameters.

Suppose, the sample covariance for y and x are obtained as follows :

Σyy = 1, Σxx = 2.25, Σxy = Σyx = 1.5.

Using either FLL or FLR to be the objective function, the optimal solution for θ will be
the one satisfying the following condition.

Σ(θ) =

[
1 1.5
1.5 2.25

]
.

With an addition condition that

E[η2] = 1 or equivalently γ2ϕ+Ψ = 1, (41)

E[ξ2] = 1 or equivalently ϕ = 1, (42)

the variables α, γ and β will fulfill the following system of equations.

α2 = 1−Θϵ, αγβ = 1.5, β2 = 2.25−Θδ. (43)

As a result, there are five equations for the determination of eight parameters. There
will have infinite many solutions for the model.

After simple algebraic manipulation on Equations (41), (42) and (43),

γ2 =
2.25

(1−Θϵ)(2.25−Θδ)
.

Taking Θϵ and Θδ be the free parameters with the constraints that

0 ≤ Θϵ < Σyy = 1 and 0 ≤ Θδ < Σxx = 2.25,

the projection of the solution surface (manifold) on the (α2, γ2, β2)-Space is shown in
Figure 4. As all the points on the surface have the same optimal FLL (and FLR) val-
ues. Different initial estimate on the parameters or different stopping criteria for an
estimation method could come up with different solutions.

It should also be noted that the surface shown in Figure 4 is in the (α2, γ2, β2)-Space.
For (α, γ, β)-Space, there will have more than one surface because there is no restriction
on the signs of α, γ and β. They can take both positive as well as negative values.
With reference to the above example and given (Θϵ,Θδ), there are four solutions, in-
cluding (α, γ, β), (−α, γ,−β), (−α,−γ, β) and (α,−γ,−β), satisfying the equalities in
Equation (43). The solution set appears as four surfaces in the (α, γ, β)-Space. Discon-
tinuities exist at either α = 0 or β = 0.

13
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Figure 4: Solution surface in the (α2, γ2, β2)-Space.

3.2 Case II : d′ > d

For the previous example, we have witnessed that infinite many solutions can exist if
d′ < d. Next, we will investigate on the case that d′ > d. Follow the same example but
we define the input as a vector of three elements (i.e. q = 3) and output as a vector of
two elements (i.e. p = 2). The model is defined in a similar fashion as before.

η = γξ + ζ, yyy = αααη + ϵϵϵ, xxx = βββξ + δδδ.

Given the sample covariance matrix, the MLE will be the solution satisfies the following
matrix equations,

ααααααT +ΘΘΘϵ = ΣΣΣxx, (44)

γ αααβββT = ΣΣΣxy, (45)

ββββββT +ΘΘΘδ = ΣΣΣxx, (46)

under the constraints that

γ2ϕ+Ψ = 1 and ϕ = 1.

Since the covariance matrices ΘΘΘϵ and ΘΘΘδ are diagonal matrices, the total number of
parameters excluding ϕ and Ψ (i.e. d− 2) will be 12. The total number of equations d′

is 15. It should have enough information for the determination of the parameters.
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However, it has no guarantee. It can have three possible situations : (1) no solution,
(2) one solution and (3) infinite many solution. While a model has been estimated, one
can investigate on the RMR index to identify whether ΣΣΣ(θθθ) = SSS. If it is non-zero and
the magnitude is large, one can increase the complexity of the model by adding more
parameters. So that the possibility of getting a close to optimal solution can be made.

4 Optimization Techniques

Once an objective function has been defined for optimality, two questions are remained
for answer.

(1) How to find this optimal estimator θ̂̂θ̂θ in the parametric space Rp+q ?

(2) Whether there are more than one optimal solution.

The answer for the first question relies on the use of optimization technique. For the
second question, we provide an answer in the Appendix. Suppose the objective function
is defined as log likelihood, there might exist infinite many optimal solutions. As the
analysis on the uniqueness of optimal solution is always a complicated problem, we
leave it open here.

To find an optimal solution for an objective function, it is simply a problem in
optimization. In accordance with optimization theory, many techniques can be applied.
For a smooth function, gradient descent and Newton’s method are two common iterative
procedures that can search step by step and eventually reach to an optimal solution. In
the context of parametric estimation, the idea of applying optimization technique can
be visualized by Figure 5.

Figure 5: The idea of optimization search.
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To explain the idea mathematically, let us introduce t as the index for the number
of iteration steps and µ as the step size. The search can be viewed as a realization of
a sequence {θ̂̂θ̂θ(t)|t = 1, 2, · · · } such that limt→∞ θ̂̂θ̂θ(t) is an optimal solution based on an

initial guess θ̂̂θ̂θ(0).

θ̂̂θ̂θ(0) → θ̂̂θ̂θ(1) → θ̂̂θ̂θ(2) → . . . → θ̂̂θ̂θ(t) → θ̂̂θ̂θ(t+ 1) → . . .

For gradient descent, the arrow corresponds to the following iteration.

θ̂̂θ̂θ(t+ 1) = θ̂̂θ̂θ(t)− µ
∂

∂θθθ
F (θ̂̂θ̂θ(t)). (47)

For Newton’s method,

θ̂̂θ̂θ(t+ 1) = θ̂̂θ̂θ(t)− µ

[
∂2

∂θθθ∂θθθ
F (θ̂̂θ̂θ(t))

]−1
∂

∂θθθ
F (θ̂̂θ̂θ(t)). (48)

The success of applying gradient descent and Newton’s method rely on the conditions
that

(1) F (θθθ) is differentiable, and

(2) ∂2

∂θθθ∂θθθ
F (θ̂̂θ̂θ(t)) should not be near-singular

for all θθθ. One should be aware that these conditions might not always be ensured,
especially Condition (2). In this regard, various techniques extended from Newton’s
method have been proposed. Interested reader can refer to any optimization theory
textbook for detail.

As there might have infinite optimal solutions for an objective function, (i) different
search techniques, (ii) different initial guesses, (iii) different step size µ and (iv) different
stopping criteria might lead to different estimators for θθθ.

Certainly, optimization technique is not the only approach for the search. For some
situations, (see Appendix for an example), analytical equations can be obtained for the
solution. Iterative procedures in numerical method could be applied.

5 EM Algorithm

EM (expectation-maximization) algorithm is an iterative procedure that can maximize
the marginal log-likelihood of a model with missing information, i.e.

ℓ(Y |θθθ) =
∫

Pr(Z|θθθ) logPr(Y |Z,θθθ)dZ, (49)

by repeating the following E-Step and M-Step until converge. Here θθθ denotes the
parametric vector of the model.
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E-Step : Evaluate the expectation of logPr(Y, Z|θθθ) on Z using Pr(Z|Y, θ̂̂θ̂θt).

Q(θ|Y, θ̂t) =
∫

Pr(Z|Y, θ̂̂θ̂θt) logPr(Y, Z|θθθ)dZ.

M-Step : Maximize Q(θθθ|Y ) and set

θ̂̂θ̂θt+1 = argmax
θθθ

{Q(θθθ|Y )}.

Here Y = {yk}Nk=1 is the set of observable data. While Z = {zk}Nk=1 is the set of missing

information. In the following text, the function Q(θ|Y, θ̂t) is also denoted by Q(θ|θ̂t) or
Q(θ|Y, Ẑt) for simplicity.

5.1 Factor analysis model

A FA model is a model which output yyy ∈ Rp is depended on an un-observed latent
factors ηηη ∈ Rm, i.e.

yyy = µµµ+ΛΛΛηηη + ϵϵϵ. (50)

µµµ is a constant vector representing the mean of yyy. ΛΛΛ is the matrix of factor loadings. By
convention, µµµ is assumed null. Besides,

ηηη ∼ N (000m, IIIm×m) and ϵϵϵ ∼ N (000p,ΘΘΘ). (51)

For presentation simplicity, those subscripts in ±0 and III will not be shown.
Since the latent factor ηηη and ϵϵϵ are Gaussian, the marginal probability distribution

of yyy given θθθ and the conditional probability distribution of x|yx|yx|y are also Gaussian. In
accordance with the model defined in Equation (50) and the conditions depicted in
Equation (51), [

ηηη
yyy

]
∼ N

([
000
000

]
,

[
III ΛΛΛT

ΛΛΛ ΛΛΛΛΛΛT +ΘΘΘ

])
. (52)

Using the results in the conditional probability, the mean and variance of the conditional
probability distribution of ηηη given yyy is given by

E[ηηη|yyy,θθθ] = ΛΛΛT (ΛΛΛΛΛΛT +ΘΘΘ)−1yyy, (53)

E[ηηηηηηT |yyy,θθθ] = III −ΛΛΛT (ΛΛΛΛΛΛT +ΘΘΘ)−1ΛΛΛ. (54)

= (I +ΛΛΛTΘΘΘ−1ΛΛΛ)−1. (55)

The last equality is based on Equation (107). It should note that the conditional covari-
ance matrix is independent of yyy. (Surprise!) The complete information log-likelihood
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can then be expressed as follows :

logPr(yyyk, ηηηk|θθθ) = − p+m

2
log 2π − 1

2
log |ΘΘΘ| − 1

2
Tr{yyykyyyTk }

+ Tr
{
ηηηkyyy

T
kΘΘΘ

−1ΛΛΛ
}

− 1

2
Tr
{
ηηηkηηη

T
k (III +ΛΛΛTΘΘΘ−1ΛΛΛ)

}
.

Now we let Ẑt bet the set of posterior estimation of {ηηηtk}Nk=1 given Y in the tth step,

ΣΣΣyy =
1

N

∑
k

yyykyyy
T
k ,

Σ̂̂Σ̂Σt
ηy =

1

N

∑
k

E[ηηηk|ykykyk, θθθ]yyyTk ,

Σ̂̂Σ̂Σt
yη =

1

N

∑
k

yyykE[ηηηk|ykykyk, θθθ]T ,

Σ̂̂Σ̂Σt
ηη =

1

N

∑
k

E[ηηηkηηη
T
k |ykykyk, θθθ].

The superscript t in the matrices are with the same meaning as for Ẑt. The expected
complete information log-likelihood can thus be obtained.

Q(θ|Y, Ẑt) = − (p+m)N

2
log 2π − N

2
log |ΘΘΘ| − N

2
Tr {ΣΣΣyy}

+ NTr
{
Σ̂̂Σ̂Σt

ηyΘΘΘ
−1ΛΛΛ

}
− N

2
Tr
{
Σ̂̂Σ̂Σt

ηη(III +ΛΛΛTΘΘΘ−1ΛΛΛ)
}
. (56)

Taking the gradient of Q(θ|Y, Ẑt) with respect to matrices Λ, and setting it to null,
one can get that (

Σ̂̂Σ̂Σt
ηyΘΘΘ

−1
)T

−ΘΘΘ−1ΛΛΛΣ̂̂Σ̂Σt
ηη = 000.

As ΘΘΘ is symmetric, its inverse is also a symmetric matrix. This implies that

ΛΛΛ = Σ̂̂Σ̂Σt
yη(Σ̂̂Σ̂Σ

t
ηη)

−1. (57)

For the matrix ΘΘΘ, which is a restricted to a diagonal matrix with positive elements.
Using Equation (120) and Equation (57), and setting the gradient of Q(θ|Y, Ẑt) with
respect to null, one can obtain that

ΘΘΘ = diag
{
ΛΛΛΣ̂̂Σ̂Σt

ηy

}
. (58)

As a result, the EM algorithm for maximizing the marginal log-likelihood, Equa-
tion (49), can be accomplished by running the following steps iteratively.
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E-Step : Evaluate Σ̂̂Σ̂Σt
yη and Σ̂̂Σ̂Σt

ηη conditioned on Y , ΛΛΛt and ΘΘΘt.

M-Step : Evaluate ΛΛΛt+1 and ΘΘΘt+1 by

ΛΛΛt+1 = Σ̂̂Σ̂Σt
yη(Σ̂̂Σ̂Σ

t
ηη)

−1.

ΘΘΘt+1 = diag
{
ΛΛΛt+1(Σ̂̂Σ̂Σt

yη)
T
}
.

5.2 Confirmatory FA model

Above formulation applies for a factor loading matrix in which all elements are free
parameters. For a CFA model, certain factor loadings are either 0 or set to a constants.
In such case, modification on the M-Step will be needed for running above EM algorithm.

The simplest way to describe this modification is better from an example. Suppose
a factor loading is defined as follows :

Λ =


1 0 0
a21 0 0
a31 a32 0
0 a42 0.5
0 a52 a53

 . (59)

It corresponds to an FA model with yyy ∈ R5 and ηηη ∈ R3. After the E-Step, we have the
values for η̂̂η̂η and Σ̂̂Σ̂Σ. So, what we need to do next is to determine the parameteric values
for a21, a31, a32, a42, a52 and a53.

Consider the output of y3,

y3 = a31η1 + a32η2 + ϵ3,

which is independent of other parameters. For notation simplicity, we denote the pos-
terior expectation by ⟨·⟩.

⟨(y3 − a31η1 − a32η2)
2⟩ = y23 + a231⟨η21⟩+ a232⟨η22⟩ − 2a31⟨y3η1⟩

− 2a32⟨y3η2⟩+ 2a31a32⟨η1η2⟩

The derivative of Q(θ|Y, Ẑt) with respect to a31 and a32 will be given by

∂Q(θ|Y, Ẑt)

∂a31
= (2a31⟨η21⟩ − 2⟨y3η1⟩+ 2a32⟨η1η2⟩)/ΘΘΘ33,

∂Q(θ|Y, Ẑt)

∂a32
= (2a32⟨η22⟩ − 2⟨y3η2⟩+ 2a31⟨η1η2⟩)/ΘΘΘ33.
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Setting both gradients to zero, one will obtain two equations for two variables. Sum up
for data k = 1, 2, · · · , N , the update for a31 and a32, can be realized by[

a31
a32

]
=

[
Σ̂̂Σ̂Ση1η1 Σ̂̂Σ̂Ση1η2

Σ̂̂Σ̂Ση2η1 Σ̂̂Σ̂Ση2η2

]−1 [
N−1

∑N
k=1 y3(k)η̂1(k)

N−1
∑N

k=1 y3(k)η̂2(k)

]
. (60)

So, the update of parameters in M-Steps for factor loading ΛΛΛ has to be done row
by row. For the ith row, let aaai = (aiπ1 , aiπ2 , · · · , aiπi

) be the parametric vector to be

estimated. Construct a submatrix M̃ from Σ̂̂Σ̂Σηη and a vector Ỹ such that

(M̃)rs =
(
Σ̂̂Σ̂Σt

ηη

)
πrπs

(61)

Ỹr = N−1

N∑
k=1

y3(k)η̂̂η̂η
t
πr
(k). (62)

Then, the estimation of â̂âai can be accomplished by

â̂âat+1
i = M̃−1Ỹ . (63)

The above procedure repeats until i = p. As a result, the EM algorithm for maximizing
the marginal log-likelihood, Equation (49), can be accomplished by running the following
steps repeatedly until converge.

E-Step : Evaluate Σ̂̂Σ̂Σt
yη and Σ̂̂Σ̂Σt

ηη conditioned on Y , ΛΛΛt and ΘΘΘt.

M-Step : Evaluate the row vectors of ΛΛΛt+1 by Equation (61), Equation (62) and Equa-
tion (63), and then evaluate ΘΘΘt+1 by

ΛΛΛt+1 =


â̂âat+1
1

â̂âat+1
2
...

â̂âat+1
p

 ,

ΘΘΘt+1 = diag
{
ΛΛΛt+1(Σ̂̂Σ̂Σt

yη)
T
}
.

5.3 Structural equation model

Recall that an SEM is defined as follows :

ηηη = BBBηηη +ΓΓΓξξξ + ζζζ

yyy = ΛΛΛyyyηηη + ϵϵϵ

xxx = ΛΛΛxxxξξξ + δδδ,
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where ηηη ∈ Rm, ξξξ ∈ Rn, yyy ∈ Rp and xxx ∈ Rq. The logarithm of the joint probability
Pr(yyy,xxx,ηηη, ξξξ|θθθ) for the kth data is given by

logPr(yyyk,xxxk, ηηηk, ξξξk|θθθ) = logPr(yyyk|ηηηk, ξξξk, θθθ) + logPr(ηηηk|ξξξk, θθθ) (64)

+ logPr(xxxk|ξξξk, θθθ) + logPr(ξξξk|θθθ). (65)

As all the probabilities follow Gaussian distribution and let AAA = (III − BBB)−1, the log-
probability terms in the above equations can be written in either sum of square errors
form or in matrix trace form. In the former case,

−2 logPr(yyyk|·, ·, θθθ) = log {(2π)m|ΘΘΘϵ|}+ (yyyk −ΛΛΛyηηηk)
TΘΘΘ−1

ϵ (yyyk −ΛΛΛyηηηk) (66)

−2 logPr(ηηηk|·, θθθ). = log {(2π)p|ΨΨΨ|}+ (ηηηk −BBBηηηk +ΓΓΓξξξk)
TΨΨΨ−1(ηηηk −BBBηηηk −ΓΓΓξξξk)(67)

−2 logPr(xxxk|·, θθθ). = log {(2π)q|ΘΘΘδ|}+ (xxxk −ΛΛΛxξξξk)
TΘΘΘ−1

δ (xxxk −ΛΛΛxξξξk) (68)

−2 logPr(ξξξk|θθθ). = log {(2π)n|ΦΦΦ|}+ ξξξTkΦΦΦ
−1ξξξk. (69)

While in the latter case, Equation (65) will be expressed as follows :

logPr(·, ·, ·, ·|θθθ) = −1

2
(p+ q +m+ n) log(2π)− 1

2
log |ΘΘΘϵ||ΘΘΘδ||AAAΨΨΨAAAT ||ΦΦΦ|

− 1

2
Tr
 yyykyyy

T
kΘΘΘ

−1
ϵ − 2ηηηkyyy

T
kΘΘΘ

−1
ϵ ΛΛΛy + xxxkxxx

T
kΘΘΘ

−1
δ

− 2ξξξkxxx
T
kΘΘΘ

−1
δ ΛΛΛx + ηηηkηηη

T
k

(
ΛΛΛT

yΘΘΘ
−1
ϵ ΛΛΛy + (AAAΨΨΨAAAT )−1

)
− 2ξξξkηηη

T
k (AAAΨΨΨAAA

T )−1AAAΓΓΓ

+ ξξξkξξξ
T
k

(
ΓΓΓTAAAT (AAAΨΨΨAAAT )−1AAAΓΓΓ + ΛΛΛT

xΘΘΘ
−1
δ ΛΛΛx +ΦΦΦ

)  . (70)

Let θ̂̂θ̂θt be the estimated model parametric vector, the posterior estimation of latent
vectors ηηη and ξξξ, and their related covariance matrices are given in the following.

Σ̂̂Σ̂Σt
ηy =

1

N

N∑
k=1

E
[
ηηηk|yyyk,xxxk, θ̂̂θ̂θ

t
]
yyyTk . (71)

Σ̂̂Σ̂Σt
ξx =

1

N

N∑
k=1

E
[
ξξξk|yyyk,xxxk, θ̂̂θ̂θ

t
]
xxxT
k . (72)

Σ̂̂Σ̂Σt
ηη =

1

N

N∑
k=1

E
[
ηηηkηηη

T
k |yyyk,xxxk, θ̂̂θ̂θ

t
]
. (73)

Σ̂̂Σ̂Σt
ξξ =

1

N

N∑
k=1

E
[
ξξξkξξξ

T
k |yyyk,xxxk, θ̂̂θ̂θ

t
]
. (74)

Σ̂̂Σ̂Σt
ξη =

1

N

N∑
k=1

E
[
ξξξkηηη

T
k |yyyk,xxxk, θ̂̂θ̂θ

t
]
. (75)

21



The Q function can thus be expressed as follows :

Q(θθθ|D, θ̂̂θ̂θt) = −N

2
(p+ q +m+ n) log(2π)− N

2
log |ΘΘΘϵ||ΘΘΘδ||AAAΨΨΨAAAT ||ΦΦΦ|

− N

2
Tr
 ΣΣΣyyΘΘΘ

−1
ϵ − 2Σ̂̂Σ̂Σt

ηyΘΘΘ
−1
ϵ ΛΛΛy +ΣΣΣxxΘΘΘ

−1
δ − 2Σ̂̂Σ̂Σt

ξxΘΘΘ
−1
δ ΛΛΛx

+ Σ̂̂Σ̂Σt
ηη

(
ΛΛΛT

yΘΘΘ
−1
ϵ ΛΛΛy + (AAAΨΨΨAAAT )−1

)
− 2Σ̂̂Σ̂Σt

ξηAAA
−TΨΨΨ−1ΓΓΓ

+ Σ̂̂Σ̂Σt
ξξ

(
ΓΓΓTAAAT (AAAΨΨΨAAAT )−1AAAΓΓΓ + ΛΛΛT

xΘΘΘ
−1
δ ΛΛΛx +ΦΦΦ

)  . (76)

Maximizing the above equation is thus equivalent to minimizing the following L(θθθ|θ̂̂θ̂θt)
function.

L(θθθ|θ̂̂θ̂θt) = log |ΘΘΘϵ||ΘΘΘδ||AAAΨΨΨAAAT ||ΦΦΦ|

+Tr
 ΣΣΣyyΘΘΘ

−1
ϵ − 2Σ̂̂Σ̂Σt

ηyΘΘΘ
−1
ϵ ΛΛΛy +ΣΣΣxxΘΘΘ

−1
δ − 2Σ̂̂Σ̂Σt

ξxΘΘΘ
−1
δ ΛΛΛx

+ Σ̂̂Σ̂Σt
ηη

(
ΛΛΛT

yΘΘΘ
−1
ϵ ΛΛΛy + (AAAΨΨΨAAAT )−1

)
− 2Σ̂̂Σ̂Σt

ξηAAA
−TΨΨΨ−1ΓΓΓ

+ Σ̂̂Σ̂Σt
ξξ

(
ΓΓΓTAAAT (AAAΨΨΨAAAT )−1AAAΓΓΓ + ΛΛΛT

xΘΘΘ
−1
δ ΛΛΛx +ΦΦΦ

)  . (77)

As a result, the EM algorithm for obtaining the MLE estimate of θθθ can be accom-
plished by the following iterative steps until converge.

E-Step : Evaluate Σ̂̂Σ̂Σt
ηy, Σ̂̂Σ̂Σ

t
ξx, Σ̂̂Σ̂Σ

t
ξη, Σ̂̂Σ̂Σ

t
ξξ and Σ̂̂Σ̂Σt

ηη.

M-Step : Obtain θ̂̂θ̂θt+1 which is

θ̂̂θ̂θt+1 = argmin
θ̂̂θ̂θ

{
L(θθθ|θ̂̂θ̂θt)

}
.

After the M-Step, set t = t+ 1 and then goto E-Step again.
To derive analytical equations for the estimation of the conditional expectation of

the latent vectors in the E-Step and their covariance matrices, we let

www1 =

[
ηηη
ξξξ

]
and www2 =

[
yyy
xxx

]
.

Besides, we also let

Σ̂̂Σ̂Σt
H =

[
Σ̂̂Σ̂Σt

ηη Σ̂̂Σ̂Σt
ηξ

Σ̂̂Σ̂Σt
ξη Σ̂̂Σ̂Σt

ξξ

]
, Λ̂̂Λ̂Λt =

[
Λ̂̂Λ̂Λt

y 000

000 Λ̂̂Λ̂Λt
x

]
and Θ̂̂Θ̂Θt =

[
Θ̂̂Θ̂Θt

ϵ 000

000 Θ̂̂Θ̂Θt
δ

]
.
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For Σ̂̂Σ̂Σt
H , one can readily obtain that

Σ̂̂Σ̂Σt
H =

[
Â̂ÂAtΓ̂̂Γ̂ΓtΦ̂̂Φ̂Φt(Â̂ÂAtΓ̂̂Γ̂Γt)T + Â̂ÂAtΨ̂̂Ψ̂Ψt(Â̂ÂAt)T Â̂ÂAtΓ̂̂Γ̂ΓtΦ̂̂Φ̂Φt

Φ̂̂Φ̂Φt(Â̂ÂAtΓ̂̂Γ̂Γt)T Φ̂̂Φ̂Φt

]
. (78)

Thus, the covariance matrix for the (wwwT
1 ,www

T
2 )

T can thus be obtained.

Cov

([
www1

www2

])
=

[
Σ̂̂Σ̂Σt

H Σ̂̂Σ̂Σt
H(Λ̂̂Λ̂Λ

t)T

Λ̂̂Λ̂ΛtΣ̂̂Σ̂Σt
H Λ̂̂Λ̂ΛtΣ̂̂Σ̂Σt

H(Λ̂̂Λ̂Λ
t)T + Θ̂̂Θ̂Θ

]
. (79)

The conditional expectation of ηηη and ξξξ can be obtained by the following equations.[
η̂̂η̂ηtk
ξ̂̂ξ̂ξtk

]
= Σ̂̂Σ̂Σt

H(Λ̂̂Λ̂Λ
t)T (Λ̂̂Λ̂ΛtΣ̂̂Σ̂Σt

H(Λ̂̂Λ̂Λ
t)T + Θ̂̂Θ̂Θt)−1

[
yyyk
xxxk

]
. (80)

In sequel, Σ̂̂Σ̂Σt
ηy and Σ̂̂Σ̂Σt

ξx can be obtained by the following equations.

Σ̂̂Σ̂Σt
ηy =

1

N

N∑
k=1

η̂̂η̂ηtkyyy
T
k . (81)

Σ̂̂Σ̂Σt
ξx =

1

N

N∑
k=1

ξ̂̂ξ̂ξtkxxx
T
k .. (82)

The conditional covariance matrix forwww1 can thus be obtained by the following equations.

Cov
(
www1www

T
1 |D, θθθt

)
= Σ̂̂Σ̂Σt

H − Σ̂̂Σ̂Σt
H(Λ̂̂Λ̂Λ

t)T
(
Λ̂̂Λ̂ΛtΣ̂̂Σ̂Σt

H(Λ̂̂Λ̂Λ
t)T + Θ̂̂Θ̂Θ

)−1

Λ̂̂Λ̂ΛtΣ̂̂Σ̂Σt
H

+
1

N

N∑
k=1

[
η̂̂η̂ηtk
ξ̂̂ξ̂ξtk

] [
η̂̂η̂ηtk
ξ̂̂ξ̂ξtk

]T
, (83)

Equation (78), (80), (81), (82) and (83) are applied to the evaluation of Σ̂̂Σ̂Σt
ηy, Σ̂̂Σ̂Σ

t
ξx,

Σ̂̂Σ̂Σt
ξη, Σ̂̂Σ̂Σ

t
ξξ and Σ̂̂Σ̂Σt

ηη in the E-Step.
For the M-Step, we need to evaluate the matrices ΘΘΘϵ, ΘΘΘδ, ΨΨΨ, ΦΦΦ, BBB, ΓΓΓ, ΛΛΛx and ΛΛΛy

that minimize the value of L(θθθ|θ̂̂θ̂θt). By convention, we set ΦΦΦ to be an (m×m) identity
matrix, i.e.

ΦΦΦ = III(m×m). (84)

To obtain ΛΛΛy ΘΘΘϵ, ΛΛΛx and ΘΘΘδ, the same approach as for FA model is applied. Using the
technique in matrix derivative (see Appendix) and setting ∂L/∂X be zero matrix, it can
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obtain that

Λ̂̂Λ̂Λt+1
y = (Σ̂̂Σ̂Σt

ηy)
T (Σ̂̂Σ̂Σt

ηη)
−1. (85)

Θ̂̂Θ̂Θt+1
ϵ = diag

{
Σ̂̂Σ̂Σt

yy − (Σ̂̂Σ̂Σt
ηy)

T (Σ̂̂Σ̂Σt
ηη)

−1Σ̂̂Σ̂Σt
ηy

}
. (86)

Λ̂̂Λ̂Λt+1
x = (Σ̂̂Σ̂Σt

ξx)
T (Σ̂̂Σ̂Σt

ξξ)
−1. (87)

Θ̂̂Θ̂Θt+1
δ = diag

{
Σ̂̂Σ̂Σt

xx − (Σ̂̂Σ̂Σt
ξx)

T (Σ̂̂Σ̂Σt
ξξ)

−1Σ̂̂Σ̂Σt
ξx

}
. (88)

For the factor loading matrices, if there are elements that are fixed to a constant, the
method described in Equation (61) and (62) will be needed. Note that the negative log
probability of ηηηk given ξξξk is also given as follows :

−2 logPr(ηηηk|ξξξk, ·) = m log(2π) + log |ΨΨΨ|+
m∑
i=1

(ηi −
∑
r ̸=i

βirηi −
∑
s

γisξs)
2/Ψii.

This is the only likelihood term depended on BBB and ΓΓΓ. Let

ei =

(
ηi −

∑
r ̸=i

βirηr −
∑
s

γisξs

)2

/Ψii.

It is clear that

1

N

N∑
k=1

m∑
i=1

⟨ei(k)⟩ = Tr
{
Σ̂̂Σ̂Σt

ηη(AAAΨΨΨAAA
T )−1 − 2Σ̂̂Σ̂Σt

ξηAAA
−TΨΨΨ−1ΓΓΓ

+ Σ̂̂Σ̂Σt
ξξ

(
ΓΓΓTAAAT (AAAΨΨΨAAAT )−1AAAΓΓΓ

)}
,

where ⟨ei(k)⟩ is the conditional expectation of ei(k) given yyyk, xxxk and θ̂̂θ̂θt.
Similar to the situation in confirmatory FA model,

⟨ei⟩ = ⟨η2i ⟩+
∑
r ̸=i

β2
ir⟨η2r⟩+

∑
s

γ2
is⟨ξ2s⟩

− 2
∑
r ̸=i

βir⟨ηiηr⟩ − 2γis⟨ηiξs⟩+ 2
∑
r ̸=i

∑
s

βirγis⟨ηrξs⟩.

Taking the derivative of the above equation with respect to all βir (r ̸= i) and γis, one
will obtain (m + n − 1) linear equations for solving (m + n − 1) variables. Hence, the

matrix B̂̂B̂Bt+1 and Γ̂̂Γ̂Γt+1 can be determined accordingly.
Taking the matrix derivative of L(θθθ|θ̂̂θ̂θt) with respect to Ψ, it is readily shown that

ΨΨΨ = diag
{
AAAΣ̂̂Σ̂Σt

ηηAAA
T −AAAΣ̂̂Σ̂Σt

ξηΓΓΓ
T −ΓΓΓT Σ̂̂Σ̂Σt

ηξAAA
T +ΓΓΓΣ̂̂Σ̂Σt

ξξΓΓΓ
T
}
. (89)

Putting the matrices BBB and ΓΓΓ obtained in the previous step, Ψ̂̂Ψ̂Ψt+1 can thus be obtained.
A sample Matlab code for this EM algorithm is added in the Appendix for reference.

24



6 Predictive Inference

Once the true (or the estimated model) parameters have been given (obtained), the
prediction of yyy and xxx can be found.

6.1 Prediction of yyy given xxx

Since the joint probability of (yyy,xxx) is Normal distribution with mean vector equals to
null, the conditional probability of yyy given xxx is also a Normal distribution. The posterior
estimation of yyy given xxx (denoted by ŷ̂ŷy) will be equal to the mode of the conditional
distribution. That is,

ŷ̂ŷy = argmax
yyy

{Pr(yyy|xxx,ΣΣΣ(θθθ))}. (90)

In Normal distribution, the mean and mode are in the same location. So,

ŷ̂ŷy = ΣΣΣyxyxyxΣΣΣ
−1
xxxxxxxxx. (91)

= ΛΛΛyyy(III −BBB)−1ΦΦΦΛΛΛT
xxx

(
ΛΛΛxxxΦΦΦΛΛΛ

T
xxx +ΘΘΘδδδ

)−1
xxx. (92)

Please refer to the Appendix for the equations as well.
It should be noted that the prediction ŷ̂ŷy is valid only forPr(·|·) is Normal distribution.

For other distribution, the maximum a posterior estimation of ŷ̂ŷy might not be equal to
the mean vector of the conditional probability. In such case, other techniques will be
needed for the prediction.

6.2 Prediction of factor scores (ηηη, ξξξ)

Let ŷ̂ŷy and x̂̂x̂x be the posterior estimation (i.e. prediction) of yyy and xxx. Moreover, we let

www1 =

[
ηηη
ξξξ

]
and www2 =

[
yyy
xxx

]
.

As the mean vectors of ηηη and ξξξ are null, the prediction can then be conducted by the
following equation.

ŵ̂ŵw1 = argmax
www1

{Pr(www1|yyy,xxx,ΣΣΣ(θθθ))}. (93)

By the same technique being applied for the prediction of yyy,

ŵ̂ŵw1 = ΣΣΣ12ΣΣΣ(θθθ)
−1www2, (94)

where

ΣΣΣ12 =

[
(III −BBB)−1

(
ΓΓΓΦΦΦΓΓΓT +ΨΨΨ

)
(III −BBB)−TΛΛΛT

yyy (III −BBB)−1ΓΓΓΦΦΦΛΛΛT
xxx

ΦΦΦΓΓΓT (III −BBB)−TΛΛΛT
yyy ΦΦΦΛΛΛT

xxx

]
and ΣΣΣ(θθθ) is given by Equation (27).
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Table 1: List of assessment indices.

Index Defnition
GFIML 1−Tr{(ΣΣΣ−1SSS − III)2}/Tr{(ΣΣΣ−1SSS)2}
GFILS 1−Tr{(SSS −ΣΣΣ)2}/Tr{SSS2}
AGFI 1− d′

d
(1−GFI)

RMR
√∑(p+q)

i=1

∑i
j=1 (SSSij −ΣΣΣij)

2 /d′

LL −N(p+q)
2

log(2π)− N
2
log |ΣΣΣ(θθθ)| − N

2
Tr {SSS ΣΣΣ−1(θθθ)}

LLR −N
2
{log |ΣΣΣ(θθθ)| − log |SSS|} − N

2
Tr {SSS ΣΣΣ−1(θθθ)}+ N(p+q)

2

LPO logPr(D|θθθ1)− logPr(D|θθθ2) + logPr(θθθ1)− logPr(θθθ2)

PE(train)
∑

k (yyyk −AAA(θθθ)xxxk)
2 /|Dtrain|

PE(test)
∑

l (y
′y′y′l −AAA(θθθ)x′x′x′

l)
2 /|Dtest|

7 Model Assessment

Once a model θ̂̂θ̂θ has been obtained, the next step is to evaluate its goodness of fit. As the
true underlying model is an unknown, we can make comparison only with the observable
dataset D{(yyyk,xxxk)

N
k=1}. Two pieces of information available are the sample mean that

is assumed to be a null vector, and the sample covariance matrix,

SSS =

[
1
N

∑N
k=1 yyykyyy

T
k

1
N

∑N
k=1 yyykxxx

T
k

1
N

∑N
k=1xxxkyyy

T
k

1
N

∑N
k=1xxxkxxx

T
k

]
. (95)

Before proceed, one should understand that the purposes of an objective function
and the fit-index are very different. The former is used for the search an estimated model
which is what we call an optimal solution in the previous section. The latter is used for
assessing the goodness of that estimated model. In many occasions, one would like to
use an objective function that has direct connection to the fit-index. For examples, FLS

and FLR are two of them which have such direct links. While the objective functions,
FAP will have no such linkage. As a preview, a list of common assessment measures are
depicted in Table 1.

7.1 Covariance matrix-based

To compare the fitness based on the covariance, Goodness-of-fit index (GFI), the ad-
justed goodness-of-fit index (AGFI) and the root mean square residual (RMR) are three
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common measures.

GFIML = 1− Tr{(ΣΣΣ−1SSS − III)2}
Tr{(ΣΣΣ−1SSS)2}

. (96)

GFILS = 1− Tr{(SSS −ΣΣΣ)2}
Tr{SSS2}

. (97)

AGFI = 1− d′

d
(1−GFI) . (98)

RMR =

√√√√ 1

d′

(p+q)∑
i=1

i∑
j=1

(SSSij −ΣΣΣij)
2. (99)

Here d′ is the total number of elements in the lower (or upper) triangle of the matrix SSS.
While d is the total number of free parameters in the model θθθ, i.e.

d′ =
(dim{(yyy,xxx)})(dim{(yyy,xxx)}+ 1)

2

=
(p+ q)(p+ q + 1)

2
.

d = dim{θθθ}.

7.2 Likelihood-based

Another approach to assess the goodness of a model or compare different models is based
on the log likelihood or the log likelihood ratio, which have been defined in Equation (35)
and Equation (30).

L(D|θθθ) = −N(p+ q)

2
log(2π)− N

2
log |ΣΣΣ(θθθ)| − N

2
Tr
{
SSS ΣΣΣ−1(θθθ)

}
.

L(θθθ,SSS|D) = −N

2
{log |ΣΣΣ(θθθ)| − log |SSS|} − N

2
Tr
{
SSS ΣΣΣ−1(θθθ)

}
+

N(p+ q)

2
.

To explain their differences, let us define θθθ1 and θθθ2 are two models to be compared.
The true underlying model is with covariance matrix SSS0. The first likelihood tells us
how likely (in probability sense) does a model θθθ generate the data set D. In other words,
what is the probability that D is generated if model θθθ is the true model. Therefore, we
prefer θθθ1 to θθθ2 if

L(D|θθθ1) > L(D|θθθ2).
Without loss of generality, we replace θθθ1 by ΣΣΣ(θθθ1) and θθθ2 by SSS. L(θθθ,SSS|D) tells us

the difference between how likely does a model ΣΣΣ(θθθ1) generate the data set D and how
likely does a model SSS generate the data set D. Moreover, it is assumed that the true
model is specified by ΣΣΣ, i.e. SSS = SSS0. We then accept θθθ1 to SSS if L(θθθ,SSS|D) > 0.
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7.3 Bayesian decision-based

Likelihood-based assessment assumes no a prior information about the models to be
compared. The only information we have is D. For N is large, we usually believe
that the information from D is rich for us to obtain a good model. How about if (1)
the sample size is small, (2) the accepted model is very complex in compared with
the rejected model, and (3) the parametric values of an accepted model are of large
magnitudes ?

Example 1 : Let us have a simple example to show that idea. Suppose we have to
estimate the parametric values for two models, namely θθθ1 and θθθ2, which correspond to
two different model structures. Before estimation starts, we would need to ask ourself
how much information we know about the model. If we do not have any information,
we could simply assume that these two structures are equally likely. After parametric
estimation, we evaluate that

Pr(D|θθθ1) = 0.3. and Pr(D|θθθ2) = 0.2.

By comparing their likelihoods (or by likelihood ratio test), one can conclude that θθθ1 is
better than θθθ2.

Example 2 : Certainly, analyst normally will a belief on the structure of a model.
This belief can be built upon an extensive literature survey, or simply a gut feeling. In
any case, this belief turns out to be a weighting factor affecting the judgement how good
a model is. In Bayesian statistics, this belief is called a prior probability. With the same
results and assuming that the a prior probabilities for the models are 0.3 and 0.7. The
probabilities (formerly called posterior probabilities) will be given by

Pr(θθθ1|D) =
Pr(D|θθθ1)×Pr(θθθ1)

Pr(D)
=

0.3× 0.3

Pr(D)
,

Pr(θθθ2|D) =
Pr(D|θθθ2)×Pr(θθθ2)

Pr(D)
=

0.2× 0.7

Pr(D)
.

As the factor Pr(D) is common to both, θθθ2 will be preferred to θθθ1.
Therefore, the comparison between two models can be made by considering the

following ratio.
Pr(θθθ1|D)

Pr(θθθ2|D)︸ ︷︷ ︸
Posterior Odds

=
Pr(D|θθθ1)
Pr(D|θθθ2)︸ ︷︷ ︸

Bayes Factor

× Pr(θθθ1)

Pr(θθθ2)︸ ︷︷ ︸
Prior Odds

. (100)
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Taking log on both sides, above equation can be rewritten as follows :

LPO(θθθ1, θθθ2) = logPr(D|θθθ1)− logPr(D|θθθ2)
+ logPr(θθθ1)− logPr(θθθ2). (101)

Thus, model θθθ1 is preferred to model θθθ2 if LPO(θθθ1, θθθ2) > 0.

7.4 Prediction error-based

Prediction error is a popular technique being used in assessing a nonlinear model and it
has a tight relationship with another assessment method called cross-validation. Predic-
tion error is defined as the square error between the predicted ŷ̂ŷy and the actual yyy. Here
ŷ̂ŷy is under the condition that the input xxx is given, Equation (92).

ŷ̂ŷy = ΛΛΛyyy(III −BBB)−1ΦΦΦΛΛΛT
xxx

(
ΛΛΛxxxΦΦΦΛΛΛ

T
xxx +ΘΘΘδδδ

)−1
xxx.

Let
AAA(θθθ) = ΛΛΛyyy(III −BBB)−1ΦΦΦΛΛΛT

xxx

(
ΛΛΛxxxΦΦΦΛΛΛ

T
xxx +ΘΘΘδδδ

)−1
.

The relation between the prediction ŷ̂ŷy given input xxx is simply be a linear equation. Then,
the prediction error of a model θθθ can be defined as follows :

PE =
1

N

N∑
k=1

(yyyk −AAA(θθθ)xxxk)
2 . (102)

Clearly, this value can be very small if the model over-fits the sample data. A better
criteria is based on cross-validation. Let us partition the data set D into two subsets,
namely Dtrain and Dtest. Only the data in Dtrain will take part in the estimation of
the model parameters.

To differentiate the training data and the testing data, we denote (yyyk,xxxk) be a data
in Dtrain and (y′y′y′l,x

′x′x′
l) be a data in Dtest. Then the prediction errors with respect to

the training and testing data sets will be given by

PEtrain =
1

|Dtrain|
∑
k

(yyyk −AAA(θθθ)xxxk)
2 , (103)

PEtest =
1

|Dtest|
∑
l

(
y′y′y′l −AAA(θθθ)x′x′x′

l

)2
, (104)

where |Dtrain| and |Dtest| correspond to the number of training data and the number
of testing data respectively. The value PEtest is also called the cross-validation error.

Prediction error and cross-validation error are not limited to be used for SEM. For
other models that are not suitable for GFI assessment and log likelihood ratio test,
prediction error can be applicable.
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7.5 Parameter significance

To remove insignificant parameters is a way to reduce the complexity of a model. For
SEM, the significant of a parameter can be determined by its value and its standard
error (t-value in SAS programming) which is defined by the following formulae.

τi = θ̂̂θ̂θi/
√
sii, (105)

where sii is the i
th diagonal element of the Hessian matrix of the negative log-likelihood

function at the MLE θ̂̂θ̂θ.

sii = − ∂2

∂θθθ2
L(θ̂̂θ̂θ). (106)

Note that this Hessian matrix is an approximation of the Information Matrix for MLEs.
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A Useful Mathematics

A.1 Matrix

Let A, B and D are non-singular square matrix. Matrix Inversion Lemma is useful for
derivation of conditional probability.

(D − AB−1AT )−1 = D−1 +D−1A(B − ATD−1A)−1ATD−1. (107)

To compute the log of the determinant of a matrix, log(| · |), the following equation can
be employed.

log |D + AB−1AT | = log |D| − log |B|+ log |B + ATD−1A|. (108)

Let us denote (
∂f(A)

∂A

)
ij

=
∂f(A)

∂Aij

,

The following equations are useful for dealing with matrix derivative.

∂

∂A
log |A| = A−T . (109)

∂

∂A
Tr{BTA} = B. (110)

∂

∂A
Tr{BATCA} = 2CAB. (111)

For X is not square and A is symmetric, then

∂|XTAX|
∂X

= 2|XTAX|X−T . (112)

∂

∂X
Tr(AXB) = BA. (113)

∂

∂X
Tr(XTA) = A. (114)

∂

∂X
Tr(XTBX) = BX +BTX. (115)

∂

∂X
Tr(AXBX) = ATXTBT +BTXTAT . (116)

∂

∂X
Tr(AXBXTC) = ATCTXBT + CAXB. (117)

∂

∂X
Tr
[
(XTCX)−1A

]
= −CX(XTCX)−1(A+ AT )(XTCX)−1. (118)

∂

∂X
Tr(AX−1B) = −(X−1BAX−1)T . (119)
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Besides, we let B be a (n× n) diagonal matrix with positive elements λ1, λ2, . . . , λn.
A is a (n×n) square matrix defined as (aij)n×n. Define a scalar function f(B) as follows :

f(B) = log |B|+Tr
{
AB−1

}
.

It is readily shown that
∂

∂λi

f(diag{A}) = 0, (120)

for all i = 1, 2, . . . , n.

A.2 Conditional Probability

Let (wwwT
1 ,www

T
2 )

T be a random vector from a multi-dimension Normal distribution, i.e.[
www1

www2

]
∼ N

([
w̄̄w̄w1

w̄̄w̄w2

]
,

[
ΣΣΣ11 ΣΣΣ12

ΣΣΣ21 ΣΣΣ22

])
. (121)

The conditional probability of www1 given www2 = aaa is also a Normal distribution N (ŵ̂ŵw1, Σ̂̂Σ̂Σ11),
where

ŵ̂ŵw1 = w̄̄w̄w1 +ΣΣΣ12ΣΣΣ
−1
22 (aaa− w̄̄w̄w2). (122)

Σ̂̂Σ̂Σ11 = ΣΣΣ11 −ΣΣΣ12ΣΣΣ
−1
22ΣΣΣ21. (123)

By Matrix Inversion Lemma, the inversion of the covariance matrix Σ̂̂Σ̂Σ11 can also be
expressed as follows :

Σ̂̂Σ̂Σ11 = ΣΣΣ−1
11 +ΣΣΣ−1

11ΣΣΣ12(ΣΣΣ
−1
22 −ΣΣΣ21ΣΣΣ

−1
11ΣΣΣ12)

−1ΣΣΣ21ΣΣΣ
−1
11 .
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B Matlab Codes for EM Algorithms

B.1 Maximum Likelihood Confirmatory FA

% ========================================================

% In this program, you need to assign the number for RUN

% ========================================================

QQ = -1;

while (QQ < 0)

% ========================================================

% Sample Data Generation

%

% Te = 0.25, Td = 1; Psi = 1, Phi = 1;

% ========================================================

%

N = 200;

LX0 = [[1 1 1]’ zeros(3,2);

zeros(3,1) [2 2 2]’ zeros(3,1);

zeros(3,2) [0.8 0.8 0.8]’];

XI0 = randn(N, 3);

X = XI0*LX0’ + 0.5*randn(N, 9);

SS = X’*X/N;

q = 9;

LiHmax = (q*log(2*pi) + log(det(SS)) + q);

% ========================================================

% ========================================================

% Model Structural Definition

%

% XX-Mask: Element ’1’ corresponds to a parameter

% m: Number of latent variable \eta

% n: Number of latent variable \xi

% ========================================================

%

n = 3;

LXMask = sign(abs(LX0));

%

% ========================================================

% ========================================================
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% Load Data File & Initialize X and Y

%

% The matrices SIG_Y_Y and SIG_X_X are defined for

% the M-Step.

% ========================================================

%

p = 9; q = 9;

Xbar = mean(X);

X = X - kron(Xbar,ones(N,1));

SIG_X_X = (X’*X)/N;

%

% ========================================================

% ========================================================

% Initialize Parametric Matrices

% ========================================================

%

Phi = eye(n);

Td = 0.1*eye(q);

LX = 0.01*abs(randn(q,n)).*LXMask;

%

% ========================================================

Q = zeros(RUN,1); LiH = zeros(RUN,1);

it = 1; QQ = 1; u = 1;

while((QQ>0)&&(it<RUN+1))

% ========================================================

% E-Step

% ========================================================

%

% Posterior Estimation of \xi

XIH = X*inv(LX*LX’+Td)’*LX;

% Posterior Estimation of \Sigma_xi_x

PSIG_XI_X = (XIH’*X)/N;

% Posterior Estimation of the Covariance Matrix \Sigma_xi_xi

PSIG = eye(3) - LX’*inv(LX*LX’ + Td)*LX;

PSIG_XI_XI = PSIG + XIH’*XIH/N;

%

% ========================================================
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% ========================================================

% M-Step

% ========================================================

%

for r=1:q,

[Value Loc] = setdiff(LXMask(r,:).*[1:1:n], 0);

Sig_tmp = PSIG_XI_XI(Loc,Loc);

Y_tmp = PSIG_XI_X(Loc,r);

LX(r,Loc) = Y_tmp’*inv(Sig_tmp)’;

Td(r,r) = X(:,r)’*X(:,r)/N - 2*X(:,r)’*(XIH*LX(r,:)’)/N;

Td(r,r) = Td(r,r) + LX(r,:)*PSIG_XI_XI*LX(r,:)’;

end

%

% ========================================================

% ========================================================

% Likelihood Calculation

% ========================================================

%

COV_EST = LX*LX’+ Td;

LiH(it)=q*log(2*pi)+log(det(COV_EST))+trace(SS*inv(COV_EST));

LiH(it)=LiH(it)-LiHmax;

Qtmp1 = (q+n)*log(2*pi) + log(det(Td));

Qtmp2 = trace(SIG_X_X*inv(Td) -PSIG_XI_X’*LX’*inv(Td));

Qtmp2 = Qtmp2 - trace(LX*PSIG_XI_X*inv(Td));

Qtmp3 = trace(PSIG_XI_XI*LX’*inv(Td)*LX + PSIG_XI_XI);

Q(it) = (Qtmp1 + Qtmp2 + Qtmp3) - LiHmax;

QQ = Q(it);

%

% ========================================================

it = it + 1;

end

end

figure(1); semilogy([Q LiH]); legend(’Q’, ’LiH’)
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B.2 Maximum Likelihood SEM

% ========================================================

% Model Structural Definition

%

% XX-Mask: Element ’1’ corresponds to a parameter

% m: Number of latent variable \eta

% n: Number of latent variable \xi

% ========================================================

%

m = 3; n = 3;

BMask = [0 1 0; 0 0 0; 1 1 0];

TMask = [1 0 1; 0 1 1; 1 0 1];

LYMask = kron(eye(m), [1;1;1]);

LXMask = kron(eye(n), [1;1;1]);

%

% ========================================================

% ========================================================

% Load Data File & Initialize X and Y

%

% The matrices SIG_Y_Y and SIG_X_X are defined for

% the M-Step.

% ========================================================

%

load CPI_12_2008.txt;

PI = CPI_12_2008;

clear CPI_12_2008;

X_index = [2 4 5 12 13 15 8 10 11];

Y_index = [24 25 26 18 20 21 30 31 32];

X = PI(:,X_index); Y = PI(:,Y_index);

[N Q] = size(PI);

X = X - kron(mean(X),ones(N,1));

Y = Y - kron(mean(Y),ones(N,1));

p = length(Y_index); q = length(X_index);

SIG_Y_Y = (Y’*Y)/N;

SIG_X_X = (X’*X)/N;

%

% ========================================================
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% ========================================================

% Initialize Parametric Matrices

% ========================================================

%

ETA = zeros(N, m); XI = zeros(N, n);

B = randn(m,m).*BMask; B00 = B;

T = randn(m,n).*TMask; T00 = T;

LY = randn(p,m).*LYMask; LY00 = LY;

LX = randn(q,n).*LXMask; LX00 = LX;

Psi = 0.1*eye(m);

Phi = eye(n);

Te = 0.1*eye(p);

Td = 0.1*eye(q);

%

% ========================================================

for run = 1:100,

% ========================================================

% E-Step

% ========================================================

%

A = eye(m)-B;

LAM = [LY zeros(p,n); zeros(q,m) LX];

THETA = [Te zeros(p,p); zeros(q,q) Td];

SIG_ETA_ETA = A*T*Phi*T’*A’+A*Psi*A’;

SIG_ETA_XI = A*T*Phi;

SIG_XI_ETA = Phi*T’*A’;

SIG_XI_XI = Phi;

SIG_H = [SIG_ETA_ETA SIG_ETA_XI; SIG_XI_ETA SIG_XI_XI];

% Posterior Estimation of \eta and \xi

ETA_XI = [Y X]*inv(LAM*SIG_H*LAM’+THETA)’*LAM*SIG_H’;

ETAH = ETA_XI(:,[1 2 3]);

XIH = ETA_XI(:,[4 5 6]);

% Posterior Estimation of \Sigma_eta_y and \Sigma_xi_x

PSIG_ETA_Y = (ETAH’*Y)/N;

PSIG_XI_X = (XIH’*X)/N;
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% Posterior Estimation of the Covariance Matrices

% \Sigma_eta_eta, \Sigma_eta_xi, \Sigma_xi_xi and \Sigma_xi_eta

PSIG = SIG_H - SIG_H*LAM’*inv(LAM*SIG_H*LAM’ + THETA)*LAM*SIG_H’;

PSIG = PSIG + ETA_XI’*ETA_XI/N;

PSIG_ETA_ETA = PSIG(1:m,1:m);

PSIG_ETA_XI = PSIG(1:m,m+1:m+n);

PSIG_XI_ETA = PSIG(m+1:m+n,1:m);

PSIG_XI_XI = PSIG(m+1:m+n,m+1:m+n);

%

% ========================================================

% ========================================================

% M-Step

% ========================================================

%

% (For the Y Equation)

for r=1:p,

[Value Loc] = setdiff(LYMask(r,:).*[1:1:m], 0);

Sig_tmp = PSIG_ETA_ETA(Loc,Loc);

Y_tmp = PSIG_ETA_Y(Loc,r);

LY(r,Loc) = Y_tmp’*inv(Sig_tmp)’;

end

% (For the X equation)

for r=1:q,

[Value Loc] = setdiff(LXMask(r,:).*[1:1:n], 0);

Sig_tmp = PSIG_XI_XI(Loc,Loc);

Y_tmp = PSIG_XI_X(Loc,r);

LX(r,Loc) = Y_tmp’*inv(Sig_tmp)’;

end

% (For the latent ETA equation)

for r=1:m,

[Value Loc_eta] = setdiff(BMask(r,:).*[1:1:m], 0);

[Value Loc_xi] = setdiff(TMask(r,:).*[1:1:n], 0);

Sig_11 = PSIG_ETA_ETA(Loc_eta, Loc_eta);

Sig_12 = PSIG_ETA_XI(Loc_eta,Loc_xi);

38



Sig_22 = PSIG_XI_XI(Loc_xi,Loc_xi);

Sig_21 = Sig_12’;

Sig_tmp = [Sig_11 Sig_12; Sig_21 Sig_22];

Y_tmp = [PSIG_ETA_ETA(Loc_eta,r); PSIG_XI_ETA(Loc_xi, r)];

BT_tmp = Y_tmp’*inv(Sig_tmp)’;

le = length(Loc_eta);

lx = length(Loc_xi);

B(r,Loc_eta) = BT_tmp(1,1:le);

T(r,Loc_xi) = BT_tmp(1,le+1:le+lx);

end

Te = diag(diag(LY*PSIG_ETA_Y));

Td = diag(diag(LX*PSIG_XI_X));

A = eye(m)-B;

TMP = A*PSIG_ETA_ETA*A’-T*PSIG_XI_ETA*A’-A*PSIG_ETA_XI*T’+T*PSIG_XI_XI*T’;

Psi = diag(diag(TMP));

%

% ========================================================

end
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