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Abstract

While conventional learning theory focus on training a neural network to attain good
generalization, fault tolerant learning aims at training a neural network to attain acceptable
generalization even if network fault might appear in the future. This paper presents an ex-
tensive survey on the previous work done on fault tolerant learning. Those analytical works
that have been reported in the literature and those algorithms that have been proposed to
deal with weight noise or node fault will be elucidated. Furthermore, an objective function
based framework for fault tolerant learning is proposed. Future work along the direction is
presented.
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1 Introduction

In conventional learning theory, the objective of a learning algorithm is to attain a neural network
(NN) of good generalization. To accomplish this, one approach is by adding regularizer [32, 31, 37,
38] to penalize the weights’ magnitude. Another approach is by pruning [23, 29, 33, 31, 48, 43]
redundant weights. The purposes of weight penalization and redundant weights removal are
essentially the same, i.e. to reduce model complexity. From statistical learning theory, 1 over-
complexity can always lead to poor generalization (over-fit). In other words, conventional learning
theory aims at looking for a neural network that is of minimal complexity. This idea works very
well whenever a trained neural network model is hard-coded in a program running in a computer.
The floating point format in a computer can represent a weight value of very high precision. The
performance of this software implemented model will be indifference from the one obtained after
learning. However, it is not true for a neural network that is embedded in a hardware system,
like FPGA.

As mentioned in [44], hardware can fail in a number of complex ways. Stuck at fault affecting
the sign bit of a weight might cause its value to change from +W to −W or vice versa. An
open circuit in an analog VLSI implementation leading to a disconnection of a link could be
modeled by setting its weight stuck at zero or a neuron dead. If a link got shorted to power
supply, the fault could be abstracted by setting the associated weight stuck at +W or −W . If a
weight is implemented as resistors, its value may degrade over time due to material depreciation.
Nevertheless, the reduced precision floating point representation will lead to quantization error

1Please refer to Chapter 9 in [8] and Chapter 7 in [24]
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which can be modeled as a multiplicative weight noise effect. In summary, four types of fault
that can found in a neural network.

• Node fault (Stuck-at fault) – Single node fault or multiple nodes fault

• Weight noise (weight perturbation) – Additive or multiplicative

• Input noise (input perturbation)– Additive or multiplicative

• Perturbations on model parameters – e.g. the centers and widths in RBF, and the para-
meter τ in the sigmoid function

• Single event upset – random output/input upset of an electronic component due to radiation

All these hardware failures and low precision floating point representation will eventually make
the performance of an FPGA implemented neural network degrade from its software counterpart.
This degradation can be drastic if their effects have not been properly considered during training.

Tremendous research works have been done in the last decade to deal with these network
faults. Basically, those works can be categorized into one of the following areas.

• Analytical works, which include (I) the analysis on effect of those faults on (1) the output
sensitivity, (2) the error sensitivity and (3) the probability of output error of a neural
network; and (II) the analysis on the relationship amongst fault tolerance, generalization
and model complexity.

• Develop fault tolerant learning algorithms or network synthesis methods dealing with
weight noise.

• Develop fault tolerant learning algorithms or network synthesis methods dealing with node
fault.

The remind of the paper is organized as follows. In the next section, previous work on
sensitivity analysis on a neural network suffered from noise and fault will be presented. Section 3
presents the algorithms and synthesis methods that can train a neural networks to deal with
weight noise. Then, those algorithms and synthesis methods for dealing with node fault will be
elucidated in Section 4. An objective function based framework will be presented in Section 5.
Disucssion on the previous works done and a list of suggested future works will be given in
Section 7. The conclusion is presented in Section 8.

2 Analytical work

Consider a Madaline with threshold logic output neuron, Stevenson et al [54] gave a comprehen-
sive analysis on the probability of output error with respect to different type of noises, such as
input and weight noise, both additive and multiplicative. Choi and Choi [15] based on statisti-
cal sensitivity approach deriving different output sensitivity measures of a MLP network due to
different type of noise. For a Madaline with sigmoidal output neuron, Piche in [47] followed an
idea from signal to noise ratio (SNR) and derived a set of measures for the output sensitivity.
Furthermore, a weight accuracy selection algorithm is developed and applied to determine the
precision requirement in hardware implementation. Townsend and Tarassenko [65] studied the
radial basis function (RBF) network with multiple outputs and derived a matrix form output
sensitivity for an RBF that is suffered from perturbations in input data, basis centers and output
weights.
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Table 1: Research works on the analysis of a fault tolerant NN.

Year/Ref. Fault Model Work
1990 [54] Any weight noise Madaline Probability of output error
1992 [15] Any noise Any Output sensitivity measure
1995 [47] Any noise Madaline Precision requirement
1995 [44] Single node fault MLP with 0/1 output Triple modular redundant
1996 [10] Multiplicative RBF Generalization ability

weight noise
1999 [65] Any noise RBF Output sensitivity matrix
1999 [2] Any weight noise MLP Output sensitivity measure
1999 [45] - MLP Relationship between FT,

generalization and VC dim.
2000 [4] Any weight noise MLP Generalization ability
2003 [56] Single node fault RBF Error sensitivity measure
2004 [20] Any weight noise Functional net Error sensitivity measure
2004 [13] Any noise MLP Boundedness on the MSE

wrt input/weight noise
2005 [17, 18] Any noise RBF Upper bounds on the MSE

wrt inputs/parameters noise
2005 [57] Multiple nodes fault RBF Fault tolerant regularizer
2007 [55] Multiplicative RBF Equivalence between explicit

weight noise regularization and weight decay

Any noise here refers to the noise which is either input noise or weight noise, and either
additive or multiplicative.

As output sensitivity is an indirect view point to understand the effect of NN due to noise,
the actual performance degradation cannot be identified easily. An alternative approach is to
analyze the actual performance, i.e. generalization, being affected. Catala and Parra proposed a
fault tolerance parameter model and studied the performance degradation of a RBF network if
its basis centers, widths and the weights are corrupted by multiplicative noise [10]. Bernier et al
extended from Choi & Choi statistical sensitivity approach [15] and derived the error sensitivity
measure for MLP [2, 4] and RBF network [6]. Similarly, Fontenla-Romero et al derived the
error sensitivity measures for functional net [20] Sum & Leung [56] derived an error sensitivity
measure for single node fault RBF network. Then an on-line pruning algorithm making use of
the measure is proposed to attain fault tolerant RBF.

Noise can sometimes be beneficial to neural network as well. Murray & Edwards [40] in-
vestigated and found that adding multiplicative weight noise (and other kinds of noise) during
training can improve the generalization ability of a MLP. Bishop [7] showed that the effect of
adding small additive input noise during training is equivalent to Tikhonov regularization. Jim
et al [27] noticed that adding multiplicative weight noise not just can improve the generalization
ability, but also can improve the convergence ability in training a recurrent NN.
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3 Methods Dealing With MWN

While lot of works have been done to understand the effect of noise to the network performance,
various training methods aiming to improve the fault tolerant ability of a NN have been devel-
oped. Since the effect of a multiplicative weight noise is proportional to the magnitude of the
associated weight, one intuitive approach is to control the magnitude of the weights to small val-
ues. Hammadi and Ito [22] proposed to shrink the magnitude of the most harmful weight, that is
defined by a relevance measure, during each step of training. Cavalieri & Mirabella in [11] have
proposed a modified backpropagation learning algorithm for multilayer perceptrons. Whenever
the magnitude of a weight has reached a predefined upper limit, it will not be updated unless the
update can bring its magnitude down. Kamiura et al [28] proposed another weight limiting step.
In which the feasible range is decided from the average and variance of the weights’ magnitude.

Consider that the noise effect can eventually be cancelled out at the output node if all the
weight values are equal, Simon in [53] suggested a distributed fault tolerance learning approach
for optimal interpolation net. The learning is formulated as a nonlinear programming problem,
in which training error is minimized subjected to an equality constraint on weight magnitude.
Extended from the work done in [10], Parra and Catala in [42] demonstrated how a fault tolerant
RBF network can be obtained by using a weight decay regularizer [37]. From model sensitivity
point of view, Bernier et al developed a method called explicit regularization to attain a MLP
[3, 5] or RBF network [6] that is able to tolerate multiplicative weight noise.

4 Methods Dealing With Node Fault

To overcome the effect due to node fault, two approaches have been adopted : (1) adding
heuristics (random fault or network redundancy) during training and (2) formulating the training
as a nonlinear optimization problem.

Adding heuristic in the training algorithm is essentially to enforce the internal representation
ability of a NN distributed widely within the hidden nodes or weights. So that, no single node or
single weight is particularly important and then random removal of a node or a weight will only
gracefully degrade the performance of the network. For this approach, injecting random node
fault alone [50, 9] or together with random node deletion and addition [14] during training have
been developed. Adding network redundancy by replicating multiple hidden layers after a NN
has been well trained [19, 44] is another one. Under the same scenario, limit weight magnitude
either by adding weight decay regularizer [14] or bounding the weight magnitude to a small
value during training [11, 22, 28] are another two techniques that can succeed in obtaining a
fault tolerant NN. Sher & Hsieh [51] proposed a constraint backpropagation algorithm training
method. In which, a weight will be updated if any one of the faulty networks (with m nodes
fault) gives absolute error larger than a threshold. The weight is thus updated by applying
backpropagation algorithm on the faulty network which gives the largest absolute error2.

Another approach is to formulate the learning directly as a constraint optimization problem.
Neti et al [41] defined the problem as a minimax problem, in which the objective function to
be minimized is the maximum of the mean square errors over all fault models. Deodhare et al
took a similar idea in [16] by defining the objective function to be minimized as the maximum
square error, over all fault models and all training samples. As the computational cost in solving
these minmax problem could be severe for large number of hidden units, Simon & El-Sherief in
[52] and Phatak & Tcherner in [46] formulated the learning problem to a simpler unconstraint

2The measure being used in Sher & Hsieh’s work is basically the same as the one being used in Deodhare et
al’s work [16].
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Table 2: Training algorithms and network synthesis methods.

Year/Ref. Fault Model Idea
1991 [9, 50] Node fault MLP Injecting random node fault

during training
1992 [41] Single node fault MLP Minimax Problem1

1993 [19, 44] Single node fault MLP Adding redundancy
1993 [39] Weight noise MLP Adding weight noise

during training
1994 [14] Weight noise MLP Apply weight decay algo.2

1997 [22] Node fault MLP Weight magnitude bounding
1998 [16] Single node fault MLP Minimax problem3

1999 [11] Node fault MLP Weight magnitude bounding
1999 [51] Multiple nodes fault MLP Constraint BP3

2000 [28] Node fault MLP Weight magnitude bounding
2000 [42] Multiplicative weight noise RBF Apply weight decay algo.
2000 [3, 5] Multiplicative weight noise MLP Explicit regularization
2001 [53] Weight noise INa Nonlinear program4

2002 [46] Single node fault MLP Nonlinear program5

2004 [62] Node fault MLP Apply penalty term6

2005 [34, 57] Multiple nodes fault RBF Fault tolerant regularizer
2007 [61] Multiplicative weight noise RBF Apply KL divergence

a Interpolation net
1 The objective function is minθ{maxθ̃ 1/N

∑N
k=1(yk − f(xk, θ̃|θ))2}

2 Apply weight decay algorithm with random node fault injection during training
3 The objective function is minθ{maxθ̃ maxk(yk − f(xk, θ̃|θ))2}

4 Minimizing mean square errors subject to equality constraint on weights’ magnitudes
5 The objective function is 1/N

∑N
k=1(yk − f(xk, θ))

2 + α|Ωθ̃|−1 ∑
θ̃∈Ωθ̃

1/N
∑N

k=1(yk − f(xk, θ̃|θ))2

6 The objective function is 1/N
∑N

k=1(yk − f(xk, θ))
2 + α

n
|θ|n

optimization problem, in which the objective function consists of two terms namely the mean
square errors of the fault-free model and the ensemble average of the mean square errors over all
fault models. Although solving unconstraint optimization problem is a lot more easy compared
with a minimax problem, these formulations are still suffered from sever computational burden
when their formulations are extended to handling multiple nodes fault. In view of the difficulty
in extending the existing approaches to multiple nodes fault, Leung et al in [34] and Sum in [57]
have attempted to these problems by devising a new regularizer for fault tolerant learning.

5 Objective Function Based Framework

5.1 Notations

Let M0 be the unknown system to be modeled. The input and output of M0 are denoted
by x and y respectively. The only information we know about M0 is a set of measurement
data D, where D = {(xk, yk)}N

k=1. Making use of this data set, an estimated model M̂ that
is good enough to capture the general behavior of the unknown system can be obtained. For
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Figure 1: Conventional learning theory and fault tolerant learning theory.

many real-time applications, this good model M̂ will furthermore be mapped onto a hardware
implementation, like FPGA or DSP chip. As it is known that a hardware implementation of a
model M̂ can never be perfect. We denote this inaccurate implementation of M̂ by M̃. The
conceptual difference amongst M0, M̂ M̃ is shown in Figure 1. Finally, we let Ω be the set of
models in which M̂ and M̃ are defined.

In conventional learning theory, it is assumed that the implementation of a model M0 is
fault-free. Therefore M̃ is equal to M̂. In such case, the learning algorithm for obtaining the
best implemented model is basically the same as the learning algorithm for obtaining the best
estimated model.

In FTL, such assumption is not existed. An implementation of a model M0, denoted by M̃,
is defined as a random model probabilistically depended on the model M. The set of models
in which M̃ can be defined is denoted by Ω̃M. Clearly, Ω̃M ⊂ Ω. The conditional probability is
denoted by P (M̃|M̂). This is depended on the property of the fault model concerned. It could
be very complicated if multiple fault models co-exist.

5.2 Measure L(M|D)

To search for the best model M̂, one would need to define a measure to evaluate the closeness
between two models. In convention learning, generalization ability and a posterior probability
are two common measures being applied to measure the closeness between a model M and the
unknown model M0.
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Estimation For a set of data D and let J(M|D) be the measure, the best estimated model M̂
will be defined by

M̂ = arg min
M∈ΩM

{J(M|D)} . (1)

Implementation While in FTL, the focus is on the implemented model. The best implemented
model M̂I is defined as the one minimizing the expectation of J(M|D) over Ω.

L(M|D) =
∫

M̃∈Ω̃M
J(M̃|D)P (M̃|M)dM̃. (2)

M̂I = arg min
M∈ΩM

{L(M|D)} . (3)

The learning algorithm that can search for the MI is called a fault tolerant learning algorithm.

5.3 Estimated Models Ω

To clarify the concept ideas about estimated model set, let us take RBF networks as an example.
Consider the estimated model is an RBF network consisting of M hidden nodes. In which only
the output weights can be tunable but the basis centers and widths are fixed, an RBF network
can be formulated as

M∑

i=1

θiφi(x),

where φi(x) for all i = 1, 2, · · · , M are the radial basis functions given by

φi(x) = exp

(
−(x− ci)

2

σ

)
, (4)

cis are the radial basis function centers and the positive parameter σ > 0 controls the width of
the radial basis functions.

For k = 1, 2, · · · , N
M0 : yk = f(xk) + ek, (5)

where (xk, yk) is the kth input-output pair that is measured from an unknown deterministic
system f(x) with random output noise ek. To model the unknown system, we assume that f(x)
can be realized by an RBF network, i.e.

M : yk =
M∑

i=1

θiφi(xk) + ek (6)

ek ∼ N (0, Se), (7)

for all k = 1, 2, · · · , N . Se is known in advance, a model M in Ω can indeed be represented by an
M -vector, θ = (θ1, θ2, · · · , θM)T . The model set Ω is isomorphic to an M -dimension Euclidean
space, RM .

The best estimated model M̂ is thus represented θ̂. Equation (1) is rewritten as follows :

θ̂ = arg min
θ∈RM

{J(θ|D)} . (8)

Here J(θ|D) can be defined in one of the following forms.
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1. Sum Square Errors (SSE) :

J(θ|D) =
1

N

N∑

k=1

(yk − f(xk, θ))
2. (9)

2. SSE with Regularizer :

J(θ|D) =
1

N

N∑

k=1

(yk − f(xk, θ))
2 + λR(θ), (λ > 0). (10)

3. Likelihood Probability :
J(θ|D) = −P (D|θ). (11)

4. Log Likelihood :
J(θ|D) = − log P (D|θ). (12)

5. A Posterior Probability :

J(θ|D) = −P (D|θ)P (θ)

P (D)
. (13)

6. Log A Posterior Probability :

J(θ|D) = − log P (D|θ)− log P (θ). (14)

The regularrization term R(θ) in Equation (10) has the following properties :

(i) R(θ) ≥ 0, for all ‖θ‖ ≥ 0

(ii) R(0) = 0 and

(iii) R(θ′) > R(θ), if ‖θ′‖ > ‖θ‖.
Two examples for R(θ) are

∑M
i=1 θ2

i , which is from weight decay [14] and
∑M

i=1 ‖θi‖n (n is a
positive integer) which is from [62]. The probability P (θ) which appears in Equation (13) and
Equation (14) is the A Prior distribution of θ.

The best implemented model M̂I is thus represented θ̂I . Equation (2) can be rewritten as
follows :

L(θ|D) =
∫

θ̃∈Ω̃θ

J(θ̃|D)P (θ̃|θ)dθ̃ (15)

θ̂I = arg min
θ∈RM

{L(θ|D)} . (16)

The integration is taken over the RM space. The probability P (θ̃|θ) is depended on the fault
model concerned. Note that this probability is not the same as the A Prior probability P (θ). If
there are only finite number of possible faulty models, the objective function defined in Equa-
tion (15) would be given by

L(θ|D) =
∑

θ̃∈Ω̃θ

J(θ̃|D)P (θ̃|θ)dθ̃. (17)

The set of faulty models is depended on the estimated model θ.
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One should note that the best estimated model (i.e. the fault-free model) obtained either by
Equation (11) or Equation (12) are the same because

arg min
θ∈RM

{−P (D|θ)} = arg min
θ∈RM

{− log P (D|θ)} .

However, for fault tolerant cases, there will have no such guarantee. The same reason applies to
Equation (13) and Equation (14).

Apart from defining an RBF network as in Equation (7), one can also define the estimated
model in other forms. For instance,

yk = θ0 +
M∑

i=1

θiφi(xk) + ek, (18)

ek ∼ N (0, Se), (19)

for k = 1, 2, · · · , N . For a given Se, the estimated model set will be isomorphic to the RM+1

space. If we assume that the values of cis and σ in the M basis functions are not predefined, an
RBF model will be parameterized by an (2M + 2)-vector, (θ0, θ1, · · · , θM , c1, c2, · · · , cM , σ). The
estimated model set Ω will thus be isomorphic to the R2M+2 space.

5.4 Implemented Models Ω̃M
Recall that an implemented model of M is a model, in which part of its structure is faulty. In
this section, three typical fault models will be introduced including (1) the multiplicative weight
noise (2) single-node fault and (3) multiple-nodes fault. Similarly, we use RBF network as an
example for illustration.

5.4.1 Multiplicative weight noise with J(θ|D) = SSE

Multiplicative weight noise exists whenever a weight is encoded in a low precision binary form.
An implementation of a model θ (denoted by θ̃) can be defined as follows :

θ̃i = θi + βi θi, (20)

βi ∼ N (0, Sβ), (21)

for all i = 1, 2, · · · ,M . In other word,

P (βi) =
1√

2πSβ

exp

(
− β2

i

2Sβ

)
∀ i = 1, · · · ,M. (22)

Let θ = (θ1, θ2, · · · , θM)T and β = (β1, β2, · · · , βM)T ,

θ̃ = θ + A(θ)β,

A(θ) = diag {θ1, θ2, · · · , θM} .

So,
P (θ̃|θ) ∼ N (θ, SβA2(θ)). (23)

An example of P (θ̃|θ) is shown in Figure 2. Here θ = (0.1, 1)T and the weight noise variance Sβ

is 0.01.
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Figure 2: For multiplicative weight noise case, the conditional probability P (θ̃|θ) for θ equals to
(0.1, 1)T .

One should note that θ, θ̃ ∈ RM , and Ω̃θ = Ω = RM . For J(θ|D) is sum square errors,

L(θ|D) =
1

N

N∑

k=1

∫

θ̃∈Ω̃
(yk − f(xk, θ̃))

2P (θ̃|θ)dθ̃. (24)

Consider the transition probability P (θ̃|θ) as defined in Equation (23), it can be reduced to the
following explicit regularization form [3].

L(θ|D) =
1

N

N∑

k=1

(yk − f(xk, θ))
2 + SβθT

[
1

N

N∑

k=1

G(xk)

]
θ, (25)

where G(xk) is a diagonal matrix defined as follows :

G(xk) = diag
{
φ2

1(xk), φ
2
2(xk), · · · , φ2

M(xk)
}

. (26)

For RBF network with predefined basis function centers and widths, θ̂I is given by

θ̂I = (Hφ + SβQg)
−1

(
1

N

N∑

k=1

ykφ(xk)

)
, (27)

where

Hφ =
1

N

N∑

k=1

φ(xk)φ
T (xk)

Qg =




g1 0 · · · 0
0 g2 · · · 0
...

...
...

0 0 · · · gM




=
1

N

N∑

k=1

G(xk).
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It is clear that, those θ̃s with high probability are clustered around θ. If we restrict the θ̃
only those with P (θ̃|θ) larger than a small positive number δ, the best implemented model can
be re-defined as follows :

Lr(θ|D) =
∫

θ̃∈Ω̃r
θ

J(θ̃|D)P (θ̃|θ)dθ̃ (28)

θ̂I = arg min
θ∈RM

{Lr(θ|D)} , (29)

where Ω̃r
θ = {θ̃|P (θ̃|θ) ≥ δ}. The computation complexity for θ̂I can be largely reduced. This is

particularly advantageous when the dimension of θ is large.

5.4.2 Multiplicative weight noise with J(θ|D) = − log P (D|θ)
For RBF, P (yk|xk, β, θ) is given by

1√
2πSe

exp

(
−(yk −∑M

i=1 φi(xk)(1 + βi)θi)
2

2Se

)
(30)

for all k = 1, 2, · · · , N . Putting the definitions of P (βi) in Equation (22) and P (y|x, β, θ) in
Equation (30), and integrate over all possible β, we have the distribution

P (yk|xk, θ) =
∫

P (yk|xk, β, θ)P (β)dβ

=
1√

2πS(xk, θ)
exp

(
−(yk − φT (xk)θ)

2

2S(xk, θ)

)
(31)

for all k = 1, 2, · · · , N . S(x, θ) = Se + Sβ
∑M

i=1 φ2
i (x)θ2

i . The likelihood probability will be given
as follows :

P (D|θ) =
N∏

k=1

∫
P (yk|xk, β, θ)P (β)dβ. (32)

The L(θ|D) can then be written as follows :

L(θ|D) = −
N∑

k=1

log
∫

P (yk|xk, β, θ)P (β)dβ (33)

=
1

2
log 2π +

1

2N

N∑

k=1

log S(xk, θ) +
1

2N

N∑

k=1

(yk − φT (xk)θ)
2

S(xk, θ)
. (34)

Hence, θ̂I can be obtained by

arg min
θ

{
1

2N

N∑

k=1

log S(xk, θ) +
1

2N

N∑

k=1

(yk − φT (xk)θ)
2

S(xk, θ)

}
. (35)

By using the idea of gradient descent, a training algorithm can thus be derived. Taking the
gradients of the 2nd and the 3rd terms in Equation (34), it is readily obtained

∂

∂θ
log S(xk, θ) =

2Sβ

S(xk, θ)
G(xk)θ, (36)

∂

∂θ

(yk − φT (xk)θ)
2

S(xk, θ)
= −2Sβ(yk − φT (xk)θ)

2

S2(xk, θ)
G(xk)θ − 2(yk − φT (xk)θ)

S(xk, θ)
φ(xk), (37)
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Figure 3: Single-node fault NN models. For a network of M hidden nodes, there are M possible
single-node fault models.

where G(xk) is a diagonal matrix defined as in Equation (26).
A fault tolerant RBF network can thus be obtained by the following gradient descent algo-

rithm :

θ(t + 1) = θ(t)− µ
∂

∂θ
L(θ(t)|D), (38)

where µ is a small positive value corresponding to the step size and

∂L(θ|D)
∂θ

=
Sβ

N

N∑

k=1

(
1

S(xk, θ)
− (yk − φT (xk)θ)2

S2(xk, θ)

)
G(xk)θ − 1

N

N∑

k=1

(yk − φT (xk)θ)
S(xk, θ)

φ(xk). (39)

The initial condition θ(0) is set to be a small random vector close to null.

5.4.3 Single node fault with J(θ|D) = SSE

Once a node has been faulty, we assume that its output will be stuck at zero. Therefore, an RBF
network with its ith node being faulty will be denoted by an M -vector θ−i, which is identical to
θ except that the ith element is zero.

θ−i = (θ1, θ2, · · · , θi−1, 0, θi+1, · · · , θM)T

Assume that there is at most one node will be removed randomly. The probability that a network
will be faulty is q. Once a network is faulty, there is uniformly random for any one of the node
is fault, Figure 3. Under such circumstance,

Ω = RM , Ω̃θ = {θ, θ−1, θ−2, · · · , θ−M}. (40)

A node will be fault is about q/M probability.

P (θ̃|θ) =





1− q if θ̃ = θ

q/M if θ̃ = θ−1
...

...

q/M if θ̃ = θ−M .

(41)

For J(θ|D) is defined as the sum square errors,

L(θ|D) = (1− q)J(θ|D) +
q

M

M∑

i=1

J(θ−i|D). (42)
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In which,

J(θ−i|D) = J(θ|D) + θ2
i gi + 2θi

1

N

N∑

k=1

(yk − φT (xk)θ)φi(xk) (43)

where gi is the ith diagonal element of Qg. Hence, the objective function for attaining a RBF
network to tolerate single node fault can be written as follows :

L(θ|D) = J(θ|D) +
2q

M

1

N

N∑

k=1

ykφ
T (xk)θ +

q

M
θT [Qg − 2Hφ]θ. (44)

Taking the derivative of L(θ|D) and setting it to zero, θ̂I can be obtained as follows :

θ̂I =

(
Hφ +

q/M

1− q/M
Qg

)−1
1

N

N∑

k=1

ykφ(xk). (45)

The matrix q/M
1−q/M

Qg which appears in the last equation plays a role similar to a regularizer.

5.4.4 Multiple nodes fault with J(θ|D) = SSE

We assume that a node fault is equivalent to permanently set the output of the node zero.
Therefore, a faulty RBF f̂(x, θ̃), where θ̃ = (θ̃1, θ̃2, · · · , θ̃M)T and

θ̃i = βiθi, (46)

could be defined by multiplying each φi(x) by a random binary variable βi :

f(x, θ, β) =
M∑

i=1

βiθiφi(x). (47)

When βi = 1, the ith node is normal. When βi = 0, the ith node is fault. We assume that all
nodes are of equal fault rate p, i.e.

P (βi) =

{
p if βi = 0
1− p if βi = 1.

(48)

for i = 1, 2, · · · ,M and β1, · · · , βM are independent random variables.
The objective function for attaining an optimal fault tolerant RBF against multiple nodes

fault with fault rate p is given by

L(θ|D) =
1

N

N∑

k=1

y2
k − 2(1− p)

1

N

N∑

k=1

ykφ
T (xk)θ + (1− p)θT {(1− p)Hφ + pQg} θ.

The implicit regularizer is given by pθT (Qg −Hφ)θ.

Taking derivative the L(θ|D) with respect to θ and setting it to zero, θ̂I can be obtained as
follows :

θ̂ = (Hφ + p (Qg −Hφ))
−1 1

N

N∑

k=1

ykφ(xk). (49)

Observe that θ̂ above is also the solution of

L(θ|D) =
1

N

N∑

k=1

(
yk − φT (xk)θ

)2
+ θT Σθ, (50)

where Σ = p(Qg−Hφ), minimizing L(θ|D) is equivalent to minimizing the mean square training

errors N−1 ∑N
k=1

(
yk − φT (xk)θ

)2
plus an additional regularizer term θT Σθ.

13
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Figure 4: Multiple-nodes fault NN models. For a network of n hidden nodes, there are 2n − 1
possible multiple-nodes fault models.

6 Discussion & Future Works

As most of earlier works were working on training algorithms for fault tolerant neural network
and demonstrated their success via intensive computer simulations. Only a few recent papers
have researched on the relationship amongst fault tolerant, generalization and model complexity
[45, 57, 58]. A complete picture between conventional learning theory and fault tolerant learning
is still unclear. Objective function based framework is in its initial stage and a lot more works
have to be done to fill the blanks within. Many questions are left to be answered.

• In conventional learning, training a NN is determined by an objective function which the
learning algorithm apply. For fault tolerant learning, not all existing algorithms are defined
based upon objective functions. Some of them are designed by heuristic. Is it possible to
find the objective functions for them ?

• Algorithm like weight decay used to be applied in training a NN of good generalization has
also been applied in training a NN of good fault tolerance. Does it mean that weight decay
should be an universal technique for NN learning ?

• If their objective functions are found, what are their similarities, differences and relation-
ships with those defined in conventional learning ?

• Some research articles in the literature have summarized the previous works in regard to
fault tolerant neural networks. But, little theoretical work has been done and almost no
previous work has been done along the statistical learning point of view.

A summary of the known objective functions for fault tolerant learning is depicted in Table 3.
In which, the corresponding measures for Chiu et al’s work [14] and Deodhare et al’ work [16] are
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Table 3: Summary of the objective functions for FT learning.

Year L(θ|D) Objective Function

1992 [41] minθ{maxθ̃ SSE(θ̃)} minθ{maxθ̃

∑N
k=1(yk − f(xk, θ̃|θ))2}

1994 [14] Unknown SSE(θ) + λθT θ, (λ > 0)

1998 [16] Unknown minθ{maxθ̃ maxk(yk − f(xk, θ̃|θ))2}
2000 [3, 55]

∫
θ̃ SSE(θ̃)P (θ̃|θ)dθ̃ SSE(θ) + SβθT

[
1
N

∑N
k=1 G(xk)

]
θ

2002a [46]
∑

θ̃ SSE(θ̃)P (θ̃|θ) SSE(θ) + α
|Ωθ̃|N

∑
θ̃∈Ωθ̃

∑N
k=1(yk − f(xk, θ̃|θ))2

2004 [62] Unknown SSE(θ) + λ
∑M

i=1 |θi|n, (λ > 0)

2005 [34, 57]
∑

θ̃ SSE(θ̃)P (θ̃|θ) SSE(θ) + p θT (Qg −Hφ)θ

2007 [61] − ∫
θ̃ log P (D|θ̃)P (θ̃|θ)dθ̃

∑N
k=1 log S(xk, θ) +

∑N
k=1

(yk−φT (xk)θ)2

S(xk,θ)

2007 [60]
∑

θ̃ SSE(θ̃)P (θ̃|θ) SSE(θ) + 2q
MN

∑N
k=1 ykφ

T (xk)θ + q
M

θT [Qg − 2Hφ]θ

SSE(θ) = N−1 ∑N
k=1(yk − f(xk, θ)

2 S(x, θ) = Se + Sβ
∑M

i=1 φ2
i (x)θ2

i
a P (θ|θ) = 1

1+α
, P (θ̃|θ) = α

|Ωθ̃|(1+α)

still unknown. In addition to the literature survey provided in the earlier sections, some specific
problems that are still open are listed below.

• What is the underlying objective function for injecting random node fault during training ?

• What is the underlying objective function for adding multiplicative weight noise during
training ?

• What is the corresponding measure L(θ|D) for the objective function SSE(θ) + λθT θ ?

• What is the corresponding measure L(θ|D) for the objective function minθ{maxθ̃ maxk(yk−
f(xk, θ̃|θ))2} ?

• What is the performance of a neural network if it is trained by − ∫
θ̃ P (D|θ̃)P (θ̃|θ)dθ̃,

−
{∫

θ̃ P (θ̃|θ) log P (D|θ̃)dθ̃
}

or − log
{∫

θ̃ P (D|θ̃)P (θ̃|θ)dθ̃
}
− log P (θ) ?

7 Conclusions

Fault tolerant learning is essentially a difficult but interesting topic deserved for further investiga-
tion. This paper, extended from our previous work in [58], has given a comprehensive survey on
the related work done in the past two decades. Besides, an objective function based framework
has been proposed as a theoretical foundation for the undertanding of fault tolerant learning. A
number of open problems have been listed. In which, training algorithms using KL-divergence
and a posterior probability should be deserved for special attention.
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