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Abstract. While injecting weight noise during training has been pro-
posed for more than a decade to improve the convergence, generalization
and fault tolerance of a neural network, not much theoretical work has
been done to its convergence proof and the objective function that it is
minimizing. By applying the Gladyshev Theorem, it is shown that the
convergence of injecting weight noise during training an RBF network is
almost sure. Besides, the corresponding objective function is essentially
the mean square errors (MSE). This objective function indicates that
injecting weight noise during training an radial basis function (RBF)
network is not able to improve fault tolerance. Despite this technique
has been effectively applied to multilayer perceptron, further analysis on
the expected update equation of training MLP with weight noise injec-
tion is presented. The performance difference between these two models
by applying weight injection is discussed.

1 Introduction

Many methods have been developed throughout the last two decades to improve
the fault tolerance of a neural network. Well known methods include injecting
random fault during training [25, 5], introducing network redundancy [23], ap-
plying weight decay learning [9], formulating the training algorithm as a nonlin-
ear constraint optimization problem [10, 22], bounding weight magnitude during
training [7, 15, 17], and adding fault tolerant regularizer [2, 19, 27]. A complete
survey on fault tolerant learning methods is exhaustive. Readers please refer to
[8] and [29] for reference.

Amongst all, the fault-injection-based on-line learning algorithms are of least
theoretical studied. By fault injection, either fault or noise is introduced to a
neural network model before each step of training. This fault could either be
node fault (stuck-at-zero), weight noise or input noise. As many studies have been
reported in the literature on input noise injection [1, 4, 24, 13, 14], the primary
focus of this paper is on weight noise injection. Our companion paper [28] will
be focus on node fault injection.
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Suppose a neural network consists of M weights. Let θ ∈ RM be the weight
vector of a neural network model and the update equation is given by θ(t+1) =
θ(t)− F (x(t + 1), y(t + 1), θ(t)). The idea of weight noise injection is to replace
θ(t) in the factor F (·, ·, θ(t)) by F (·, ·, θ̃(t)). Here the elements of θ̃(t) is of the
form θ̃i(t) = θi(t) + ∆θi(t). The factor ∆θi(t) is the weight noise injected. The
update equation is thus defined as follows :

θ(t + 1) = θ(t)− F (x(t + 1), y(t + 1), θ̃(t)). (1)

Despite injecting weight noise to improve convergence ability, generalization and
fault tolerance have long been investigated [20, 21, 16, 11] for MLPs and recurrent
neural networks, and theoretical analysis on applying such technique to MLP has
been reported [1], little is known about the effect of injecting weight noise during
training an RBF network.

In this paper, an analysis on weight-noise-injection-based training will be pre-
sented. In the next section, the convergence proof and the objective function of
RBF training with on-line weight injection will be analyzed. Section 3 will show
the analysis on the case of MLP. The conclusion will be presented in Section 4.

2 RBF training with weight noise injection

2.1 Network model

Let M0 be an unknown system to be modeled. The input and output of M0 are
denoted by x and y respectively. The only information we know about M0 is a
set of measurement data D, where D = {(xk, yk)}N

k=1. Making use of this data
set, an estimated model M̂ that is good enough to capture the general behavior
of the unknown system can be obtained.

For k = 1, 2, · · · , N , we assume that the true model is governed by an un-
known deterministic system f(x) together with mean zero Gaussian output
noise :

M0 : yk = f(xk) + ek, (2)

Besides, we assume that the unknown system f(x) can be realized by an RBF
network consisting of M hidden nodes, i.e.

yk =
M∑

i=1

θ∗i φi(xk) + ek (3)

for all k = 1, 2, · · · , N and φi(x) for all i = 1, 2, · · · ,M are the radial basis
functions given by φi(x) = exp

(
−‖x−ci‖2

σ

)
, where cis are the centers of the

radial basis function and the positive parameter σ > 0 controls the width of the
radial basis functions. In vector form, Equation (3) can be rewritten as follows :

yk = φ(xk)T θ∗ + ek, (4)

where φ(·) = (φ1(·), φ2(·), · · · , φM (·))T and θ∗ = (θ∗1 , θ∗2 , · · · , θ∗M )T .



2.2 Weight noise injection training

While a network is trained by the idea of weight noise injection, the update
equation will be given by

θ(t + 1) = θ(t) + µt(yt − φT (xt)θ̃(t))φ(xt), (5)

where µt is (for t ≥ 1) the step size at the tth iteration,

θ̃i(t) =
{

θi(t) + βi for additive noise injection,
θi(t) + βiθi(t) for multiplicative noise injection. (6)

βi for all i = 1, 2, · · · ,M are independent mean zero Gaussian noise with variance
Sβ . Normally, it is assumed that the value of Sβ is small. Although the theoretical
proof presented later in this paper applies to any bounded value, it is meaningless
to consider a large value of Sβ .

2.3 Convergence and objective function

Theory of stochastic approximation has been developed for more than half a
century for the analysis of recursive algorithms. Advanced theoretical works for
complicated recursive algorithms have still been under investigation [18]. The
theorem applied in this paper is based on Gladyshev Theorem [12].

Theorem 1 (Gladyshev Theorem [12]). Let θ(t) and M(θ(t), ω(t)) for all
t = 0, 1, 2, and so on be m-vectors. ω(t) for all t = 0, 1, 2, and so on are i.i.d.
random vectors with probability density function P (ω) 4. Consider a recursive
algorithm defined as follows :

θ(t + 1) = θ(t)− µtM(θ(t), ω(t)). (7)

In which, the expectation of M(θ, ω) over ω,

M̄(θ) =
∫

M(θ, ω)P (ω)dω, (8)

has unique solution θ∗ such that M̄(θ∗) = 0.
Suppose there exists positive constants κ1 and κ2 such that the following

conditions are satisfied :

(C1) µt ≥ 0,
∑

t µt = ∞ and
∑

t µ2
t < ∞.

(C2) infε<‖θ−θ∗‖<ε−1(θ − θ∗)T M̄(θ) > 0, for all ε > 0.
(C3)

∫ ‖M(θ, ω)‖2P (ω)dω ≤ κ1 + κ2‖θ‖2.
Then for t →∞, θ(t) converges to θ∗ with probability one.

4 In the following convergence proof, ω(t) = (xt, yt, βt). Owing not to confuse the time
index t with the element index k, the subscript t is omitted. So that ω(t) = (xt, yt, β).



Applying Gladyshev Theorem, the following theorem can be proved for in-
jecting weight noise.

Theorem 2. For injecting (additive or multiplicative) weight noise during train-
ing an RBF network, the weight vector θ(t) will converge with probability one
to

θ∗ =

(
1
N

N∑

k=1

φ(xk)φT (xk)

)−1

1
N

N∑

k=1

ykφ(xk). (9)

(Proof) For a RBF network that is trained by injecting multiplicative weight
noise,

θ(t + 1) = θ(t) + µt(yt − φT (xt)θ̃(t))φ(xt), (10)
θ̃i = (1 + βi)θi, βi ∼ N (0, Sβ), ∀ i = 1, · · · ,M. (11)

Suppose Sβ is small. Taking expectation of the second term in right hand side
of the first equation with respect to β, it can readily be shown that

∫

Ωθ̃(t)

(yt − φT (xt)θ̃(t))φ(xt)dθ̃(t) = (yt − φT (xt)θ(t))φ(xt).

Further taking expectation of the above equation with respect to xt and yt,
h(θ(t)) will be given by

h(θ(t)) =
1
N

N∑

k=1

(yk − φT (xk)θ(t))φ(xk), (12)

Therefore, the solution θ∗ is θ∗ = H−1
φ Y .

Next, we are going to apply the Gladyshev Theorem for the convergence
proof. Normally, the first condition can easily be satisfied. It is because the
step size µt could be pre-defined. So, we skip the proof of Condition (C1) for
simplicity.

To prove Condition (C2), we first note that M̄(θ) = −h(θ). We further let
Y = 1

N

∑N
k=1 ykφ(xk) and ω = (xt, yt, β). Hence, for all ‖θ − θ∗‖ > 0, we have

−(θ − θ∗)T h(θ) = −(θ − θ∗)T (Y −Hφθ), which is greater than zero.
To prove Condition (C3), we consider the Equation (10). By triangle inequal-

ity,

‖M(θ, ω)‖2 ≤ ‖ytφ(xt)‖2 + ‖φ(xt)φ(xt)T θ‖2 + ‖φ(xt)φ(xt)T Aθβ‖2, (13)

where Aθ = diag {θ1, θ2, · · · , θM}. Clearly, the first term in the RHS of the
inequality is a factor independent of θ. We let it be K(xt, yt) as before. The
second term is θT (φ(xt)φ(xt)T )2θ. In which the matrix (φ(xt)φ(xt)T )2 is sym-
metric and of bounded elements. Therefore, its largest eigenvalue must also be a
bounded nonnegative number, say λ(xt). Taking expectation of the third term



with respect to β,

‖φ(xt)φ(xt)T Aθβ‖2 = Sβ

M∑

i=1

θ2
(
φ(xt)φ(xt)T φ(xt)φ(xt)T

)
ii

,

≤ Sβ max
i
{(φ(xt)φ(xt)T φ(xt)φ(xt)T )ii}‖θ‖2.

As a result,
∫
‖M(θ, ω)‖P (β)dβ ≤ K(xt, yt) + Sβ(λ(xt)max

i
{(φ(xt)φ(xt)T )2ii})‖θ‖2.

Further taking the expectation of the above inequality with respect to xt and
yt, one can readily show that Condition (C3) can be satisfied and the proof is
completed.

To prove the convergence of injecting additive weight noise, simply defining
θ̃(t) in Equation (10) by θ(t)+β and Aθ in Equation (13) by an M ×M identity
matrix. It will be clearly that h(θ(t)) will be identical to Equation (12) and
the third term will be independent of θ. The proof of Condition (C3) will be
accomplished. Q.E.D.

As the solution θ∗, by either injecting additive weight noise or multiplicative
weight noise, is identical to the solution obtained by the ordinary pseudo-inverse,
the following theorem can be implied.

Theorem 3. The objective function of injecting (additive or multiplicative) weight
noise during training an RBF is identical to the mean square errors.

L(θ|D) =
1
N

N∑

k=1

(yk − f(xk, θ))2. (14)

3 MLP training with weight noise injection

3.1 Injecting multiplicative weight noise

Consider a nonlinear neural network g(x, θ), where both its gradient vector
gθ(x, θ) and Hessian matrix gθθ(x, θ) exist. Similar to that of RBF learning,
the online weight noise injection learning algorithm for g(x, θ) given a dataset
D = {(xk, yk)}N

k=1 can be written as follows :

θ(t + 1) = θ(t) + µt(yt − g(xt, θ̃(t)))gθ(xt, θ̃(t)). (15)
θ̃(t) = θ(t) + Aβθ(t). (16)

Here, Aβ = diag{β1, β2, · · · , βM}, βi ∼ N (0, Sβ). For small Sβ , one can
assume that θ̃ is close to θ and then apply Taylor expansion to g(·, ·) and gθ(·, ·)
and get that

g(xt, θ̃(t)) ≈ g(xt, θ(t)) + gθ(xt, θ(t))T Aβθ(t), (17)

gθ(xt, θ̃(t)) ≈ gθ(xt, θ(t)) + gθθ(xt, θ(t))Aβθ(t). (18)



Putting the above approximations into Equation (15) and taking expectation
over β, it is readily shown that

h(θ(t)) =
1
N

N∑

k=1

(yt − g(xt, θ(t)))gθ(xt, θ)− Sβ

N

N∑

k=1

Ψ(xt, θ(t))ϑ(t), (19)

where ϑ = (θ2
1, θ

2
2, · · · , θ2

M )T and Ψ(xt, θ(t)) = gθθ(xt, θ(t))diag{gθ(xt, θ(t))}.
Clearly, the first term on the RHS of Equation (19) is proportional to the

negative gradient of the MSE term. However, the anti-derivative of the second
term is difficult. The corresponding objective function and the convergence proof
can hardly be analyzed.

Except the case when the MLP output is linear, i.e. g(x,w, v) =
∑

i wiTi(x, v),
where w is the output weight vector and v is the input weight vector. Ti(·, ·) is
the output of the ith hidden unit. In such case, ∂2

∂wi∂wj
g(xt, w, v) = 0. Therefore,

enhancing fault tolerance of a MLP with linear output nodes cannot be achieved
by simply adding noise to the output weights during training.

3.2 Injecting additive weight noise

For the case that the injection weight noise is additive, the corresponding h(θ)
can readily be obtained by replacing Aβθ(t) in Equation (16), Equation (17) and
Equation (18) to β. Then,

h(θ(t)) =
1
N

N∑

k=1

(yt−g(xt, θ(t)))gθ(xt, θ)− Sβ

N

N∑

k=1

gθθ(xt, θ(t))gθ(xt, θ(t)). (20)

Clearly, the objective function minimized by h(θ(t)) will be given by

1
2N

N∑

k=1

(yt − g(xt, θ(t)))2 +
Sβ

2N

N∑

k=1

‖gθ(xt, θ(t))‖2. (21)

Suppose the MLP is of linear output and additive weight noise is added only
to the output layer, this objective function will become

1
2N

N∑

k=1

(yt − g(xt, θ(t)))2 +
Sβ

2N

N∑

k=1

∑

i

T 2
i (x, v). (22)

The second term plays the role controlling the magnitude of the output of the
hidden nodes.

Remark: One should note that the analysis in this section is purely heuristic,
not analytically. Our analysis is focus on the expected updated equation, not
the actual update equation. The reason is because the convergence proof for
nonlinear system is not straight forward. As mentioned in [18], to prove the
convergence of a nonlinear stochastic gradient descent algorithm, one needs to



show that either (i) θ(t) can always be bounded or (ii) θ(t) can visit a local
bound region infinite often. The two conditions are not easy to prove. Although,
simulation results can also show that θ(t) is bounded for all t. Analytical proof
has yet to be shown.

4 Conclusions

In this paper, analysis on the behavior of weight-noise-injection training has been
presented. In contrast to the approach taken by An [1], we focus on the actual
on-line update equation. From this, the convergence of weight-noise-injection
training applying to RBF is proved analytically and the true objective function
being minimized is revealed. Either for adding multiplicative or additive weight
noise, it is found that the objective function being minimized is actually the mean
square errors. Therefore, adding weight noise during training a RBF network can
neither improve fault tolerance nor generalization.

For MLP, due to its nonlinearity, boundedness on θ(t) has yet been proven.
Therefore, only analysis on the properties of the expected update equations has
been presented. For the case of adding additive weight noise during training, it
is shown that the objective function consists of two terms. The first term is the
usual mean square term. But the second plays a role to regularize the magnitude
of the output of the hidden units.
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