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PART I: BACKGROUND
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Stanley Milgram (60s) [A.L. Barabasi, Linked,

Plume, 2003]

Stanley Milgram, a Harvard researcher who in

1967 conducted a series of mailing experiments

• Initial senders are selected randomly from

Kansas or Nebraska

• Forwarding mail to one of the two persons

living/working in Boston

• Only the name of the persons and their

careers are specified

• Each mail receiver will have to forward the

mail to a friend
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– Receiver knows the target person→ send

the mail directly to the target person

– Receiver does not know the target per-

son → sends the mail to whoever appro-

priate

• Lot of mails have been lost (about 75 per-

cent)

• Average forward steps is about six!



Duncan Watts (Mid 90s)

Associate Professor, Department of Sociology,

Columbia University

1997 PhD Cornell University, Department of

Theoretical and Applied Mechanics

Thesis title: The structure and dynamics of

small-world systems

Contribution

Discover behvaior of various real networks
(File actors, Power grid, neural net)
Mechanisms for the formation of such networks
Dynamic behavior of such small world networks
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1. Discoveries – Many real networks are not

random

• Social network: Movie actor collaboration

network

• Technology network: Power grid of west-

ern United State (4941 generators, trans-

formers and substations)

• Biological network: Neural network of a

nematode worm C. elegans (282 neurons)

• Node degree distribution is not Poisson, i.e.

not random network.

• Node degree distributions follow power law.
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Power law network

f(k) = c0k−γ (1)

log f(k) = log c0 − γ log k
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Average distance `

` =
2

n(n− 1)

∑

i>j

dij (2)

where dij is the shortest path distance between

i and j in a n nodes network

Clustering coefficient C

C =
1

n

∑

i

Ci (3)

Ci =
# of triangles connected to i

# of triples centered on i

` `rand C Crand
Movie actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.08 0.005
C. Elegans 2.65 2.25 0.28 0.05

Conclusion: We are likely living in a small world.

Real network is in between regular and random

network.
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2. Network Formation – Watt-Strogatz Net-

works (1998)

• Starting with a regular network, a ring lat-

tice.

• Each node is connected to four neighbor

nodes, two at each side.

• Rewiring p percentage partial edges

Observation from simulation

• ` decreases as p increases

• C decreases as p increases
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• Sharp drop of ` is earlier than sharp drop of

C → there is a range of p that the network

can have small ` but large C.

• C.F. random network, both ` and C are

small.



A.L. Barabasi & R. Albert, Marc Newman,

Dorogovtsev & Mendes etc.(Late 90s)

Contribution

Discover Power-law like networks
Network evolution mechanisms
Properties analysis

... How do various microscopic processes in-

fluence the network topology ? ... Are there

quantities beyond degree distribution that could

help in classifying networks? ... These re-

sults signal the emergence of a self-consistent

theory of evolging networks, offering unprece-

dented insights into network evolution and topol-

ogy. (P.76 of Albert & Barabasi, Statistical

mechanics of complex networks, Reviews of

Modern Physics Vol. 74, 47-97, 2002.)
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1. Current discoveries

• World Wide Web (Adamic 1999)

• Internet router network (Faloutsos et al.
1999)

• Telephone call network (Aiello et al. 2000)

• Email message (Ebel et al. 2002)

• Sexual contacts (Liljeros et al. 2001)

• Research papers co-authorship (Newman
2001; Barabasi 2001)

• Words co-occurrence (Ferreri Cancho &
Sole 2001)
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• P2P network (Jovanovic 2001; Ripeanu et

al. 2002; Saroiu et al. 2002)

• Software classes (Valverde et al. 2002)

Question: How those networks are being formed?

Any general principle behind?



2. Formation of Power law networks

• Preferential attachment models – Scale-

free networks (Albert & Barabasi 1999)

– Initially m nodes (s = 0, . . . , m − 1) are

fully connected

– Node is added one at a time

– m new edges are connected m different

existing nodes selected randomly

– For t À 1 and ks > m

h(k + 1, s, t) = m
ks∑
j kj

=
ks

2t
(4)

since

∑

j

kj = 2



m2 +

t−m+1∑

j=1

m



 = 2mt
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– Exponent γ equals 3, i.e. P (k) ∝ k−3,
for k, t À m

• Attachment with node decay (Dorogovtsev
& Mendes 2000)

– Initially m nodes (s = 0, . . . , m − 1) are
fully connected

– Node is added one at a time

– m new edges are connected to randomly
m different existing nodes

– For large t and k, s > m

h(k, s, t) =
ks(t− s)−λ

∑
j kj(t− j)−λ

(5)

0 < λ < 1 is node decay rate

• Random edge attachment (Dorogovtsev &
Mendes 2003)



– Initially m nodes (s = 0, . . . , m − 1) are

fully connected

– Node is added one at a time

– 2 new edges are connected to the two

ends of a randomly selected edge

– Exponent γ equals 3, i.e. P (k) ∝ k−3

• Others

– Degree correlation preference (Chung &

Lu 2002)

– Edge decay

– Nonlinear preferential attachment

h(k, s, t) =
k

β
s

∑t
j=0 k

β
j



– Probabilistic edges rewiring

3. Properties in power law networks

• Node degree correlation, fij = kikj, follows
power law

• Contention Li follows power law

Li = # of shortest paths via node i

• Local cluster coefficient Ci follows power
law

• Network resiliency (Barabasi et al 200x; Call-
away et al. 2000; Cohen et al. 2001)

– Random node removal: Network is con-
nected even 0.6n nodes have been re-
moved → fault tolerance



– High degree first removal: Network will

be disconnected if 0.2n nodes have been

removed→ intentional attack in-tolerable

• Network vulnerability (Newman et al. 2000;

and collaborators)

• Size of the giant component (the largest

connected subgraph)

• Bose-Einstein condensation: A significant

fraction of nodes will be connected to just

a few strong nodes



A Few Remarks

1. Definition on small world networks has not

yet been concluded.

• Watt-Strogatz model is a small world net-

work, something between regular and ran-

dom.

• Barabasi-Albert model is scale-free network,

node degree follows power law and this

propoerty does not change with the size

of the network

• Growing network refers a network that the

size can grow(*). Idea is similar to the one

in neural network but specifically for the

network with node degrees follow

– k−γ
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– k−γ exp(−αk)

– exp(−αk)

• Evolution networks refers to a network that

can grow(*) or decay(*) (i.e. evolve). The

grow/decay can act on nodes or edges as

well.

• Complex network is a general name for all

these networks.

2. Power law is not the only distribution found

in real networks other than Poisson

• k−(1+γ)

log k

• αk−γ log(βk)



3. Random graph models

• Erdo-Renyi studied the properties of ran-

dom graph in 1960. The existence of an

edge between two nodes is depended on a

fixed probability p between zero and one.

• It should be noted that there are two types

of random graph usually denoted by Gn,M

and Gn,p.

• Gn,M is the orginial Erdo-Renyi graph that

consists of n nodes and M edges. M is

pre-defined. Edges are assigned randomly

to N locations, where

N =

(
n
2

)
.



• Gn,p refers to the graph in which a edge

between two nodes is generated randomly

with probability p.

• For n is large and p = M/N , their properties

have been proved to be the same.

• The node degree distribution of both ran-

dom graphs follow Poisson distribution.



PART II: EVOLUTIONARY MODELS
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Notations & Defintions

Notation Meaning
t Time
m Number of edges added

to a new node
s (Node index) The time

node s is added
k Node degree
p(k, s, t) Probability that node s

will have deg. k at t ≥ s
p(m, s, s) = 1 Boundary condition
P (k, t) Proportional of nodes

that have deg. k at time t
P̄ (k) Node degree distribution
k̄(s, t) Average node degree
k̄(t, t) = m Initial condition
G(z) Moment generator function
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s = 0,1,2,3, . . . , t

p(m, s, m) = 1 ∀s = 0,1,2, . . . , m (6)

p(m, t, t) = 1 ∀t ≥ m (7)

P (k, t) = (t + 1)−1
t∑

s=0

p(k, s, t) (8)

Total number of nodes are t + 1 at time t

P̄ (k) = lim
t→∞(t + 1)−1

t∑

s=0

p(k, s, t) (9)

k̄(s, t) =

{ ∑t
k=m kp(k, s, t) s < t

m s = t
(10)

Between the time t and s, total number of new

nodes being added is (t−s). The total number

of new edges added on an existing node will not

be larger than (t− s). Therefore,

p(k, s, t) = 0 ∀ k ≥ (t− s + m)
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Precisely, Equation (8) and (10) should be

written as follows :

P (k, t) = (t−k+m+1)−1
t−k+m∑

s=0

p(k, s, t) (11)

k̄(s, t) =

{ ∑t−s+m
k=m kp(k, s, t) s ≥ m∑t
k=m kp(k, s, t) 0 ≤ s ≤ m

(12)

Example m = 2, t = 5

(s,k) 0 1 2 3 4 5
0 0 0 + + + +
1 0 0 + + + +
2 0 0 + + + +
3 0 0 + + + 0
4 0 0 + + 0 0
5 0 0 1 0 0 0
6 1 0 0 0 0 0

p(k, s, t) in the + locations have positive values.
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General Model

p(k, s, t + 1) = h(k − 1, s, t)p(k − 1, s, t)

+ (1− h(k, s, t))p(k, s, t) (13)

where h(k, s, t) is the probability that an edge

will be added to a node of degree k.

Analysis techniques

• Moment generator function

G(z) =
∞∑

k=1

pkzk

G(1) = 1

G′(1) =
∞∑

k=1

kpk

G(k)(0) = k!pk

• Master equation, i.e. Equation (13)
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• Continuous differential equation

∂p(k, s, t)

∂t
≈ p(k, s, t + 1)− p(k, s, t)

∂p(k, s, t)

∂k
≈ p(k, s, t)− p(k − 1, s, t)

Since k̄(s, t) =
∫ t−s+m
m kp(k, s, t)dk, for all

t À s

∂k̄(s, t)

∂t
= (t− s + m)p(t− s + m, s, t)

+
∫ t−s+m

m
k
∂p(k, s, t)

∂t
dk

Useful equalities

∂p(k, s, t)

∂t
+

∂h(k, s, t)p(k, s, t)

∂k
= 0 (14)

∂p

∂t
+ h

∂p

∂k
+ p

∂h

∂k
= 0

Assuming that

P̄ (k) ∝ k−γ and k̄(s) ∝ s−β,



we have

s(k̄, t) ∝ k̄−1/β

P̄ (k) ∝ ∂s

∂k̄(s, t)
∝ k̄

−1−1
β

Hence,

γ = 1 +
1

β
(15)

β(γ − 1) = 1 (16)



Barabasi-Albert Model

Master equation approach

p(k, s, t + 1) =
k − 1

2t
p(k − 1, s, t)

+ (1− k

2t
)p(k, s, t)

tp(k, s, t + 1) = (k − 1)p(k − 1, s, t)

+ (t− k)p(k, s, t)

for k ≥ m. Adding both side p(k, t + 1, t + 1)

and then sum up for s from 0 to t,

(t + 2)P̄ (k, t + 1)

= (k − 1)
t∑

τ=1

τ + 1

m + 1 + 2τ
P̄ (k − 1, t)

− k
t∑

τ=1

τ + 1

m + 1 + 2τ
P̄ (k, t) (17)

When t →∞
t∑

τ=1

τ + 1

m + 1 + 2τ
P̄ (k, t) ≈ t

2
P̄ (k)
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Equation (17) becomes

P̄ (k) ≈ k − 1

k + 2
P̄ (k − 1) (18)

For k = m,

p(m, s, t + 1) = (1− m

t
)p(m, s, t)

tp(m, s, t + 1) = (t−m)p(m, s, t)

(t + 1)p(m, s, t + 1) = (t−m)p(m, s, t) + 1

since p(m, t, t) = 1 for all t. Similarly,

P̄ (m) =
2

m + 2

Thus for k À m

P̄ (k) =
2(m + 1)m

(k + 2)(k + 1)k
≈ 2m(m + 1)k−3

C.D.E. approach

∂p(k, s, t)

∂t
= − 1

2t

∂p(k, s, t)

∂k
(19)

∂k̄(s, t)

∂t
=

k̄(s, t)

2t
(20)



Solving Equation (20) with the boundary con-

dition k̄(s, s) = m,

k̄(s, t) = m

√
t

s
and β =

1

2
(21)

γ =
1

β
+ 1 = 3



Node Decay Model

Master equation approach

p(k, s, t + 1) =
(k − 1)(t− s)−λ

E(t, λ)
p(k − 1, s, t)

+ (1− k(t− s)−λ

E(t, λ)
)p(k, s, t)

for k ≥ m and

E(t, λ) =
t∑

s=0

ks(t− s)−λ

≈
∫ t

0
k̄(u, t, λ)(t− u)−λdu

C.D.E. approach

∂k̄(s, t)

∂t
=

k̄(s, t)(t− s)−λ

E(t, λ)
(22)

with boundary condition k̄(t, t) = m and

E(t, λ) =
∫ t

1
k̄(s, t)(t− s)−λds
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Lecture 3: Applications
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Possible applications

Network modeling and analysis (Topology, for-

mation mechanism, session length etc.)

Internet
World Wide Web
P2P network
Mobile phone network
Mobile P2P

Performance evaluation by simulation

Computational limitation
File distibution
Search queries
Routing algorithms
Search algorithms
Load balancing
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Application example 1: IP search in Inter-

net

Modified Ant Routing (Sum et al. 1999, Sum

et al. 2001)

• Message from Node A to Node B

• Ants dispatched to the network from Node

A

• Visit Node B

– Not the destination → Select a random

neighbor and go

– B is the destination → Backtrack the

path to Node A

Assumptions
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• Unlimited resource for search

• Number of requests at each node are all

the same

• Dying rate to mimic TTL

– (A1) Node degree dependent: (1+Ωi)
−1

– (A2) Constant rate: 0 < s < 1

Model (Average case)

~p(t + 1) = A~p(t) + km~e

~p = (p1, p2, . . . , pn)
T

~e = (1,1, . . . ,1)T

• A ∈ Rn×n is the transfer matrix



• Elements of A depend on dying models and

network topology

Results and extension

• (A1): pi ≤ km(1 + Ωi)

• (A2): pi ≤ km
s

(Sum 2003) Searching in a Power law network

with fixed topology (Internet), bounds of pi

follows Power-law.

pi ≤ p̂i = km(1 + Ωi)

P (p̂) ∝ p̂−a



Application example 2: P2P modeling

Parameters

• Search methods: Random search and/or

hash table facilitated search

• File replication: With or without file repli-

cation mechanism

• Network structures: Unstructured P2P net-

work and/or with structured overlay net-

work

• Immunization: With or without immuniza-

tion

• Node natures: Always on-line or randomly

on-line
23



• Node classes : Ultrapeers, ultrapeer capa-

ble, shielded leaf or leaf

• Computational power reserved for peer op-

eration: Limited or unlimited.

• Node failure models: Due to overload or

attack

Network properties (Structural, Efficiency, Vul-

nerability)

Structural

1. Node degree distribution

2. Cluster coefficient: The proportion that

the neighbor nodes of a node will also be

neighbors of each other



Efficiency

1. Average shortest path: Measure the aver-
age distance between pairs of nodes

2. Load distribution: The bounds on the load-
ing of a node

3. Latency : The time taken a search mes-
sage to travel from one node to another.

4. Betweenness : It is calculated as the frac-
tion of shortest paths between nodes pairs
that pass through the node of interest.

Vulnerability

1. Betweenness: A measure for loading of a
node due to search.



2. Connectivity: Measure the network frag-

mentation

3. Size of giant component: Measure the size

a search can reach.

4. Transmissibility: The spreading rate of a

virus over the network.



Case Studies: Gnutella

Measurements (Sum & Wong 2003)

• Gnutella v0.6

• Ultrapeer capable (long expected uptimes)

• Compared with Ripeanu et al. (2002)

• Distributions on node degree and session

up time
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Node Degree – Power Law Distribution

• k ∈ [5,20]: P (k) ∝ k−4
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Session Time – Gamma Distribution

P (t) ∼
(

t

N

)−0.82
exp

(
− x

36N

)
. (23)
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Dorogovtsev-Mendes Decay Network Model

P (k) ∝ k−γ

γ ≈ 3 + 4(1− log 2)λ

In accordance with the measurement

λ0 ≈ 0.83

γ0 ≈ 4

Putting λ0 into the approximated relation

γ(λ0) ≈ 3 + 4(1− log 2)λ0 ≈ γ0.

Conclusion: Dorogovtsev-Mendes decay net-

work model might be a possible explanation

for the formation of Gnutella P2P.
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Simulation study on using Dorogovtsev-Mendes

decay network model

Parameters

t = [1,3000]

N = 8

M = 5

s = 2

m = 3

t: Number of time steps

N : Scaling factor in P (t)
(

t

N

)−0.82
exp

(
− t

36N

)

M : Number of new nodes being added in each

time step
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s: Number of seed nodes

m: Number of new connections each new node
will add.

Algorithm

• Initial: s nodes fully connected are gener-
ated

• Repeat:

– M new nodes are added

– Each nodes are connected to m exiting
old nodes based on the principle of pref-
erential attachment

– Nodes are removed randomly following

I(τ) =

{
Stay alive If δτ > 0
Remove If δτ ≤ 0



Here

δτ =
1− P (t ≤ τ + 1)

1− P (t ≤ τ)
− r

and r is a random number distributed uniformly

in [0,1]. Note that the expectation of δτ is a

condition probability that

δτ ∼ P (Alive at τ + 1|Alives at τ).

Measurement

• Node degree distribution

• Number of on-line nodes

• Expected degree in terms of time



MatLab Code

function [Non,ND,A,lt] = gnu(n,m,s,M,N,rr)

%--------------------------------------
% function [Non,ND,A,lt] = gnu(n,m,s,M,N,rr)
%
% Non : [rr,1] array for on-line nodes number
% ND : [rr,n+1] array node degree distribution
% A : Connection matrix
% N : scaling factors, normally 50*M
% M : Number of nodes being added in each round
% n: number of nodes
% m: number of new connections
% s : number of seed nodes, the seed nodes form a
% fully connected during initialization
% rr : Number of repeated cycles
%
% Simulator of Gnutella P2P Network
% =================================
% This simulator will automatically generate a
% scale-free network that mimics the behavior of
% Gnutella P2P network. Node will be generated
% and deleted in accordance with the information
% measured from the actual platform. The network
% generation model is the D-M decay model.
%
% Algorithm
% ---------
%
% Initalization: Generate s (s>m) seed nodes that are
% fully connected
% Step 1a: Generate 200 online nodes index
% Step 1b: Connect each node to random select m
% different nodes from the online list
% Step 2: Offline the online nodes
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%

ND = zeros(n+1); % Node degree distribution
Non = zeros(ceil(rr/N),1); % Number of on-line nodes
NonK = 1;
A = zeros(n,n);
Bdown = zeros(rr,1);
v = rand(n,2);
I = zeros(n,1);
lt = zeros(n,1); % Life time vector
nindex = [1:1:n];

% ---------------------------------
% Simulate the actual life time
%
kc = 36;
x = [1:1:100*N];
ff=power(x/N,-0.82).*exp(-x/N/kc);
ff = ff/sum(ff);
pp(1) = ff(1);
for k=2:100*N,

pp(k) = pp(k-1) + ff(k);
end

% ----------------------------------
% Seed nodes on-line
% Initiate on-line node list ’Son’
%

Seed = mod(round(rand(s,1)*100000),n) +1 ;
A(Seed,Seed) = ones(s,s);
Son = Seed;

for repeat=1:rr;



% --------------------------------------
% Random off line according to power law
% Update online nodes list Son
% Update connection matrix A
% Update life time index ’lt’
%

if repeat > 1,
Nol = length(Son);
tt = rand(1,Nol);
Palive = (1-pp(lt(Son)+1))./(1-pp(lt(Son)));
SignOn = sign(Palive-tt);
OnFlag = nindex(Son).*SignOn;
Son = intersect(Son,OnFlag);
Soff = setdiff(nindex,Son);
ndel = length(Soff);
A(:,Soff) = zeros(n,ndel);
A(Soff,:) = zeros(ndel,n);
lt(Soff) = 0;

end

Sontmp = Son;

% -----------------------------------------
% Display the result immediately
%
%

if (mod(repeat, N) == 0),
[MaxF, I] = sort(n-sum(A));
Non(NonK) = sum(diag(A));
NonK = NonK + 1;

figure(1);
gplot(A,v);
hold off;



plot(v(:,1),v(:,2),’g+’);
plot(v(I(1:10),1),v(I(1:10),2),’rs’);
drawnow

figure(2);
hold off
ND = hist(max(0,sum(A)-1),[0:1:n]);
loglog([1:1:n],ND(2:n+1),’^’);
drawnow

figure(3);
hold off
plot(Non,’s’);
drawnow;
end

% -------------------------------------------
% Increment the life time of online
% nodes by 1b
%

lt(Son) = lt(Son) + 1;

% -------------------------------------------
% Random on-line M nodes from ’Soff’
% If nodes number on Soff < M
% Select all nodes in Soff to online
% Update corresponding life time
%

Soff = setdiff(nindex,Son);
LSoff = length(Soff);
if LSoff > M,

olindex = Soff(1:M);
elseif LSoff > 0

olindex = Soff;



else
olindex = 1;

end

lt(olindex) = 1;

% -------------------------------------------
% Make random connection on the new nodes
% Calcuate the total node degrees ’sumfk’
% Making ’m’ new connects from each new node
% to Son
%

Mon = min(M, length(olindex));
for newnode = 1:Mon,

fk = sum(A(:,Son)) - 1;
sumfk = sum(fk);

j=olindex(newnode);
A(j,j) = 1;
for jj = 1:m,

ii = mod(round(rand*111111),sumfk)+1;
tmp=0; kk=1;
while (tmp < ii),

tmp = tmp + fk(kk);
kk = kk+1;

end
kk=kk-1;
A(j,Son(kk)) = 1;
A(Son(kk),j) = 1;

end

Son = union(Son, j);

end



Nnew = length(olindex);
tnew = rand(1,Nnew);
Pnew = 1-pp(lt(olindex));
SignNewOn = sign(Pnew - tnew);
NewOnFlag = olindex.*SignNewOn;
olnewindex = intersect(olindex, NewOnFlag);

OFFnew = setdiff(olindex,olnewindex);
Ndel = length(OFFnew);
A(:,OFFnew) = zeros(n,Ndel);
A(OFFnew,:) = zeros(Ndel,n);
lt(OFFnew) = 0;
Son = union(Sontmp, olnewindex);

end



Number of nodes on-line
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Data is taken at every 8 time steps.

30



Node degree distribution at t = 3000, γ ≈ 3

(6= 4 ?)
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Expected degree of connection versus τ , β ≈ 1
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It should be noted that

• node degree generated from the simulated

model seems not the same as the one mea-

sured from Gnutella and

• the slope of expected degree and the slope

of node degree distribution do not fit the

scaling relation

γ =
1

β
+ 1.

Since 1 + 1/β ≈ 2 6= γ ≈ 3.

So, what should be the underlying evolving

model for Guntella P2P ?



Conclusion

• Historical background of small world net-

works, scale-free networks

• Importance of scale-free network

• Application of the power law distribution

• Modeling Gnutella
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