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Hall, Leung & Li have recently proposed a new model for human multitasking behavior. In their model, a

primary job gets interruptions from all waiting jobs whenever it is being processed. Every time an interruption

has been received, the worker switches from the primary job to the interrupting job. After part of the

interrupting job has complete, the worker switches back to the primary job. Here, we extend from this

model by adding that switching costs (SC) are job-dependent and late jobs are not allowed to interrupt.

The scheduling problems of six different criteria are then investigated, including makespan, total weighted

completion time (TWCT), maximum weighted tardiness (MWT), maximum weighted lateness (MWL),

number of late jobs (NLJ) and weighted number of late jobs (WNLJ). For symmetric SC, we show that the

makespan, TWCT, MWT and MWL problems are polynomial-time solvable. The NLJ problem is NP-hard.

The WNLJ is strongly NP-hard. For asymmetric SC, we show that the makespan problem is NP-hard. The

TCT and NLJ problems are strongly NP-hard. Accordingly, the complexity hierarchies of the scheduling

problems in the presence of multitasking are sketched. The problems, in which the effect of multitasking on

operations scheduling could be analyzed mathematically, can then be solicited.
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1. Introduction

In the presence of multitasking, human worker concurrently processes multiple tasks. On the road,

some people drive a car and at the same time talk over the cell phone. At the school, some

students open multiple browsers at the same time and search information concurrently for different

assignments (Spink, Ozmutlu & Ozmutlu 2002, Ozmutlu, Ozmutlu & Spink 2003, Spink 2004,

Spink, Park, Jansen & Pedersen 2006). In a recruiting firm, recruiters need to handle candidate

search for one project and at the same time answer enquiries (in the form of emails or phone calls)

from their clients for another project (Aral, Brynjolfsson & Van Alstyne 2007). In an Italian court,

judges are assigned new cases in every morning, and at the same time they need to process cases

which are already in the pipe (Coviello, Ichino & Persico 2010). Pilots have to read multiple sources

of data over the panel and at the same time listen over his headset the enquiries and instructions

from the air traffic control tower to ensure that the plane can safely take off and land (Loukopoulos,

Dismukes & Barshi 2009). Air traffic controllers have to gather multiple sources of information,

including radar signals, weather reports and the information from the pilots, to co-ordinate the

taking off and landing of the planes (Loukopoulos, Dismukes & Barshi 2009).

1.1. Lab/Field studies and findings regarding multitasking

It is clear that there are many reasons why people multitask. The very first reason is about the

job nature. Like plane control and air traffic control, the jobs are very complex and multiple tasks

have to be handle. Missing any one task could cause catastrophic effect. The second reason is due

to interruptions, from clients, colleagues, friends and even family members. These interruptions are

usually not predictable. Some of them can be ignored. But some of them, especially from clients

and colleagues, are unavoidable and always need immediate attention. It is especially true for senior

managers (Mintzberg 1973, Jett & George 2003). The third reason is due to personality trait. Some

people with high levels of impulsivity and sensation seeking often engage in multitasking because

they are less able to block distractions (Sanbonmatsu, Strayer, Medeiros-Ward & Watson 2013).
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While some studies (Lee & Taatgen 2002, Taatgen & Lee 2003) have found that multitasking can

help to improve the skills of a worker in handling multiple tasks, the actual benefit of multitasking

has yet to be discovered. Normally, multitasking is not recommended (Rosen 2008) and for some

mission critical occasions, like flight control and air traffic control, multitasking must be avoided

(Loukopoulos, Dismukes & Barshi 2009). Any interruption could cause catastrophic effect. A couple

of reasons could explain why multitasking is not recommended. The first reason is due to the cost

of job switching (Rogers & Monsell 1995, Rubinstein, Meyer & Evan 2001, Monsell 2003), including

response delay (Meuter & Allport 1999) and resumption lag (Trafton, Altmann, Brock & Mintz

2003). (A good summary regarding switching costs in multitasking can be found in (APA 2006).)

These delay and lag are job dependent (Gillie & Broadbent 1989). In a field experiment, it is found

that the average resumption lag could be as long as 25 minutes (Mark, Gonzalez & Harris 2005,

p.326). Rehearsal could reduce the response delay or resumption lag. But still, they can hardly

be eliminated (Gillie & Broadbent 1989, Trafton, Altmann, Brock & Mintz 2003). The second is

because multitasking could cause problem in learning (Foerde, Knowlton & Poldrack 2006) and

lead to attention deficit trait (ADT) (Hallowell 2005). A person with ADT has a normal brain

but his behavior is similar to a person with attention deficit disorder, problem in paying attention.

The third reason is due to performance degradation. In some laboratory experiments, Staryer,

Watson and co-workers (Watson & Strayer 2010, Sanbonmatsu, Strayer, Medeiros-Ward & Watson

2013) have found that the performance of a person in multitasking environment drops as compared

with working in sequential processing environment. Only very few people are able to perform

equally well in both multitasking and sequential processing environments (Watson & Strayer 2010).

People perceived themselves good at multitasking usually underperform in both environments, as

compared with the people perceived themselves not good at multitasking (Sanbonmatsu, Strayer,

Medeiros-Ward & Watson 2013).

Various field studies have also found that excessive multitasking could degrade the productivity

of a worker. By analyzing the historical data of an executive recruitment firm, Aral, Brynjolfsson



Sum, Leung, Ho: Operations Scheduling in the Presence of Multitasking

4 Unpublished manuscript

& Van Alstyne (2007) found that there is an inverted-U shaped relationship exists between multi-

tasking and productivity. Beyond optimum, more multitasking is associated with declining project

completion rates. By analyzing the historical data of the judges in an Italian court, Coviello, Ichino

& Persico (2010) found that the judges who worked on few cases at a time tended to complete

more cases and took less time. To attain a theoretical basis for this finding, Coviello, Ichino &

Persico (2014) proposed a stochastic model for single-worker. In their model, it is assumed that (i)

all the jobs are of the same type and same size, (ii) the worker could randomly pick any number

of jobs in the queue, and (iii) in any moment of time the worker allocates effort equally to all the

incomplete jobs. Coviello, Ichino & Persico (2014, Proposition 1) then show that the job completion

rate increases as the pick-up rate increases until the pick-up rate has reached a certain value. After

that value, the productivity decreases as the pick-up rate increases.

1.2. Key issue in scheduling with multitasking

As switching job will cause resumption lag, multitasking should be avoided. But in reality, a worker

always gets interruptions by some clients who enquire the statuses of their jobs. The worker will

response by terminating the current job, process each client’s job a part of it and then report to

the clients the statuses. Then, the terminated job is resumed. Clearly, these resumption lag and

interruptions will make longer the completion time of a job. In such case, some important questions

are aroused.

• How to schedule the jobs, in the presence of multitasking, such that the performance of a

worker can be optimized?

• What would be the performance difference between the worker whose schedule is optimized

for handling jobs in the presence of multitasking and the worker whose schedule is optimized for

handling jobs in the absence of multitasking?

The latter question is of paramount important because it tells us what would be the effect of

multitasking on operations scheduling. One approach (Hall, Leung & Li 2014) is to find the optimal

schedules for both problems either in the presence or absence of multitasking, run simulations
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to figure out the performance of both schedules and then compare their performance. Another

approach is to compare their performance by mathematical analysis. For sure, not all problems

could be studied along this latter approach. In particular, those problems which are categorized as

NP-hard or strongly NP-hard should be unlikely to take this approach. But we believe that some

polynomial-time solvable problems should be possible.

Therefore, the key issue behind these two questions is to analyze the complexities of the schedul-

ing problems in the presence of multitasking. For those problems which are categorized as NP-hard

or strongly NP-hard (i.e. intractable), we anticipate that the comparisons could likely be conducted

by simulations. For those problems which are categorized as polynomial-time solvable, it would be

possible for us to conduct the comparisons by mathematical analysis. This is the primary reason

why we present the complexity analysis in this paper.

1.3. Researches on scheduling with multitasking

Given a set of jobs, their processing times (job sizes), the setup times (switching costs) amongst

jobs, the number of machines available and the criteria (productivity measure) to be optimized,

scheduling theorists are interested to find a schedule, i.e. which job should be processed in which

machine and in which time slots, such that the criteria is optimized. Hall, Leung & Li (2014)

have recently introduced a new scheduling model, in which switching cost has been introduced to

capture multitasking behavior. Even Hall, Leung & Li (2014) have not been aware, their model

has implicitly assumed that the worker is self-motivated and the worker realizes that multitasking

should be avoided (Rosen 2008). The worker switches to other job only when it is requested by the

clients.

In Hall-Leung-Li model, a job Ji can be characterized by a 5-tuple (pi, di,wi, gi(·), fi(·)), where

pi, di and wi denote the processing time, due date and weight of Ji as in classical models, gi(·) the

interruption-time function and fi(·) the switching cost function. Let S = (Jπ1
, Jπ2

, · · · , Jπn) be a

feasible schedule of a given set J of n jobs, where Jπi
is scheduled before Jπi+1

. A job Jπi
is called

primary in a time period when it is scheduled to be processed in that period. When Jπi
becomes
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a primary job, all the jobs scheduled before it have completed the execution. The execution of a

primary job Jπi
will be interrupted by job Jπj

, i < j ≤ n, for gπj
(p′πj

) units of time, where p′πj
is the

remaining processing time of Jπj
. Hence, the remaining processing time of each unfinished job will

be reduced by the amount that it interrupts a primary job. To precisely represent the remaining

processing time of Jπi
after each interruption, we use pπi

(k) to denote the remaining processing

time of Jπi
after the processing of Jπk

(1≤ k≤ i− 1) has been completed.

pπi
(k) =











pπi
if k= 0,

pπi
(k− 1)− gπi

(pπi
(k− 1)) if 1≤ k≤ i− 1,

0 if k≥ i

(1)

for i=1,2, · · · , n. It is reasonable to assume that pπi
(k) in (1) is greater than zero for k =1, · · · , i−1.

So, we assume that
∑i−1

k=1 gπi
(pπi

(k− 1))< pπi
. The switching cost function fi(j) is defined as the

cost occurring when Jj interrupts Ji. To simplify the notation, fi(j) is denoted as fij in the sequel.

Hall, Leung & Li (2014) investigate four different scheduling criteria, including (i) total weighted

completion time, (ii) maximum lateness, (iii) total number of late jobs and (iv) total weighted

number of late jobs, under the assumptions that (1) all the switching cost functions are constant

functions, and (2) the late jobs are not discarded and still interrupt the execution of primary jobs.

They showed that the problems of minimizing criteria (i) and (ii) are polynomial-time solvable,

(iii) is NP-hard (i.e. NP-hard in ordinary sense) and (iv) is strongly NP-hard (i.e. NP-hard in

strong sense). Furthermore, if the interruption-time function is defined as gπi
(pπi

(k)) = Dpπi
(k)

and 0≤D< 1, they showed that the problem of minimizing the criterion (iii) is polynomial-time

solvable by developing an optimal algorithm generalized from the Hodgson-Moore algorithm. A

dynamic programming algorithm was also developed for minimizing criterion (iv). The effect of

multitasking under different criterion is demonstrated by simulations.

1.4. Behavioral economics researches on multitasking

Allocating effort to handle multiple jobs has long been a research problem in behavioral economics.

As those studies appeared long before the recent findings about the negative impact of multitasking,
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such as the resumption lag (Trafton, Altmann, Brock & Mintz 2003) and the ADT (Hallowell

2005), those studies are definitely needed to be revised to cope with these findings. The problem

is solved by two different approaches. The first approach is to model the problem as a Markov

decision problem. A worker has to work on multiple jobs in infinite horizon. In each time slot, the

worker can only devote his effort on one job. If a job is allocated with effort, its quality level will

be either incremented or staying the same. If a job has not been allocated with effort, its quality

level will be either decremented or staying the same. The problem is to determine in each time slot

which job the effort should be allocated. So that all the quality levels can be optimized. Radner

& Rothschild (1975), amongst the first group of researchers, worked on this problem. Instead of

determine the optimal effort allocation rule, they analyzed how the quality level changes under

three different effort allocation rules, namely constant proportions, putting out fires and staying

with winner (see (Radner & Rothschild 1975, p.360)), and concluded that constant proportions and

putting out fires are preferred.

The second approach is from a seminal work by Holmstrom & Milgram (1991). The effort alloca-

tion problem is modeled as a principal-agent problem (Itoh 1994, Prasad 2009). A worker (i.e. an

agent) has to work on multiple jobs in a period of time and the worker has his own cost function to

measure the effort he put. The payment to the worker is determined by the output of the worker.

For simplicity, one can consider the quality level is an indicator of the output. The higher the

quality level, the more payment will be got. The utility of the worker is thus determined by the

payment he get minus the cost on the effort. The manager (i.e. the principal) has his profit function

which is determined by the output of the worker. As a manager, he has to design the effort the

worker will put on the jobs. So that both the profit is maximized as well as the expected utility of

the worker is optimized (see (Holmstrom & Milgram 1991, Section 2)). Once the effort has been

determined, it is assume that the worker will work on the jobs in accordance with the determined

effort. In contrast to the classical scheduling and the Markov decision problem approach, principal-

agent problem does not concern on the actual schedule, i.e. when the worker will put his effort in

which job.
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While a lot of models have been proposed and analyzed since after the works by (Radner &

Rothschild 1975) and (Holmstrom & Milgram 1991), very few of them have introduced the idea

of switching cost in their models. None of the follow-up works has considered the resumption

lag in their problem settings. Rothschild (1974) added one more term to determine the change

of the quality level, as compared with the model in (Radner & Rothschild 1975). If a job gets

more consecutive steps of effort, he expected incremental change of a job’s quality level will be

more. In (Seshadri & Shapira 2001), the switching cost is defined in negative sense. Seshadri &

Shapira (2001) consider that a worker has to handle one long-term primary job and many short-

term secondary jobs. Similar to the problem setting in (Radner & Rothschild 1975), the worker

in each time slot can only devote his effort on one job. If a job is allocated with effort, its quality

level will be either incremented or staying the same. If a job has not been allocated with effort,

its quality level will be either decremented or staying the same. But more than that, Seshadri &

Shapira (2001) assume that the primary job will get an immediate decrement of the quality level

if it is interrupted by a short-term secondary job. While Coviello, Ichino & Persico (2014) did

mention that resumption lag is a cost of job switching cost, they did not include this factor in

their analysis. If non-negative resumption lag is included, we can show that the job completion

rate (as a measure of worker’s productivity) will be zero. For the principal-agent models, including

the works presented in some recent papers like (Corts 2007, Prasad 2009, Matsushima, Miyazaki

& Yagi 2010), the effect of resumption lag has not been considered in their models. Therefore,

allocation of effort to handle multiple jobs with consideration of switching cost is still an open issue

in behavioral economics.

1.5. Objective of our paper

In this paper, our focus is on the second question regarding the scheduling of jobs so as to minimize

the effect of multitasking. We continue the study on Hall-Leung-Li model but we consider more

realistic situations. First, the switching cost functions are allowed to be arbitrary functions and

they are jobs dependent. This consideration is in line with the findings in (Gillie & Broadbent 1989,
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Trafton, Altmann, Brock & Mintz 2003). Moreover, two types of switching costs are considered,

asymmetric and symmetric. Switching cost function is asymmetric if fij 6= fji, and symmetric

otherwise. Second, when consider the problems related to late jobs, we assume that the late jobs

are completely discarded. It means that the late jobs will be excluded from a given job set after

scheduling. This assumption is different from the one made in the studies done by Hall, Leung & Li

(2014) in which all the jobs have to be processed. In real world, if a job is decided to be a late job

to a worker, it will likely be assigned to other workers. The set of late jobs will no longer interrupt

the on-time jobs. The performance of the worker will be improved. For the late jobs, if they are

assigned to other workers, some of them could turn out to be finished on-time. So, we believe that

our assumption is more practical.

With these new assumptions, six scheduling problems are investigated and their complexities

are analyzed. Algorithms are developed for some of these problems. Based on our results and the

complexity analysis presented in Lageweg, Lenstra, Lawler & Rinnooy Kan (1982), Hall, Leung

& Li (2014), Lawler (1977), Lenstra, Rinnooy Kan & Brucker (1977) and Du & Leung (1990),

the complexity hierarchy of the scheduling problems regrading human multitasking behavior is

illustrated. All these results serve as the foundation for answering the very first question in regard

to the effect of multitasking on the productivity of a worker. By simulation, it is not difficult to

get the answer. However, we are interested in analytical solution. For the total completion time,

we have derived a formulae expressing the total completion time in terms of the switching cost and

the degree of multitasking. Due to the page limit, all these analytical results will be presented in

another paper.

The rest of this paper is organized as follows. In the next section, the notations, system models

and assumptions, and the problems to be investigated will be defined. The complexities of these

problems are then presented from Section 3 to Section 8. Both asymmetric and symmetric switching

costs are considered. Accordingly, the complexity hierarchy of the scheduling problems are compiled

in Section 9. Concluding remarks are drawn in the last section. To be self-contained, Appendix A
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summarizes the results obtained by Hall, Leung & Li (2014) for the total number of late jobs

problem and the total weighted number of late jobs problem.

2. Preliminaries

In this section, the notations to be used in the paper will be introduced. The assumptions on the

interruption-time functions and switching costs will be stated. The problems to be investigated are

formally defined.

2.1. Notations

To make the paper more concise, the following notations are used throughout the paper.

J Set of n jobs {J1, J2, J3, · · · , Jn}.

JO,S A subset of J containing on-time jobs in schedule S.

JL,S A subset of J containing late jobs in schedule S.

S A schedule of J represented as {Jπ1
, Jπ2

, · · · , Jπn}.

Jπk
The kth job to be processed as a primary one.

pi Processing time of job Ji.

di Due date of job Ji.

wi Weighting factor associated with job Ji.

p′i Remaining processing time of job Ji.

pi(k) Remaining processing time of job Ji after it has interrupted k times.

gi(p
′
i) Interruption-time function of job Ji.

fij Switching cost incurred on job Ji if it is interrupted by job Jj.

Note that we assume that the switching costs are not time dependent but job dependent, and

they can be positive or negative values. The following notations are related to the performance of

processing Ji in S.
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ci(S) Completion time of Ji in S.

Ti(S) Tardiness of Ji in S,

defined as Ti(S) =max{0, ci(S)− di}.

Li(S) Lateness of i in S,

defined as Li(S) = ci(S)− di.

Ui(S) Ui(S) = 1 if Ji is late, i.e. ci(S)> di, in S; and 0 otherwise

The performance criteria related to a schedule S are denoted by the following notations.

Cmax(S) Makespan, i.e. maxJi∈J{ci(S)}, of S,

∑

i ci(S) Total completion time of S.

∑

iwici(S) Total weighted completion time of S.

Tmax(S) Maximum weighted tardiness of S,

defined as Tmax(S) =maxJi∈J{wiTi(S)}.

Lmax(S) Maximum weighted lateness of S,

defined as Lmax(S) =maxJi∈J{wiLi(S)}.

∑

iUi(S) Total number of late jobs in S.

∑

iwiUi(S) Total weighted number of late jobs in S.

∑

i Ti(S) Total tardiness of S.

∑

iwiTi(S) Total weighted tardiness of S.

2.2. Assumptions

While Hall, Leung & Li (2014) have presented some of the problems in single machine scheduling

with interruptions, they have not clearly made the conditions on the interruption-time functions

and the switching functions. As mentioned in Hall, Leung & Li (2014), interruption could sometimes

lead to positive effect on processing a primary job. To reflect this phenomena, the switching costs

(i.e. fij) could thus be negative. In such case, we need the following inequalities to ensure that

0< cπ1
(S)< cπ2

(S)< · · ·< cπn(S).
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Assumption 1 For i= 1,2, · · · , n− 1,

pπi
(i− 1)+

n
∑

j=i+1

(

gπj
(pπj

(i− 1))+ fπiπj

)

> 0 (2)

and pπn(n− 1)> 0.

Lemma 1 If condition (2) is satisfied, 0< cπ1
< cπ2

< · · ·< cπn.

Proof. Given pi, di, wi, gi(p
′
i) and fij for all i, j = 1, · · · , n, the remaining processing time of job Ji

could be obtained by (1). Thus the completion time of Jπ1
is given by

cπ1
(S) = pπ1

(0)+
n
∑

j=2

(

gπj
(pπj

(0))+ fπ1πj

)

.

The completion time of Jπi
for i= 2, · · · , n− 1 is given by

cπi
(S) = cπi−1

(S)+ pπi
(i− 1)+

n
∑

j=i+1

(

gπj
(pπj

(i− 1))+ fπiπj

)

.

The completion time of Jπn is given by

cπn(S) = cπn−1
(S)+ pπn(n− 1).

If condition (2) is satisfied, it is clear that 0< cπ1
< cπ2

< · · ·< cπn . The proof is completed.Q.E.D.

By the fact that pπi
(0) = pπi

, the completion times can also be written as follows :

cπi
(S) =

i
∑

j=1



pπj
+

n
∑

j′=j+1

fπjπj′



+

n
∑

j=i+1

(

i
∑

k=1

gπj
(pπj

(k− 1))

)

(3)

for i= 1,2, · · · , n− 1 and

cπn(S) = pπn +
n−1
∑

j=1



pπj
+

n
∑

j′=j+1

fπjπj′



 . (4)

2.3. Problems

With the notations and assumptions stated above, we now define the problems to be analyzed in

this paper. Follow (Hall, Leung & Li 2014), we use ’mt’ in the β field to denote ’multitasking’. For

the late job problems, our definitions are different from those defined in (Hall, Leung & Li 2014).

We assume that the late jobs will be discarded. They have no effect on the on-time jobs. For this

reason, we add ’DLJ’ in the β field to synonymize discarding late jobs.



Sum, Leung, Ho: Operations Scheduling in the Presence of Multitasking

Unpublished manuscript 13

Problem 1 (Makespan) Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, wi, gi(p
′
i)

and fij for all i, j = 1, · · · , n, which satisfy the condition (2), find a feasible schedule S =

{Jπ1
, Jπ2

, · · · , Jπn} such that Cmax(S) is minimum among all feasible schedules. This problem is

denoted as 1|mt,fij |Cmax for the case of asymmetric switching costs and 1|mt,fij = fji|Cmax for

the case of symmetric switching costs.

Problem 2 (Total Weighted Completion Time) Given a set of jobs J = {J1, J2, · · · , Jn} with

known pi, wi, gi(p
′
i) and fij for all i, j = 1, · · · , n, which satisfy the condition (2), find a schedule S =

{Jπ1
, Jπ2

, · · · , Jπn} such that
∑

iwπi
cπi

(S) is minimum among all feasible schedules. This problem is

denoted as 1|mt,fij |
∑

iwici for the case of asymmetric switching costs and 1|mt,fij = fji|
∑

iwici

for the case of symmetric switching costs.

Problem 3 (Max Weighted Tardiness) Given a set of jobs J = {J1, J2, · · · , Jn} with known pi,

di, wi > 0, gi(p
′
i) and fij for all i, j = 1, · · · , n, which satisfy the condition (2), find a schedule S =

{Jπ1
, Jπ2

, · · · , Jπn} such that the Tmax(S) is minimum among all feasible schedules. This problem

is denoted as 1|mt,fij |Tmax for the case of asymmetric switching costs and 1|mt,fij = fji|Tmax for

the case of symmetric switching costs.

Problem 4 (Max Weighted Lateness) Given a set of jobs J = {J1, J2, · · · , Jn} with known pi,

di, wi > 0, gi(p
′
i) and fij for all i, j = 1, · · · , n, which satisfy the condition (2), find a schedule

S = {π1, π2, · · · , πn} such that Lmax(S) is minimum among all feasible schedules. This problem is

denoted as 1|mt,fij |Lmax for the case of asymmetric switching costs and 1|mt,fij = fji|Lmax for

the case of symmetric switching costs.

Problem 5 (Total Number of Late Jobs) Given a set of jobs J = {J1, J2, · · · , Jn} with known

pi, di, gi(p
′
i) and fij for all i, j = 1, · · · , n, which satisfy the condition (2), find a schedule S,

in which the late jobs are completely discarded, such that the number of late jobs
∑

i∈S Ui(S) is

minimum among all feasible schedules. This problem is denoted as 1|mt,fij,DLJ |
∑

iUi for the case
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of asymmetric switching costs and 1|mt,fij = fji,DLJ |
∑

iUi for the case of symmetric switching

costs.

Problem 6 (Total Weighted Number of Late Jobs) Given a set of jobs J = {J1, J2, · · · , Jn}

with known pi, di, wi > 0, gi(p
′
i) and fij for all i, j = 1, · · · , n, which satisfy the condition (2),

find a schedule S, in which the late jobs are completely discarded, such that the weighted number

of late jobs
∑

i∈S wiUi(S) is minimum among all feasible schedules. This problem is denoted as

1|mt,fij,DLJ |
∑

iwiUi for the case of asymmetric switching costs and 1|mt,fij = fji,DLJ |
∑

iwiUi

for the case of symmetric switching costs.

3. Makespan

Makespan is one of the simplest criteria in scheduling. For asymmetric switching costs, it will be

shown that the makespan problem is NP-hard. For symmetric switching costs, the makespans of

all feasible schedules for a given job set are the same.

3.1. Asymmetric switching costs

Now, we consider the problem 1|mt,fij |Cmax. For a schedule S = {Jπ1
, Jπ2

, · · · , Jπn},

Cmax(S) =
n
∑

i=1

pπi
+

n−1
∑

i=1

n
∑

j=i+1

fπiπj
.

As
∑n

i=1 pπi
is constant for any schedule, the problem 1|mt,fij |Cmax is equivalent to finding a

schedule S such that
∑n−1

i=1

∑n

j=i+1 fπiπj
is minimum. Its NP-hardness is stated in the following

theorem.

Theorem 1 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, gi(p
′
i), fij for all i, j =1, · · · , n

and condition (2) is satisfied, the problem 1|mt,fij |Cmax is NP-hard.

Proof. The proof is accomplished by reducing the feedback arc set problem to 1|mt,fij |Cmax. In

accordance with Garey and Johnson (Garey & Johnson 1979, p.192 Problem GT8), the feedback

arc set problem is defined as below.
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Problem 7 (Feedback Arc Set (FAS)) Given a directed graph G= (V,A) and a positive inte-

ger K ≤ |A|, find a subset A′ ⊆A with |A′| ≤K such that A′ contains at least one arc from every

directed cycle in G.

Let G= (V,A) be a arbitrary directed graph, where V = {V1, V2, · · · , Vn} is a vertex set with n

vertices and an arc (Vi, Vj) ∈A denotes the arc from Vi to Vj, Given any instance of FAS, G and K,

an instance of 1|mt,fij |Cmax in decision version, J and y, can be constructed as follows. |J |= n and

y= n2+K. For each job Ji ∈ J which corresponds to Vi ∈ V , its processing time, interruption-time

function and the switching costs are defined as follows :

pi = n, (5)

gi = 1, (6)

fij =

{

1 if (Vj, Vi)∈A,

0 otherwise.
(7)

Note that the value of fij = 1 if (Vj, Vi) ∈ A and 0 otherwise. It implies that all the non-zero

switching costs incur only when Jj is scheduled after Ji.

(⇒) Let A′ ⊆A be an arc set such that G′ = (V,A\A′) is a directed acyclic graph and |A′| ≤K. A

schedule S of J can be constructed by sequencing all the jobs according to the topological ordering

of the corresponding vertices in G′. Without counting the switching costs introducing by the arcs

in A′, the makespan of S is n2. Let (Vi1 , Vi2 , · · · , Vir) be a directed path in G′ and (Vir , Vi1) be an

arc in A′. It is obvious that scheduling Ji1 , Ji2 , · · · , Jir sequentially will introduce 0 switching cost.

Since (Vir , Vi1)∈A′, 1 time unit of switching cost will be added. As a result, the number of arcs in

A′ is equivalent to the total switching costs incurring in S. Therefore,

Cmax(S) =
n
∑

i=1

pi +
∑

(Vj ,Vi)∈A′

fij

≤ n2 +K

= y.
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(⇐) Let S = {Jπ1
, Jπ2

, · · · , Jπn} be a schedule of the constructed instance such that Cmax(S) ≤

n2 +K. The arc set A′ can be built as follows.

A′ = {(Vπi
, Vπj

)|Jπi
is scheduled after Jπj

in S}

We now show that at least one arc in each directed cycle in G is in A′. Assume that there is a

directed cycle C = (Vi1 , Vi2 , · · · , Vir , Vi1) in G such that none of the arcs in C is in A′. Since S is

a single machine schedule, the jobs corresponding to the vertices in C are scheduled as a linear

sequence. Therefore, there must exist a job pair (Jik , Jik+1
) such that (Vik , Vik+1

) ∈ A and Jik is

scheduled after Jik+1
. From the construction of A′, (Vik , Vik+1

) must be in A′, contradicting to

the assumption. Since only the job pair corresponding to an arc in A′ introduces 1 time unit of

switching cost, the size of A′ is equal to the total switching cost of S. The total processing time of

all the jobs is n2 and Cmax(S)≤ n2 +K, implying that the total switching costs incurred in S is

not greater than K. Hence, |A′| ≤K.

As it has been proved by Karp (1972) that the feedback arc set problem is NP-Complete,

1|mt,fij |Cmax must be NP-hard. Q.E.D.

3.2. Symmetric switching costs

If switching costs are symmetric, i.e. fij = fji, it can be shown that the makespans of all the

schedules for a given task set are equal to a constant which is stated in the following theorem.

Theorem 2 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, gi(p
′
i), fij = fji for all i, j =

1, · · · , n and condition (2) is satisfied,

Cmax(S) =
n
∑

i=1

pi +
1

2

n
∑

i=1

n
∑

j=1

fij

for any schedule S.

Proof. From (4), we have that

Cmax(S) = pπn +
n−1
∑

j=1



pπj
+

n
∑

j′=j+1

fπjπj′




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=
n
∑

j=1

pπj
+

n−1
∑

j=1

n
∑

j′=j+1

fπjπj′
. (8)

The second term in the right hand side of the last equation is equal to the sum of the upper

triangular elements of the matrix




























0 fπ1π2
· · · fπ1πi

· · · fπ1πn−1
fπ1πn

fπ2π1
0 · · · fπ2πi

· · · fπ2πn−1
fπ2πn

...
...

. . .
...

...
...

...

fπiπ1
fπ1π3

· · · 0 · · · fπiπn−1
fπiπn

...
...

...
...

. . .
...

fπn−1π1
fπn−1π2

· · · fπn−1πi
· · · 0 fπn−1πn

fπnπ1
fπnπ2

· · · fπnπi
· · · fπnπn−1

0





























.

As the above matrix is symmetric and the diagonal elements are all zeros, the sum of the upper

triangular elements is identical to the sum of the lower triangular elements. Moreover, this value

is the same for all schedules. As a result, we can get from (8) that

n−1
∑

i=1

n
∑

j=i+1

fij =
1

2

n
∑

i=1

n
∑

j=1

fij .

Hence, for any schedule S,

Cmax(S) =
n
∑

i=1

pi +
1

2

n
∑

i=1

n
∑

j=1

fij

and the proof is completed. Q.E.D.

4. Total Weighted Completion Time

In the first part of the section, the problems with asymmetric switching costs are analyzed. We show

that the problem 1|mt,fij |
∑

i ci is strongly NP-hard by reduction from the problem 1|prec|
∑

i ci.

Then, the strongly NP-hardness of the problem 1|mt,fij |
∑

iwici is implied. In the second part of

the section, the problem with symmetric switching costs are analyzed. We show that the problem

1|mt,fij = fji|
∑

iwici can be solved by a polynomial-time algorithm.

4.1. Asymmetric switching costs

Theorem 3 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, gi(p
′
i) and fij for all i, j =

1, · · · , n, and condition (2) is satisfied, the problem 1|mt,fij |
∑

i ci is strongly NP-hard.
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Proof. The proof is accomplished by reducing the problem 1|prec|
∑

i ci to the problem

1|mt,fij |
∑

i ci. Let (J,G,K) be an arbitrary instance of the problem 1|prec|
∑

i ci. J =

{J1, J2, · · · , Jn} denotes a set of n job where pi, 1≤ i≤ n represent the processing times of Ji. All

the jobs are available at time 0. The precedence constraints among jobs are represented by the

directed acyclic graph G= (J,A) in which, an arc (Ji, Jj) ∈A corresponds to the constraint that Jj

cannot start executing before Ji completes. The decision version of 1|prec|
∑

i ci is to ask if there is

a schedule S such that the job sequence fulfills all the precedence constraints and
∑

Ji∈J ci(S)≤K.

Let (J∗, y) be the instance of the problem 1|mt,fij |
∑

i ci constructed based on (J,G,K). The

characteristics of each job J∗
i , 1≤ i≤ n, in J∗ is shown as below. For all i, j =1,2, · · · , n,

p∗i = pi (9)

g∗i = 0 (10)

f ∗
ij =

{

K +1 if (Jj, Ji)∈A,

0 otherwise.
(11)

The threshold y is set to K.

(⇒) Let S = {Jπ1
, Jπ2

, · · · , Jπn} be a schedule fulfilling the precedence constraints and

∑

Ji∈J ci(S)≤K. We can build the schedule S∗ for (J∗, y) by sequencing jobs in J∗ as S. As S ful-

fills the precedence constraints, for all (Ji, Jj)∈A, Ji must be completed before Jj. It implies that

J∗
i must also be completed before J∗

j starts. By the definition of the switching costs, f ∗
ij =K +1

only incurs when J∗
j is completed before J∗

i . Therefore, no switching cost incurs in the schedule S∗.

The completion time of J∗
πi

must be equal to that of Jπi
. As a result,

∑

J∗

i
∈J∗ ci(S

∗) =
∑

Ji∈J ci(S)

and thus
∑

J∗

i
∈J∗ ci(S

∗)≤ y.

(⇐) Let S∗ = {J∗
π1
, J∗

π2
, · · · , J∗

πn
} be a schedule for (J∗, y) and

∑

J∗

i
∈J∗ ci(S

∗) ≤ y. A schedule S

for (J,G,K) can be formed by sequencing jobs in J as S∗. From the definitions of switching cost

functions, it is easy to see that no switching cost is incurred in S∗. Therefore, S satisfies all the

precedence constraints. Moreover, the completion time of Jπi
in S must be equal to that of J∗

πi
in

S∗. As a result, we can conclude that
∑

Ji∈J ci(S)≤K.
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As 1|prec|
∑

i ci has been proved to be strongly NP-hard (Lawler 1978, Lenstra & Rinnooy Kan

1978), 1|mt,fij |
∑

i ci must be strongly NP-hard. Q.E.D.

As the problem 1|mt,fij |
∑

i ci is strongly NP-hard, we can state without proof the complexity

of 1|mt,fij |
∑

iwici in the following theorem.

Theorem 4 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, wi, gi(p
′
i) and fij for all

i, j = 1, · · · , n, and condition (2) is satisfied, the problem 1|mt,fij |
∑

iwici is strongly NP-hard.

4.2. Symmetric switching costs

AlgorithmWCT, as shown in Figure 1, is a polynomial-time algorithm developed for the problem of

minimizing the total weighted completion time if the switching costs are symmetric. There are two

major steps in the algorithm. Step 1 is the preprocessing step by which the remaining processing

times of all the jobs after they have interrupted k times, for k = 1,2, · · · , n − 1, are calculated.

Step 2 is the main step for constructing a schedule in backward fashion. Starting from scheduling

the job Jπn , the job Jπn−1
is scheduled next and so on. The idea of the scheduling procedure can

be described in the following.

Let S̃ = {Jπl+1
, Jπl+2

, · · · , Jπn}. To determine which job should be scheduled as job Jπl
, we eval-

uate a value of each job Ji not scheduled in S̃ by using the following formula.

wi

pi(l− 1)+
∑

Jj∈S̃ gj(pj(l− 1))+
∑

Jj∈S̃ fij
. (12)

Then, the job to be scheduled as Jπl
is determined by the following criteria.

πl = argmin
i

{

wi

pi(l− 1)+
∑

Jj∈S̃ gj(pj(l− 1))+
∑

Jj∈S̃ fij

}

. (13)

If there are more than one job having the same minimum value, we arbitrarily select one of them

to be job Jπl
. The following theorem shows that Algorithm WCT can find a optimal schedule in

polynomial-time.
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Algorithm WCT

Step 1.

FOR i from 1 to n,

pi(0) = pi;

FOR k from 1 to n− 1,

Step 1.1. pi(k) = pi(k− 1)− gi(pi(k− 1));

END

END

Step 2.

(S̃: Sequence of scheduled jobs.)

S̃ = {}; J = {J1, J2, ..., Jn};

FOR k from n to 2 (Backward tracking)

Step 2.1. Evaluate zi =
∑

Jj∈S̃(gj(pj(k− 1))+ fij) for all Ji ∈ J ;

Step 2.2. Evaluate wi

pi(k−1)+zi
for all Ji ∈ J ;

Step 2.3. Search all Ji′ ∈ J such that i′ =minJi∈J

{

wi

pi(k−1)+zi

}

;

Step 2.4. MT =
{

Ji′ ∈ J |Ji′ =minJi∈J

{

wi

pi(k−1)+zi

}}

;

Step 2.5. Select arbitrary Ji∗ ∈MT ;

Step 2.6. Remove Ji∗ from the remaining list, i.e. J = J \ {Ji∗};

Step 2.7. S̃ = {Ji∗}‖S̃;

END

S̃ = J‖S̃;

Figure 1 Algorithm WCT for minimizing the weighted completion time.
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Theorem 5 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, wi, gi(p
′
i) and fij = fji for

all i, j = 1, · · · , n, and condition (2) is satisfied, Algorithm WCT finds a optimal schedule for

Problem 2, i.e. 1|mt,fij = fji|
∑

iwici, in O(n2) time.

Proof. The proof is done by contradiction. First of all, the criterion (13) implies the following

condition. For l=2,3, · · · , n and S̃ = {Jπl+1
, · · · , Jπn},

wπl−1

pπl−1
(l− 1)+

∑

Jj∈S̃ gj(pj(l− 1))+
∑

Jj∈S̃ fπl−1j

≥
wπl

pπl
(l− 1)+

∑

Jj∈S̃ gj(pj(l− 1))+
∑

Jj∈S̃ fπlj

.

(14)

We now assume that there exists a optimal schedule S′ in which at least one pair of adjacent jobs,

say job Jν and job Jµ, does not fulfill the condition (14). Let S be the schedule constructed from

S′ by swapping Jν and Jµ. Thus, we have that

S′ = {Jπ1
, Jπ2

, · · · , Jπi−1
, Jν , Jµ, Jπi+2

, · · · , Jπn},

S = {Jπ1
, Jπ2

, · · · , Jπi−1
, Jµ, Jν , Jπi+2

, · · · , Jπn}.

From (3), we have

cµ(S) = cπi−1
+ pµ(i− 1)+ gν(pν(i− 1))+ fµν +

n
∑

j=i+2

(

gπj
(pπj

(i− 1))+ fµπj

)

. (15)

cν(S) = cπi−1
+ pµ(i− 1)+ gν(pν(i− 1))+ fµν +

n
∑

j=i+2

(

gπj
(pπj

(i− 1))+ fµπj

)

+ pν(i)+
n
∑

j=i+2

(

gπj
(pπj

(i))+ fνπj

)

. (16)

Similar, for the schedule S′, we have

cν(S
′) = cπi−1

+ pν(i− 1)+ gµ(pµ(i− 1))+ fνµ+
n
∑

j=i+2

(

gπj
(pπj

(i− 1))+ fνπj

)

. (17)

cµ(S
′) = cπi−1

+ pν(i− 1)+ gµ(pµ(i− 1))+ fνµ+
n
∑

j=i+2

(

gπj
(pπj

(i− 1))+ fνπj

)

+ pµ(i)+
n
∑

j=i+2

(

gπj
(pπj

(i))+ fµπj

)

. (18)
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As pµ(i− 1) = pµ(i) + gµ(pµ(i− 1)), pν(i− 1) = pν(i)+ gν(pν(i− 1)), and fνµ = fµν , From (16) and

(18), we know that

cν(S) = cµ(S
′). (19)

For each of the jobs from 1 to i− 1 and from i+1 to n, as the total switching costs and the total

interruption-time from the waiting jobs are not affected by swapping Jµ and Jν , the completion

time of each of these jobs is the same in both S′ and S, i.e.

cπj
(S) = cπj

(S′), (20)

for j = 1, · · · , i− 1, i+1, · · · , n. Therefore, the difference between
∑n

i=1wici(S) and
∑n

i=1wici(S
′)

is given by

n
∑

i=1

wici(S)−

n
∑

i=1

wici(S
′) = (wµcµ(S)+wνcν(S))− (wνcν(S

′)+wµcµ(S
′)) . (21)

Putting (15), (16), (17), (18) in (21) and further by the fact that fij = fji, we can get that

n
∑

i=1

wici(S)−
n
∑

i=1

wici(S
′) = −wµ

(

pν(i)+
n
∑

j=i+2

gπj
(pπj

(i))+
n
∑

j=i+2

fνπj

)

+wν

(

pµ(i)+
n
∑

j=i+2

gπj
(pπj

(i))+
n
∑

j=i+2

fµπj

)

. (22)

Based on the assumption that jobs Jν and Jµ do not fulfill the condition (14), we can get that

wν

pν(i)+
∑n

j=i+2 gπj
(pπj

(i))+
∑n

j=i+2 fνπj

<
wµ

pµ(i)+
∑n

j=i+2 gπj
(pπj

(i))+
∑n

j=i+2 fµπj

.

As a result,
∑n

i=1wici(S) <
∑n

i=1wici(S
′), which contradicts the assumption that S′ is optimal.

Therefore, Algorithm WCT is able to find a optimal schedule.

Step 1 in Algorithm WCT requires O(n2) time. In Step 2, Step 2.2 and Step 2.3 each requires

O(n) time. Repeating k from n to 2, the total number is of order O(n2) time. For Step 2.1, it

requires (n−k)k running time for each value of k. Summing up for k from n to 2, the total number

is of order O(n2). Thus, Step 2 requires O(n2) time. The overall running time of the algorithm is

O(n2). The proof is completed. Q.E.D.
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5. Maximum Weighted Tardiness

In this section, the complexities of the problem 1|mt,fij |Tmax and the problem 1|mt,fij = fji|Tmax

will be analyzed. With asymmetric switching costs, the NP-hardness is basically implied from

Theorem 1. While with symmetric switching costs, a polynomial-time algorithm is developed.

5.1. Asymmetric switching costs

The complexity of 1|mt,fij |Tmax is stated in the following theorem.

Theorem 6 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, di, wi > 0, gi(p
′
i), fij for

all i, j = 1, · · · , n for all i = 1, · · · , n, and condition (2) is satisfied, the problem 1|mt,fij |Tmax is

NP-hard.

Proof. It is implied from Theorem 1. Q.E.D.

5.2. Symmetric switching costs

Inspired by Lawler (1973) and Pinedo (Pinedo 1995, p.33 Algorithm 3.2.1), Figure 2 shows an

algorithm (Algorithm WT) which can find a optimal schedule for a given job set.

Algorithm WT starts by selecting job Jπn , then job Jπn−1
and so on. As from Theorem 2,

we know that, for the case of symmetric switching costs, the makespan of any schedule must

be equal to
∑n

i=1 pi +
1
2

∑n

i=1

∑n

j=1 fij. So we can set the completion time of the last job in a

schedule S as that cπn =
∑n

i=1 pi +
1
2

∑n

i=1

∑n

j=1 fij. From this time point, we can calculate the

weighted tardiness of each job and then schedule the job with minimum weighted tardiness as Jπn .

Once Jπn has been selected, with the information of interruption-time function and the remaining

processing time, cπn−1
(S) can thus be obtained. Then, we apply the same technique to select the

job with minimum weighted tardiness as Jπn−1
. The same procedure repeats until job Jπ2

has

been determined. Accordingly, the adjacent pair of jobs of the schedule S must fulfill the following

condition.

max{0,wπi−1
(cπi

(S)− dπi−1
)} ≥max{0,wπi

(cπi
(S)− dπi

)} (23)
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Algorithm WT

Step 1.

FOR i from 1 to n,

pi(0) = pi;

FOR k from 1 to n− 1,

Step 1.1. pi(k) = pi(k− 1)− gi(pi(k− 1));

END

END

Step 2.

(S̃: Sequence of scheduled jobs.)

S̃ = {}; J = {J1, J2, ..., Jn};

c=
∑n

j=1 pj +
∑n−1

i=1

∑n

j=i+1 fij ;

FOR k from n to 2 (Backward tracking)

Step 2.1. Evaluate max{0,wi(c− di)} for all Ji ∈ J ;

Step 2.2. Search all Ji′ ∈ J such that Ji′ =minJi∈J max{0,wi(c− di)}};

Step 2.3. MT = {Ji′ ∈ J |Ji′ =minJi∈J{max{0,wi(c− di)}}};

Step 2.4. Select Ji∗ ∈MT such that

Ji∗ =maxJi∈MT{pi(k− 1)+
∑

Jj∈S̃ gj(pi(k− 2)))+
∑

Jj∈S̃ fij};

Step 2.5. Remove Ji∗ from the remaining list, i.e. J = J \ {Ji∗};

Step 2.6. c= c− pi∗(k− 1)−
∑

Jj∈S̃ gj(pj(k− 2))−
∑

Jj∈S̃ fij;

Step 2.7. S̃ = {Ji∗}‖S̃;

END

S̃ = J‖S̃;

Figure 2 Algorithm WT for minimizing the maximum weighted tardiness with symmetric switching costs.
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for i= 2, · · · , n.

To prove the optimality of Algorithm WT, we need to show a characteristic regarding job com-

pletion time in a schedule as the following lemma.

Lemma 2 Given any schedule S = {Jπ1
, Jπ2

, · · · , Jπr−1
, Jπr , Jπr+1

, · · · , Jπs , Jπs+1
, · · · , Jπn}, we let

S′ be the schedule obtained from S by rescheduling Jπr immediately after Jπs (i.e. S′ =

{Jπ1
, Jπ2

, · · · , Jπr−1
, Jπr+1

, · · · , Jπs , Jπr , Jπs+1
, · · · , Jπn}). If fij = fji for all 1≤ i, j ≤ n and condition

(2) is satisfied, then cπi
(S′)< cπi

(S) for all i= r+1, r+2, · · · , s and cπr(S
′) = cπs(S).

Proof. By (3), we can express the completion times of Jπi
in the schedules S and S′ for i =

r+1, r+2, · · · , s as follows :

cπi
(S) = pπ1

+ · · ·+ pπr−1
+ pπr + pπr+1

+ · · ·+ pπi
+

n
∑

j=2

fπ1πj
+ · · ·+

n
∑

j=r

fπr−1πj
+

n
∑

j=r+1

fπrπj

+
n
∑

j=r+2

fπr+1πj
+ · · ·+

n
∑

j=i+1

fπiπj
+

n
∑

j=i+1

gπj
(pπj

(0))+ · · ·+
n
∑

j=i+1

gπj
(pπj

(i− 1)), (24)

cπi
(S′) = pπ1

+ · · ·+ pπr−1
+ pπr+1

+ · · ·+ pπi
+

n
∑

j=2

fπ1πj
+ · · ·+

n
∑

j=r

fπr−1πj

+

(

n
∑

j=r+2

fπr+1πj
+ fπr+1πr

)

+ · · ·+

(

n
∑

j=i+1

fπiπj
+ fπiπr

)

+

(

n
∑

j=i+1

gπj
(pπj

(0))+ gπr(pπr(0))

)

+ · · ·+

(

n
∑

j=i+1

gπj
(pπj

(i− 2))+ gπr(pπr(i− 2))

)

.

(25)

Comparing (24) and (25), the difference between cπi
(S′) and cπi

(S) can be written as follows :

cπi
(S′)− cπi

(S) =
i
∑

j=r+1

fπjπr +
i−2
∑

j=0

gπr(pπr(j))− pπr −

n
∑

j=r+1

fπrπj
−

n
∑

j=i+1

gπj
(pπj

(i− 1)). (26)

Since fij = fji, we can get that

cπi
(S′)− cπi

(S) = −

(

pπr −

i−2
∑

j=0

gπr(pπr(j))

)

−

n
∑

j=i+1

fπrπj
−

n
∑

j=i+1

gπj
(pπj

(i− 1))

= − pπr(i− 1)−
n
∑

j=i+1

fπrπj
−

n
∑

j=i+1

gπj
(pπj

(i− 1)). (27)
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Further by (2), we get that cπi
(S)< cπi

(S′). Consider Jπr ,

cπr(S
′) = cπs(S

′)+ pπr(s− 1)+
n
∑

j=s+1

fπrπj
+

n
∑

j=s+1

gπj
(pπj

(s− 1)).

By (27), it is clear that cπr(S
′) = cπs(S). The proof is completed. Q.E.D.

Theorem 7 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, di, wi > 0, gi(p
′
i) and fij = fji

for all i, j = 1, · · · , n, and condition (2) is satisfied, Algorithm WT finds a optimal schedule for

Problem 3, i.e. 1|mt,fij = fji|Tmax, in O(n2) time.

Proof. Let S be the schedule generated by AlgorithmWT and S′ be a optimal schedule for the given

job set J . Assume that S′ is different from S. Compare S and S′ starting from the last scheduled

job. Let s be the largest index such that Jπs 6= Jπ′
s
. It implies that, in S′, Jπs must be scheduled

before Jπ′
s
in S′, say Jπ′

r
= Jπs . Then, we can generate a schedule S′′ from S′ by rescheduling Jπ′

r

immediately after Jπ′
s
, i.e.

S′′ = {Jπ′

1
, · · · , Jπ′

r−1
, Jπ′

r+1
, · · · , Jπ′

s
, Jπ′

r
, Jπ′

s+1
, · · · , Jπ′

n
}.

Note that the completion times of Jπ′

1
, · · · , Jπ′

r−1
, Jπ′

s+1
, · · · , Jπ′

n
in S′ are the same in S′′. It implies

that the weighted tardiness of Jπ′

1
, · · · , Jπ′

r−1
, Jπ′

s+1
, · · · , Jπ′

n
in S′′ are the same as that in S′. For

Jπ′

r+1
, Jπ′

r+2
, · · · , Jπ′

s
in S′′, we can conclude from Lemma 2 that their completion times must be

strictly less than those in S′. Since the weighted tardiness function is monotonic increasing function

of the job completion time for a given positive weight, the weighted tardiness of these jobs in S′′

must be less than that in S′. Combining with the fact that the weighted tardiness of Jπ′
r
is not

greater than that of Jπ′
s
with respect to the time point cπ′

r
(S′′) = cπ′

s
(S′), the maximum weighted

tardiness of S′′ is not greater than that of S′.

By repeating the above procedure if the newly constructed schedule is different from S. Even-

tually, S′ can be transformed into S without increasing the maximum weighted tardiness. Hence,

S, which is generated by Algorithm WT, is optimal.

Step 1 in the Algorithm WT consists of two FOR loops for evaluating gik = gi(p
′
i), p

′
i = p′i − gik

and pik = p′i, its complexity is O(n2). For Step 2, there is one FOR loop for k = n, · · · ,2. The
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Step 2.2 inside the FOR loop requires |J | − 1 comparisons. The complexity of the second part

of the algorithm is again O(n2). Therefore, complexity of Algorithm WT is O(n2). The proof is

completed. Q.E.D.

A special case of the above problem is that all the weights are equal. The schedule can be found

by the earliest due date (EDD) rule.

Theorem 8 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, di, wi =w, gi(p
′
i) and fij = fji

for all i, j = 1, · · · , n, and condition (2) is satisfied, a optimal schedule for the problem 1|mt,wi =

w,fij = fji|Tmax can be obtained by EDD rule in O(n log(n)) time.

Proof. The main trick is in the Step 2 in Algorithm WT. First, we assume that job Jπi
has earlier

due date than job Jπj
if i < j. That is to say, dπ1

< dπ2
< · · · < dπn . Let us start from the time

c=
∑n

i=1 pi +
1
2

∑n

i=1

∑n

j=1 fij . Since all the weighted tardiness functions are the same, we can get

that

max{0,w(c− dπn)}<max{0,w(c− dπn−1
)}< · · ·<max{0,w(c− dπ1

)},

where w is the common weight. In regard to the Step 2 in Algorithm WT, it is easy to see that

at each time point the job with latest due date is selected. Hence, An optimal schedule can be

obtained by simply using EDD rule. Therefore, the time complexity of finding an optimal schedule

for a job set with equal weights is O(n log(n)). Q.E.D.

6. Maximum Weighted Lateness

In this section, the complexities of the problem 1|mt,fij |Lmax and the problem 1|mt,fij = fji|Lmax

will be analyzed. With asymmetric switching costs, the NP-hardness is basically implied from

Theorem 1. While with symmetric switching costs, a polynomial-time algorithm similar to Algo-

rithm WT is developed.

6.1. Asymmetric switching costs

The complexity of 1|mt,fij |Lmax is stated in the following theorem.
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Theorem 9 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, di, wi > 0, gi(p
′
i), fij for

all i, j = 1, · · · , n for all i = 1, · · · , n, and condition (2) is satisfied, the problem 1|mt,fij |Lmax is

NP-hard.

Proof. It is implied from Theorem 1. Q.E.D.

6.2. Symmetric switching costs

It should be noted that Algorithm WT presented in the last section (see Figure 2) can equally be

applied to solve the maximum weighted lateness problem by simply replacing max{0,wi(c− di)}

in the Step 2.1-2.3 by wi(c− di). Figure 3 shows the algorithm for solving the maximum weighted

lateness problem.

The proof of optimality and complexity is similar to the proof for the Algorithm WT in the

maximum weighted tardiness problem. Thus, we state without proof the following theorems for

the Algorithm WL.

Theorem 10 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, di, wi > 0, gi(p
′
i) and fij = fji

for all i, j = 1, · · · , n, and condition (2) is satisfied, Algorithm WL finds a optimal schedule for

Problem 4, i.e. 1|mt,fij = fji|Lmax, in O(n2) time.

Theorem 11 Given a set of jobs J = {J1, J2, · · · , Jn} with known pi, di, wi =w, gi(p
′
i) and fij = fji

for all i, j = 1, · · · , n, and condition (2) is satisfied, a optimal schedule for the problem 1|mt,wi =

w,fij = fji|Lmax can be obtained by EDD rule in O(n log(n)) time.

7. Total Number of Late Jobs

In this and the next section, we work on the problems of minimizing the total number of late jobs

and total weighted number of late jobs. In (Hall, Leung & Li 2014), late jobs are scheduled after all

on-time jobs have been completed. In our setting, we assume that all the late jobs are completely

discarded. In other words, late jobs will not interrupt any on-time jobs. For reference, we state in

Appendix A the theorems which are proved by Hall, Leung & Li (2014) in regard to the late job
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Algorithm WL

Step 1.

FOR i from 1 to n,

pi(0) = pi;

FOR k from 1 to n− 1,

Step 1.1. pi(k) = pi(k− 1)− gi(pi(k− 1));

END

END

Step 2.

(S̃: Sequence of scheduled jobs.)

S̃ = {}; J = {J1, J2, ..., Jn}; c=
∑n

j=1 pj +
∑n−1

i=1

∑n

j=i+1 fij;

FOR k from n to 2 (Backward tracking)

Step 2.1. Evaluate wi(c− di) for all Ji ∈ J ;

Step 2.2. Search all Ji′ ∈ J such that Ji′ =minJi∈J{wi(c− di)};

Step 2.3. MT = {Ji′ ∈ J |Ji′ =minJi∈J{wi(c− di)}};

Step 2.4. Select Ji∗ ∈MT such that

Ji∗ =maxJi∈MT{pi(k− 1)+
∑

Jj∈S̃ gj(pi(k− 2)))+
∑

Jj∈S̃ fij};

Step 2.5. Remove Ji∗ from the remaining list, i.e. J = J \ {Ji∗};

Step 2.6. c= c− pi∗(k− 1)−
∑

Jj∈S̃ gj(pj(k− 2))−
∑

Jj∈S̃ fij;

Step 2.7. S̃ = {Ji∗}‖S̃;

END

S̃ = J‖S̃;

Figure 3 Algorithm WL for minimizing the maximum weighted lateness with symmetric switching costs.



Sum, Leung, Ho: Operations Scheduling in the Presence of Multitasking

30 Unpublished manuscript

problems. In this section, we consider both 1|mt,fij,DLJ |
∑

iUi and 1|mt,fij = fji,DLJ |
∑

iUi

problems.

7.1. Asymmetric switching costs

For asymmetric switching costs, the time complexity of the problem 1|mt,fij,DLJ |
∑

iUi is stated

in the following theorem.

Theorem 12 Problem 5 with asymmetric switching costs and the late jobs are discarded, i.e.

1|mt,fij,DLJ |
∑

iUi, is strongly NP-hard.

Proof. The proof is conducted by reducing from Exact Cover by 3-Sets (X3C). X3C problem has

been proved to be strongly NP-hard (Garey & Johnson 1979).

Problem 8 (Exact Cover by 3-Sets (X3C)) An X3C instance contains a finite set X =

{x1, x2, · · · , x3q}, where q is a positive integer, and a collection C = {C1,C2, · · · ,Cr} of 3-element

subsets of X, where r ≥ q. The X3C problem is to ask if there exists a C ′ ⊆ C such that every

element of X appears in exactly one member of C ′. In other words, all the members in C ′ are

mutually exclusive and the union of all the members in C ′ equals X.

Without loss of the generality, we map each element in X to a unique integer i, where i ∈

{1,2, · · · ,3q}. Each Cj ∈C is denoted by {xj,1, xj,2, xj,3}, where xj,1 <xj,2 <xj,3.

Given an arbitrary instance of X3C, the corresponding instance of 1|mt,fij,DLJ |
∑

Ui with

the assumption that all the late jobs are discarded can be constructed. First, a job set J =

{J1, J2, · · · , J3q, J3q+1, · · · , J3q+r} is defined. For job Ji ∈ J , its processing time and due date are

defined as follows :

pi =

{

1 if i= 1,2,3, · · · ,3q.

M if i= 3q+1,3q+2, · · · ,3q+ r,
(28)

di =

{

∑i

k=1(q+1+ k) if i= 1,2,3, · · · ,3q.

q(M − 3q)+
∑3q

k=1(q+1+ k) if i= 3q+1,3q+2, · · · ,3q+ r,
(29)
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Note that

i
∑

k=1

(q+1+ k) = i(q+1)+
i(i+1)

2
,

q(M − 3q)+

3q
∑

k=1

(q+1+ k) = qM +3q+
3q(3q+1)

2
.

In (28) and (29), the value of M must fulfill the following inequality.

M > 3q(q+1)+
3q(3q+1)

2
. (30)

The interruption-time function is defined as follows :

gi(p
′) =

{

0 if i=1,2, · · · ,3q,

1 if i=3q+1,3q+2, · · · ,3q+ r.
(31)

The switching cost is defined as follows :

fij =











i if i= 1, · · · ,3q, j =3q+1, · · · ,3q+ r and i∈Cj ,

M if i= 3q+1, · · · ,3q+ r and j = 1, · · · ,3q,

0 otherwise.

(32)

The threshold cost y is defined as

y= (r− q). (33)

For the sake of presentation, we call each of the jobs J1, J2, · · · , J3q the element job as it

corresponds to an element in X. Each of the jobs J3q+1, J3q+2, · · · , J3q+r is called the member job

as it corresponds to a member in C.

(⇒) Let C ′ = {Cj1 , · · · ,Cjq} be a subset of C such that
⋃q

k=1Cjk =X and Cjm

⋂

Cjn = φ for m 6= n.

A schedule S with (r− q) late jobs can be constructed by three steps.

Step 1: Schedule all the element jobs according to the earliest due date (EDD) rule.

Step 2: All the member jobs corresponding to the members in C ′ are scheduled after the element

jobs in arbitrary order.

Step 3: The member jobs corresponding to the members not in C ′ are late jobs and discarded.
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From the definition of the interruption-time functions, each on-time member job J3q+j interrupts

all element jobs one unit of time. Besides, from the definition of the switching costs, J3q+j introduces

xj,1, xj,2 and xj,3 switching costs to the element jobs Jxj,1, Jxj,2 and Jxj,3 if Cj = {xj,1, xj,2, xj,3}

is in C ′. Since all the members in C ′ are mutually exclusive, Jxj,1, Jxj,2 and Jxj,3 will need to

process (q+1)+xj,1, (q+1)+xj,2, and (q+1)+xj,3, units of time. In other words, the completion

time of job Ji for i = 1, · · · ,3q is
∑i

k=1(q + 1+ k). All element jobs complete their execution by

their due dates. The completion time of the last on-time member job is equal to the summation

of the processing times of the 3q element jobs, the processing times of the q member jobs and the

switching costs introduced in the element jobs. So, we get that

Cmax = qM +3q+
3q(3q+1)

2
. (34)

All the element jobs and the member jobs corresponding to the members in C ′ are on-time in S.

The total number of late jobs is (r− q)≤ y.

(⇐) Let S be a schedule for the constructed job set J with total number of late jobs less than or

equal to y= (r− q). Before we proceed to prove the only-if part, we need to show that the schedule

S must satisfy the following properties.

Property 1: Removing inserted idle time between jobs in S will not increase the total number

of late jobs.

Property 2: There are exactly q on-time member jobs.

Property 3: All the element jobs must be on-time.

Property 4: All the element jobs must be scheduled before the on-time member jobs.

Property 5: The intersection of any two members corresponding to on-time member jobs in S

must be empty.

Since all jobs in the constructed job set are available at time zero, left-shifting an on-time job

to eliminate idle time does not make it late. So, Property 1 holds.
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Property 2 is proved by contradiction. Assume q+ v, where v≥ 1, member jobs are scheduled

in S. The completion time of the last job in these q+v member jobs must be larger than (q+v)M .

As M > 3q+3q(3q+1)/2, at least one of these q+v member jobs must be late. Therefore, it is not

possible to have more than q on-time member jobs in the schedule S. On the other hand, if there

are only q−v, where v ≥ 1, on-time member jobs, the number of late jobs will be larger than (r−q).

It will violate the condition that the number of late jobs must be less than or equal to (r− q). We

can conclude that the number of on-time member jobs in S must be exactly q. Property 2 holds.

Property 3 is an implication from Property 2 and the threshold (r− q). As there must be

exactly q on-time member jobs and the total number of late jobs must be less or equal to (r− q),

3q element jobs must be on-time.

Property 4 is proved by contradiction. If any one of the on-time member job is scheduled

just before an element job, say Ji, it will introduce a switching cost M on the on-time member

job. Thus, it makes Ji, Ji+1, · · · , J3q late. It contradicts that the total number of late jobs must be

(r− q).

Property 5 is proved by using Property 2, Property 3 and Property 4. Let αk be the

number of on-time member jobs which interrupt element job Jk resulting in non-zero switching

cost. Based on the properties of S, all the possible values for αk, 1≤ k ≤ 3q, must satisfy (35) and

(36) stated below. From Property 2 that there must be exactly q member jobs, we can get that

3q
∑

k=1

αk = 3q. (35)

From Property 3 that all the element jobs must be on-time, we can get that
∑i

k=1(q+1+kαk)≤

∑i

k=1(q+1+ k) for i= 1,2, · · · ,3q. In other words,

i
∑

k=1

k(αk − 1)≤ 0, (36)

for i= 1,2, · · · ,3q.
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To prove that α1 = α2 = · · · = α3q = 1 is the unique solution satisfying (35) and (36), we let

ααα= (α1, α2, · · · , α3q) denote a solution set and introduce a scalar function V (ααα), where

V (ααα) =

3q
∑

k=1

k(αk − 1). (37)

Clearly, ᾱαα= (1,1, · · · ,1), i.e. ᾱ1 = ᾱ2 = · · ·= ᾱ3q = 1, is a solution set and V (ᾱαα) = 0. We will show

that ᾱαα by contradiction that V (ααα)> V (ᾱαα) = 0 for all ααα 6= ᾱαα, implying that all the possible sets of

3q integers, except ᾱ, violate (36). Hence, ᾱ is the only solution.

Assume that there exists a solution set ααα′ = (α′
1, α

′
2, · · · , α

′
3q) in which some values are not equal

to 1. Let t = mini{i|α
′
i 6= 1}. That is to say, either α′

t ≥ 2 or α′
t = 0. For the first situation that

α′
t ≥ 2, Jt must be late. So, it violates Property 4.

Consider the second situation that α′
t = 0. By (35), there must exist an element job Ji such that

i > t and α′
i ≥ 2. Let s=mini{i|i > t and α′

i ≥ 2}. We can construct ααα′′ as follows :

α′′
i =











1 if i= t,

α′
s − 1 if i= s,

α′
i if i 6= t, s.

(38)

Then, we can get that

V (ααα′)−V (ααα′′) = (s(α′
s − 1)+ t(α′

t− 1))− (s(α′′
s − 1)+ t(α′′

t − 1)) .

As α′′
s = α′

s − 1, α′
t = 0 and α′′

t =1, V (ααα′)>V (ααα′′).

If some values in ααα′′ are not equal to 1, we can apply the same procedure stated as (38) to adjust

the values in the set. Eventually, we will obtain a value set equal to ᾱαα. From the above analysis,

the V function of each newly adjusted value set is strictly less than that of the original one. Hence,

V (ααα′) > V (ααα′′) > · · · > V (ᾱαα) = 0. It contradicts that there exists an ααα 6= ᾱαα such that V (ααα) ≤ 0.

Therefore, ᾱ1 = ᾱ2 = · · ·= ᾱ3q =1 must be the unique solution satisfying (35) and (36).

As a result, each element job will be interrupted by exact one on-time member job such that

the switching cost is non-zero. By observing the definition of the switching cost functions, we can

conclude that the intersection of any two members corresponding to on-time member jobs in S

must be empty. Therefore, Property 5 holds.
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By defining C ′ ⊆ C as that C ′ = {Cj |J3q+j is on-time in S}. Together with Property 4 and

Property 5, we can conclude that C ′ is an exact cover of X. Q.E.D.

7.2. Symmetric switching costs

If the switching costs are symmetric, the problem is NP-hard, as stated in the following theorem.

Theorem 13 Problem 5 with symmetric switching costs and the late jobs are discarded, i.e.

1|mt,fij = fji,DLJ |
∑

iUi, is NP-hard.

Proof. The NP-hardness of the problem will be shown by reduction from the Independent Set

problem. This problem is known to be NP-hard (Garey & Johnson 1979).

Problem 9 (Independent Set) For a given graph G = (V,E) and a positive integer K ≤ |V |,

Independent Set problem asks if G contains an independent set V ′ of size K or more such that no

two vertices in V ′ are joined by an edge in E.

Given an arbitrary instance of the Independent Set problem, we construct the corresponding

instance of the problem 1|mt,fij = fji,DLJ |
∑

Ui in the following. By letting n= |V | and a set of

jobs J = {J1, J2, · · · , Jn}. The vertex Vi ∈ V maps to Ji ∈ J . For jobs Ji and Jj,

pi = 1 (39)

gi = 0 (40)

di = K (41)

fij =

{

1 if (Vi, Vj)∈E,

0 otherwise.
(42)

Moreover, the threshold of the number of late jobs y as n−K.

(⇒) Let V ′ be the independent set and |V ′| ≥K. A schedule S of the constructed instance can be

obtained by scheduling K arbitrary jobs corresponding to vertices in V ′ as on-time in any order.

Since V ′ is a independent set, the switching costs among these selected K jobs are all zero. Hence
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the total time required to process these K job is K, implying that all of them are on-time. As a

result, the total number of late jobs in S is n−K ≤ y.

(⇐) Let S be a schedule of J such that
∑n

i=1Ui(S)≤ n−K. The independent set V ′ can be formed

as V ′ = {Vi|Ji is on-time in S}. It is easy to verify that |V ′| ≥K. If there exists a pair of Vi and Vj

such that the edge (Vi, Vj) ∈ E, the total time required to process all the on-time jobs in S is at

least K +1 which is greater the common due date. Hence, V ′ must be a independent set.

As the Independent Set problem is known to be NP-hard, the problem 1|mt,fij = fji,DLJ |
∑

iUi

must be NP-hard. Q.E.D.

Remark. In (Hall, Leung & Li 2014), they assumed that late jobs are not discarded and the

switching costs are constant, i.e. 1|mt,fij = ξ|
∑

iUi. They further showed that the problem of

minimizing the number of late jobs is NP-hard. If the interruption-time function of Ji is defined as

gi(p
′
i) =Dp′i, they showed that the problem can be solved by an algorithm in O(n log(n)) time (refer

to Algorithm U and Theorem 4 in (Hall, Leung & Li 2014)). The idea of the algorithm is based

on the Hodgson-Moore algorithm (Moore 1968). Assume that the due dates of J1, J2, · · · , Jn are in

ascending order. Let S be the set of scheduled jobs. Initially, S is empty. For i= 1, · · · , n, S = S‖{Ji}

if the completion time of Ji is earlier or equal to its due date. Otherwise, S = S‖{Ji}\{Jh}, where

Jh is a job in S‖{Ji} with the longest processing time. As late jobs will also interrupt, it can be

shown that the completion of Ja will not be changed if Ja is used to be scheduled before Jh. The

completion of Ja will be earlier if it is used to be scheduled after Jh. So, in each step, at most one

job has to be removed. However, this idea cannot be applied to our problem. As the late jobs will

not interrupt the on-time jobs, the completion times of the on-time jobs will change whenever a

new job is added. More than one jobs could be late. In this regard, the idea of Hodgson-Moore

algorithm seems unlikely applicable. Thus, the complexity of the total number of late jobs problem,

under the conditions that (1) the late jobs are discarded and (2) the interruption-time function is

defined as proportional to the remaining processing time, is still unknown.
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8. Total Weighted Number of Late Jobs

For the total weighted number of late jobs problem, it is clear that the problem is strongly NP-hard

if the switching costs are asymmetric. While the problem 1|mt,fij,DLJ |
∑

iUi is strongly NP-hard

(from Theorem 12), the problem 1|mt,fij,DLJ |
∑

iwiUi must be strongly NP-hard.

8.1. Asymmetric switching costs

For asymmetric switching costs, the NP-hardness of the problem 1|mt,fij ,DLJ |
∑

iwiUi is stated

in the following theorem.

Theorem 14 Problem 5 with asymmetric switching costs and the late jobs are discarded, i.e.

1|mt,fij,DLJ |
∑

iwiUi, is strongly NP-hard.

Proof. It is implied from Theorem 12 below. Q.E.D.

8.2. Symmetric switching costs

With symmetric switching costs, the problem is strongly NP-hard, as stated in the following the-

orem.

Theorem 15 Problem 6 with symmetric switching costs and the late jobs are discarded, i.e.

1|mt,fij = fji,DLJ |
∑

iwiUi, is strongly NP-hard.

Proof. The proof is inspired by the proof in (Hall, Leung & Li 2014, Proof of Theorem 5) which is

accomplished by reduction from Exact Cover by 3-Sets (X3C), see Problem 8. Similar to the proof

for Theorem 12, we map each element in X to a unique integer i, where i ∈ {1,2, · · · ,3q}. Each

Cj ∈C is denoted by {xj,1, xj,2, xj,3}, where xj,1 <xj,2 <xj,3.

Given an arbitrary instance of X3C, the corresponding instance of 1|mt,fij = fji,DLJ |
∑

wiUi

with no interruption is allowed from the late jobs can be constructed. First, a job set J =

{J1, J2, · · · , J3q, J3q+1, · · · , J3q+r} is defined. For each job Ji ∈ J , its processing time, due date and

weight are defined as follows :

pi =

{

1 if i=1,2,3, · · · ,3q.

N +3(q+1) if i=3q+1,3q+2, · · · ,3q+ r,
(43)
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di =

{

i(q+2) if i=1,2,3, · · · ,3q.

3q(q+2)+ qN if i=3q+1,3q+2, · · · ,3q+ r,
(44)

wi =

{

M if i= 1,2,3, · · · ,3q.

M −xj,1 −xj,2 −xj,3 if i= 3q+ j and Cj ∈C.
(45)

In (43), (44) and (45), the values of N and M must fulfil the following inequalities.

N > (q+2), and M > 9q2. (46)

The interruption-time function is defined as follows : For i= 1,2, · · · ,3q, gi(p
′) = 0, and for each

Cj ∈C,

g3q+j(p
′) =



















2 if p′ =N +3(q+1)−xj,1 +1,

2 if p′ =N +3(q+1)−xj,2,

2 if p′ =N +3(q+1)−xj,3 − 1,

1 otherwise.

(47)

Moreover, we set all the switching costs to zeros. The threshold cost y is defined as

y= (r− q)M −

(

A−
3q(3q+1)

2

)

, (48)

where A=
∑

Cj∈C(xj,1 +xj,2 +xj,3).

For the sake of presentation, we call each of the jobs J1, J2, · · · , J3q the element job as it

corresponds to an element in X and each of the jobs J3q+1, J3q+2, · · · , J3q+r the member job as it

corresponds to a member in C.

(⇒) Let C ′ = {Cj1 , · · · ,Cjq} be a subset of C such that
⋃q

k=1Cjk =X and Cjm

⋂

Cjn = φ for m 6= n.

A schedule S with the total number of weighted jobs equal to (r− q)M − (A− 3q(3q+1)/2) can

be constructed by three steps.

Step 1: Schedule all the element jobs according to the earliest due date (EDD) rule.

Step 2: All the member jobs corresponding to the members in C ′ are scheduled after the element

jobs in arbitrary order.

Step 3: The member jobs corresponding to the members not in C ′ are late jobs and discarded.

From the definition of the interruption-time functions, each on-time member job J3q+j interrupts

the element jobs Jxj,1, Jxj,2 and Jxj,3 two units of time if Cj = {xj,1, xj,2, xj,3} is in C ′. Since all the
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members in C ′ are mutually exclusive, each element job will need 1 + (q − 1) + 2 (= q + 2) time

units, including the processing time of the job and the interruption-time caused by all the on-time

member jobs, to complete the process. As the element jobs are scheduled according to EDD rule,

the completion time of job Ji is i(q + 2). All element jobs complete their execution by their due

dates. As the completion time of the last member job is equal to the total processing time, we get

that

Cmax = 3q+
∑

Cj∈C′

(N +3(q+1))

= 3q(q+2)+ qN. (49)

All the member jobs corresponding to the members in C ′ are on-time in S.

On the other hand, the total weighted number of late jobs of S is
∑

Cj /∈C′(M −xj,1 −xj,2−xj,3)

and

∑

Cj 6∈C′

(M −xj,1 −xj,2 −xj,3) = (r− q)M −



A−
∑

Cj∈C′

(xj,1 +xj,2 +xj,3)





= (r− q)M −

(

A−
3q(3q+1)

2

)

. (50)

The last equation of (50) is due to the facts that C ′ is a exact cover of X and each element in X

is represented by a unique integer selected from {1,2, · · · ,3q}. By (48) and (50), we conclude that

∑

Cj /∈C′(M −xj,1 −xj,2 −xj,3)≤ y.

(⇐) Let S be a schedule for the constructed job set J with total weighted number of late jobs less

than or equal to y = (r− q)M − (A− 3q(3q+ 1)/2). Before we proceed to prove the only-if part,

we need to show that the schedule S must satisfy the following properties.

Property 1: Removing inserted idle time between jobs in S will not increase the total weighted

number of late jobs.

Property 2: Rearranging all the on-time jobs in S according to the EDD rule will not increase

the total weighted number of late jobs.

Property 3: There are exactly q on-time member jobs.
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Property 4: All the element jobs must be on-time.

Property 5: The intersection of any two members corresponding to on-time member jobs in S

must be empty.

Since all jobs in the constructed job set are available at time zero, left-shifting an on-time job

to eliminate idle time does not make it late. So, Property 1 holds.

Consider an adjacency pair of on-time jobs Jπi
and Jπi+1

in S such that dπi
> dπi+1

. As the

switching cost is symmetric and the condition (2) is satisfied, swapping Jπi
and Jπi+1

will not

increase the time span for executing them. Both jobs will still be on-time after swapping. Repeated

swapping every pair of adjacent jobs which violates the EDD rule will generate a schedule in which

all the are scheduled according to the EDD rule and all of them on-time. So, Property 2 holds.

Property 1 and Property 2 imply that the schedule S must have no idle time between jobs

and all the on-time jobs are scheduled in non-decreasing due dates. In other words, the on-time

element jobs must be scheduled before the on-time member jobs.

Property 3 will be proved by contradiction. We assume that q+ v, where v ≥ 1, member jobs

are scheduled on-time in S. The completion time of the last job in these q+ v member jobs must

be larger than (q+ v)N +3(q+ v)(q+1). It is thus obvious that at least one member job cannot

be on-time. Therefore, it is not possible to have more than q on-time member jobs in S. On the

contrary, we assume that only q− v, where v ≥ 1, member jobs are on-time in S. Let JL,S be the

set of member jobs that are late jobs, JO,S be the set of member jobs that are on-time. We get

that

∑

J3q+j∈JL,S

(M −xj,1 −xj,2 −xj,3) = (r− (q− v))M −
∑

J3q+j∈JL,S

(xj,1 +xj,2 +xj,3)

≥ (r− q)M + vM −



A−
∑

J3q+j∈JO,S

(xj,1 +xj,2 +xj,3)





> (r− q)M. (51)

The last step is due to (46), M > 3q2. As the total weighted number of late jobs in S must be larger
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than or equal to
∑

J3q+j∈JL,S
(M − xj,1 − xj,2 − xj,3), it is clear from (51) that the total weighted

number of late jobs must be larger than (r− q)M − (A−3q(3q+1)/2). Therefore, it is not possible

to have few than q on-time member jobs in S. We can conclude that the number of on-time member

jobs in S must be exactly q. So, Property 3 holds.

Property 4 is proved by contradiction. We assume that v, where v ≥ 1, element jobs in S are

late. From Property 3, the set of late jobs must include v element jobs and (r− q) member jobs.

The total weighted number of late jobs is vM +
∑

J3q+j∈JL,S
(M −xj,1 −xj,2 −xj,3) and

vM +
∑

J3q+j∈JL,S

(M −xj,1 −xj,2 −xj,3) ≥ (r− q)M + vM −



A−
∑

J3q+j∈JO,S

(xj,1 +xj,2 +xj,3)





> (r− q)M. (52)

The last step is due to (46), M > 3q2. Clearly, it contradicts to the fact that the total number of

weighted late jobs in S is not greater than y. Property 4 holds.

Property 5 is proved by using Property 3, Property 4 and (48). Let αk be the number of

on-time member jobs which interrupt element job Jk for 2 time units. Based on the properties of

S, all the possible values for αk, 1≤ k ≤ 3q, must satisfy (53), (54) and (55) stated below. From

Property 3, we have
3q
∑

k=1

αk = 3q. (53)

From Property 4, we have
∑i

k=1(q+1+αk)≤ i(q+2) for i= 1,2, · · · ,3q. In other words,

i
∑

k=1

αk ≤ i, (54)

for i = 1,2, · · · ,3q. From Property 3 and 4, only (r− q) member jobs are late in S. The total

weighted number of late jobs in S is given by

∑

J3q+j∈JL,S

(M −xj,1 −xj,2 −xj,3) = (r− q)M −



A−
∑

J3q+j∈JO,S

(xj,1 +xj,2 +xj,3)





≤ (r− q)M −

(

A−
3q(3q+1)

2

)

.
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Note that
∑

J3q+j∈JO,S
(xj,1 + xj,2 + xj,3) =

∑3q

k=1 kαk. We can get that
∑3q

k=1 kαk ≤ 3q(3q + 1)/2.

Based on the fact that
∑3q

k=1 k = 3q(3q + 1)/2, we thus have the following inequality related to

αi,1≤ i≤ 3q.

3q
∑

k=1

k(αk − 1)≤ 0. (55)

Let ααα = (α1, α2, · · · , α3q) denote a solution set satisfying (53), (54) and (55). To facilitate our

proof, we define W (ααα) as the left hand side of the inequality (55) :

W (ααα) =

3q
∑

k=1

k(αk − 1). (56)

Clearly, ᾱαα = (1,1, · · · ,1), i.e. ᾱ1 = ᾱ2 = · · · = ᾱ3q = 1, is a solution set and W (ᾱαα) = 0. We will

show that ᾱαα by contradiction that W (ααα) > W (ᾱαα) = 0 for all ααα 6= ᾱαα. Assume that there exists a

solution set ααα′ = (α′
1, α

′
2, · · · , α

′
3q) in which some values are not equal to 1. Let t=mini{i|α

′
i 6= 1}.

That is to say, either α′
t ≥ 2 or α′

t = 0. If α′
t ≥ 2, Jt must be late. It violates Property 4.

Consider the second situation that α′
t = 0. By (53), there must exist an element job Ji such that

i > t and α′
i ≥ 2. Let s=mini{i|i > t and α′

i ≥ 2}. We can construct ααα′′ as follows :

α′′
i =











1 if i= t,

α′
s − 1 if i= s,

α′
i if i 6= t, s.

(57)

Then, we can get that

W (ααα′)−W (ααα′′) = (s(α′
s − 1)+ t(α′

t − 1))− (s(α′′
s − 1)+ t(α′′

t − 1)) .

As α′′
s = α′

s − 1, α′
t = 0 and α′′

t =1, W (ααα′)>W (ααα′′).

If some values in ααα′′ are not equal to 1, we can apply the same procedure stated as (57) to adjust

the values in the set. Eventually, we will obtain a value set equal to ᾱαα. From the above analysis,

the W function of each newly adjusted value set is strictly less than that of the original one. Hence,

W (ααα′)>W (ααα′′)> · · ·>W (ᾱαα) = 0. It contradicts that there exists an ααα 6= ᾱαα such that W (ααα)≤ 0.

Therefore, ᾱ1 = ᾱ2 = · · ·= ᾱ3q =1 must be the unique solution satisfying (53), (54) and (55).
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So, we can conclude that each element job is interrupted by exactly one on-time member job for

2 time units. Moreover, there does not exist any two on-time member jobs interrupting the same

element job for 2 time units. Therefore, Property 5 holds.

By defining C ′ ⊆ C as that C ′ = {Cj |J3q+j is on-time in S}. Together with Property 4 and

Property 5, we can conclude that C ′ is an exact cover of X. Q.E.D.

9. Complexity Hierarchy

In this section, the complexities of the scheduling problems for human multitasking model with

switching cost will be summarized. The complexity hierarchy for the problems regarding asym-

metric switching costs will be presented in the first subsection. For completeness, the complexities

of the total tardiness and the total weighted tardiness problems are included. The complexity

hierarchy for the problems regarding symmetric switching costs will be presented in the second

subsection.

The core hierarchy structure is based on Lageweg, Lenstra, Lawler & Rinnooy Kan (1982). The

complexity hierarchy of the problems 1|mt|Cmax, 1|mt|Tmax and 1|mt|Lmax is based on the same

reasoning for the case of asymmetric switching costs. The reduction of 1|mt|Cmax to 1|mt|Tmax is

based on the setting di = 0 and wi = 1 for all i= 1, · · · , n. The reduction of 1|mt|Tmax to 1|mt|Lmax

is based on the fact that the instance for the decision if Lmax = Z, for Z > 0, is the same as the

instance for the decision if Tmax = Z. Moreover, the instance for the decision if Lmax ≤ 0 is the

same as the instance for the decision if Tmax = 0.

9.1. Asymmetric switching costs

Figure 4 shows the complexity hierarchy of the scheduling problems regarding human multitasking

behavior with asymmetric switching costs. For asymmetric switching costs, we have proved in

Theorem 1 that the problems 1|mt,fij |Cmax is NP-hard, in Theorem 4 that problem 1|mt,fij |
∑

i ci

is strongly NP-hard and in Theorem 12 that 1|mt,fij,DLJ |
∑

iUi is strongly NP-hard. As a result,

the problems 1|mt,fij |Lmax and 1|mt,fij |Tmax must be NP-hard as stated in Theorem 9 and
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NP−Hard

NP−Hard

Tmax

Lmax

TNLJ

TWT
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TWCT

Cmax

TCT

Strongly

Figure 4 The complexity hierarchy of the scheduling problems regarding human multitasking behavior and asym-

metric switching costs.

Theorem 6. The problem 1|mt,fij |
∑

i Ti, 1|mt,fij |
∑

iwiTi must be strongly NP-hard. Imply from

the strongly NP-hardness of 1|mt,fij = fji,DLJ |
∑

iwiUi, the problem 1|mt,fij,DLJ |
∑

iwiUi is

strong NP-hard.

9.2. Symmetric switching costs

Figure 5 shows the complexity hierarchy of the scheduling problems regarding human multi-

tasking behavior with symmetric switching costs. The complexities of the problems 1|mt,fij =

fji|Cmax, 1|mt,fij = fji|
∑

iwici, 1|mt,fij = fji|Tmax and 1|mt,fij = fji|Lmax are based on the The-

orem 2, Theorem 5, Theorem 7 and Theorem 10. The NP-hardness of the problem 1|mt,fij =

fji,DLJ |
∑

iUi and the strongly NP-hardness of the problem 1|mt,fij = fji,DLJ |
∑

iwiUi are

based on Theorem 13 and Theorem 15. The NP-hardness of the problem 1|mt,fij = fji|
∑

i Ti

is implied from the results in Du & Leung (1990). The strongly NP-hardness of the problem

1|mt,fij = fji|
∑

iwiTi is implied from the results in Lawler (1977) and Lenstra, Rinnooy Kan &

Brucker (1977).
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Figure 5 The complexity hierarchy of the scheduling problems regarding human multitasking behavior and sym-

metric switching costs.

10. Conclusions

Six scheduling problems regarding human multitasking behavior have been investigated in this

paper. For the late job problems, we assume that human workers will discard all the late jobs. For

each scheduling problem, we have analyzed the complexities of the problem under both asymmetric

and symmetric switching costs environments.

For asymmetric switching costs, we have shown that all problems are either NP-hard or

strongly NP-hard. By reduction from Feedback Arc Set problem, we have shown that the prob-

lem 1|mt,fij |Cmax is NP-hard. Thus, the problems 1|mt,fij |Tmax and 1|mt,fij |Lmax are NP-hard.

By reduction from 1|prec|
∑

i ci, we have shown that the problem 1|mt,fij |
∑

i ci is strongly NP-

hard. Thus, the problems 1|mt,fij |
∑

iwici, 1|mt,fij |
∑

i Ti and 1|mt,fij |
∑

iwiTi must also be

strong NP-hard. By reduction from Exact Cover by 3-Sets problem, we have further shown that

1|mt,fij,DLJ |
∑

iUi is strongly NP-hard. Thus, the problem 1|mt,fij,DLJ |
∑

iwiUi is strongly

NP-hard.

For symmetric switching costs, we have shown that the problem 1|mt,fij = fji|Cmax is an easy

problem as Cmax =
∑n

i=1 pi +
1
2

∑n

i=1

∑n

j=1 fij for any feasible schedule of a given job set. With
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this important result, three polynomial-time algorithms have been developed for solving the prob-

lems 1|mt,fij = fji|
∑

iwici, 1|mt,fij = fji|Tmax and 1|mt,fij = fji|Lmax. For solving the problem

1|mt,fij = fji|
∑

iwici, Algorithm WCT has been developed which is a O(n2)-time algorithm. For

solving the problems 1|mt,fij = fji|Tmax and the 1|mt,fij = fji|Lmax, Algorithm WT and Algo-

rithm WL have been developed. Their complexities are O(n2) for jobs with different weights. We

have further shown that these two problems can be solved by earliest due date (EDD) rule if

all the job weights are equal. By reduction from the Independent Set problem, we have shown

that 1|mt,fij = fji,DLJ |
∑

iUi is NP-hard. Then, by reduction from Exact Cover by 3-Sets (X3C)

problem, we have shown that the problem 1|mt,fij = fji,DLJ |
∑

iwiUi is strongly NP-hard. For

the problems 1|mt,fij = fji|
∑

i Ti and 1|mt,fij = fji|
∑

iwiTi, based on the results Lawler (1977),

Lenstra, Rinnooy Kan & Brucker (1977) and Du & Leung (1990), they are respectively NP-hard

and strongly NP-hard.

Finally, together with the complexity hierarchies presented by Lageweg, Lenstra, Lawler & Rin-

nooy Kan (1982), the complexity hierarchy of the scheduling problems regrading human multitask-

ing behavior are complied and shown in Figure 4 and Figure 5.

While we have shown the complexities of the problems regarding human multitasking behav-

ior and developed algorithms for those problems which are polynomial-time solvable, we have

not developed any pseudo polynomial-time or approximation algorithms for those problems which

are NP-hard or strongly NP-hard. In particular, the problems 1|mt,fij = fji,DLJ |
∑

iUi and

1|mt,fij = fji,DLJ |
∑

iwiUi would be two our future focuses. As mentioned earlier in the paper,

another important future work is to investigate the productivity of a worker, as compared with

sequential processing, if multitasking is unavoidable.
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Appendix A: Results in Hall, Leung & Li (2014)

Here, we summarize the results obtained by Hall, Leung & Li (2014). Supposing the switching costs

are constant, the problems of minimizing the total weighted completion time and the maximum

lateness can be solved in O(n2) and O(n log(n)) time.

Theorem 16 (Theorem 1 in (Hall, Leung & Li 2014)) The problem 1|mt,fij = ξ|
∑

iwici is

able to be solved in O(n2) time.

Theorem 17 (Theorem 2 in (Hall, Leung & Li 2014)) The problem 1|mt,fij = ξ,wi =

1|Lmax is able to be solved in O(n log(n)) time.

In regard to the late job problems, they assume that the switching costs are constant and the

late jobs are scheduled arbitrarily after the on-time jobs.

Theorem 18 (Theorem 3 in (Hall, Leung & Li 2014)) If the late jobs are scheduled arbi-

trarily after all the on-time jobs have completed, the problem 1|mt,fij = ξ|
∑

iUi is NP-hard.
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Theorem 19 (Theorem 5 in (Hall, Leung & Li 2014)) If the late jobs are scheduled arbi-

trarily after all the on-time jobs have completed, the problem 1|mt,fij = ξ|
∑

iwiUi is strongly

NP-hard.

For the special case that gi(p
′
i) = Dp′i for 0 < D < 1, a polynomial-time algorithm has been

developed. Hence, the total number of late jobs problem is polynomial-time solvable.

Theorem 20 (Theorem 4 in (Hall, Leung & Li 2014)) If gi(p
′
i) =Dp′i for 0<D< 1 and the

late jobs are scheduled arbitrarily after all the on-time jobs have completed, the problem 1|mt,fij =

ξ|
∑

iUi is able to be solved in O(n log(n)) time.

Likewise, for the total weighted late job problem, two pseudo polynomial-time algorithms have

been developed. Let W =
∑n

i wi and P =
∑n

i pi.

Theorem 21 (Theorem 6 in (Hall, Leung & Li 2014)) If gi(p
′
i) =Dp′i for 0<D< 1 and the

late jobs are scheduled arbitrarily after all the on-time jobs have completed, the problem 1|mt,fij =

ξ|
∑

iwiUi is able to be solved in O(n2min{W,P}) time.


