
On Node-Fault-Injection Training of an RBF
Network

John Sum1, Chi-sing Leung2, and Kevin Ho3?

1 Institute of E-Commerce, National Chung Hsing University
Taichung 402, Taiwan pfsum@nchu.edu.tw

2 Department of Electronic Engineering, City University of Hong Kong
Kowloon Tong, KLN, Hong Kong eeleungc@cityu.edu.hk

3 Department of Computer Science and Communication Engineering,
Providence University, Sha-Lu, Taiwan. ho@pu.edu.tw

Abstract. While injecting fault during training has long been demon-
strated as an effective method to improve fault tolerance of a neural net-
work, not much theoretical work has been done to explain these results.
In this paper, two different node-fault-injection-based on-line learning al-
gorithms, including (1) injecting multinode fault during training and (2)
weight decay with injecting multinode fault, are studied. Their almost
sure convergence will be proved and thus their corresponding objective
functions are deduced.

1 Introduction

Many methods have been developed throughout the last two decades to improve
the fault tolerance of a neural network. Well known methods include injecting
random fault during training [20, 4], introducing network redundancy [18], ap-
plying weight decay learning [7], formulating the training algorithm as a nonlin-
ear constraint optimization problem [8, 17], bounding weight magnitude during
training [5, 12, 14], and adding fault tolerant regularizer [2, 16, 21]. A complete
survey on fault tolerant learning methods is exhaustive. Readers please refer to
[6] and [23] for reference.

Amongst all, the fault-injection-based on-line learning algorithms are of least
theoretical studied. By fault injection, either fault or noise is introduced to a
neural network model before each step of training. This fault could either be
node fault (stuck-at-zero), weight noise or input noise. As many studies have been
reported in the literature on input noise injection [1, 3, 19, 10, 11], the primary
focus of this paper is on node fault injection. Our companion paper [13] will be
focus on weight noise injection.

Suppose a neural network consists of M weights. Let θ ∈ RM be the weight
vector of a neural network model and the update equation is given by θ(t+1) =
θ(t)−F (x(t + 1), y(t + 1), θ(t)). The idea of node fault injection is to mimic the
network that is suffered from random node fault. Before each step of training,
? Corresponding author.



each node output is set randomly to either normal or zero (stuck-at-zero). Weight
update is then based on this perturbed nodes’ output. For simplicity, we let
F̃ (·, ·, ·) be the function corresponding to this perturbed network model. The
update equation can readily be defined as follows :

θ(t + 1) = θ(t)− F̃ (x(t + 1), y(t + 1), θ(t)). (1)

Despite the technique of injecting node fault has appeared for almost two decades
[4, 7, 20], little theoretical analytical result is known about its convergence be-
havior, the corresponding objective function to be minimized and its extension
by adding weight decay during training an RBF network.

In this paper, two node-fault-injection-based on-line learning algorithms,
namely (1) injecting multinode fault [4, 20] during training and (2) weight decay
with injecting multinode fault [7], will be analyzed. Analysis on weight-noise-
injection-based training will be presented in another paper. Their corresponding
objective functions and their convergence properties will be analyzed analyti-
cally. The major technique is by applying the Gladyshev Theorem in the theory
of Stochastic Approximation [9]. The definition of a RBF model and the node
fault injection training algorithms will be introduced in the next section. Then,
the main results on their convergence properties and the objective functions will
be stated in Section 3. The proof of theorems will be presented in Section 4.
Section 5 will give a conclusion.

2 RBF training with node fault injection

Let M0 be an unknown system to be modeled. The input and output of M0 are
denoted by x and y respectively. The only information we know about M0 is a
set of measurement data D, where D = {(xk, yk)}N

k=1. Making use of this data
set, an estimated model M̂ that is good enough to capture the general behavior
of the unknown system can be obtained. For k = 1, 2, · · · , N

M0 : yk = f(xk) + ek, (2)

where (xk, yk) is the kth input-output pair that is measured from an unknown
deterministic system f(x) with random output noise ek, ek ∼ N (0, Se). To model
the unknown system, we assume that f(x) can be realized by an RBF network
consisting of M hidden nodes, i.e.

yk =
M∑

i=1

θ∗i φi(xk) + ek (3)

for all k = 1, 2, · · · , N and φi(x) for all i = 1, 2, · · · ,M are the radial basis
functions given by

φi(x) = exp
(
− (x− ci)2

σ

)
, (4)



where cis are the centers of the radial basis functions and the positive parameter
σ > 0 controls the width of the radial basis functions. Thus, a model M in Ω is
represented by an M -vector, θ∗ = (θ∗1 , θ∗2 , · · · , θ∗M )T and the model set Ω will be
isomorphic to RM .

2.1 Multinode fault injection training

In conventional training by minimizing MSE, the update equation for θ(t) is
given by

θ(t + 1) = θ(t) + µt(yt − φT (xt)θ(t))φ(xt), (5)

where µt (for t ≥ 1) is the step size at the tth iteration. While an RBF network
is trained by multinode fault injection, the update equation is given by

θ(t + 1) = θ(t) + µt(yt − φ̃T (xt)θ(t))φ̃(xt), (6)
φ̃i = (1− βi)φi, P (βi = 1) = p, ∀ i = 1, · · · ,M. (7)

We assume that all nodes are of equal fault rate p, i.e.

P (βi) =
{

p if βi = 1
1− p if βi = 0.

(8)

for i = 1, 2, · · · ,M , Besides, β1, · · · , βM are independent random variables.

2.2 Weight decay-based multinode fault injection training

The update equation for weight decay-based multinode fault injection training
is similar to that of simple multinode fault injection, except that a decay term is
added. For a RBF network, f(xt, θ(t)) = φ(xt)T θ(t), that is trained by injecting
multinode fault during weight decay learning,

θ(t + 1) = θ(t) + µt

{
(yt − φ̃T (xt)θ(t))φ̃(xt)− λθ(t)

}
, (9)

φ̃i = (1− βi)φi, (10)

for all i = 1, · · · , M . The definition of the random variable βi is the same as
before. P (βi) = p if βi = 1 and (1− p) otherwise.

3 Main Results

Theory of stochastic approximation has been developed for more than half a
century for the analysis of recursive algorithms. Advanced theoretical works for
complicated recursive algorithms have still been under investigation [15]. The
theorem applied in this paper is based on Gladyshev Theorem [9].



Theorem 1 (Gladyshev Theorem [9]). Let θ(t) and M(θ(t), ω(t)) for all
t = 0, 1, 2, and so on be m-vectors. ω(t) for all t = 0, 1, 2, and so on are i.i.d.
random vectors with probability density function P (ω) 4. Consider a recursive
algorithm defined as follows :

θ(t + 1) = θ(t)− µtM(θ(t), ω(t)). (11)

In which, the expectation of M(θ, ω) over ω, i.e.

M̄(θ) =
∫

M(θ, ω)P (ω)dω, (12)

has unique solution θ∗ such that M̄(θ∗) = 0.
Suppose there exists positive constants κ1 and κ2 such that the following

conditions are satisfied :

(C1) µt ≥ 0,
∑

t µt = ∞ and
∑

t µ2
t < ∞.

(C2) infε<‖θ−θ∗‖<ε−1(θ − θ∗)T M̄(θ) > 0, for all ε > 0.
(C3)

∫ ‖M(θ, ω)‖2P (ω)dω ≤ κ1 + κ2‖θ‖2.

Then for t →∞, θ(t) converges to θ∗ with probability one.

Normally, the first condition can easily be satisfied. It is because the step
size µt could be defined as const

t for all t ≥ 1. Therefore, we skip the proof of
Condition (C1) in the rest of this section. For the sake of presentation, we let
Y = 1

N

∑N
k=1 ykφ(xk). Besides, we have M̄(θ) = −h(θ) and ω is a random vector

augmenting (xt, yt, β).

3.1 Multinode fault injection training

Applying Galdyshev Theorem, the following theorem can be proved for injecting
multinode fault training.

Theorem 2. For injecting multinode fault during training an RBF network, the
weight vector θ(t) will converge with probability one to

θ∗ = [Hφ + p(Qg −Hφ)]−1
Y. (13)

Besides, the corresponding objective function to be minimized is given by

L(θ|D) =
1
N

N∑

k=1

(yk − f(xk, θ))2 + pθT (Qg −Hφ)θ. (14)

4 In the following convergence proof, ω(t) = (xt, yt, βt). Owing not to confuse the time
index t with the element index k, the subscript t is omitted. So that ω(t) = (xt, yt, β).



3.2 Weight decay-based multinode fault injection training

For weight decay-based multinode fault injection training, we can have the fol-
lowing theorem.

Theorem 3. For injecting multinode fault during weight decay training an RBF
network, the weight vector θ(t) will converge with probability one to

θ∗ =
[
Hφ + p(Qg −Hφ) +

λ

1− p
IM×M

]−1

Y. (15)

Besides, the corresponding objective function to be minimized is given by

L(θ|D) =
1
N

N∑

k=1

(yk − f(xk, θ))2 + θT

{
p(Qg −Hφ) +

λ

1− p
IM×M

}
θ. (16)

4 Proof of Theorems

Next, we are going to apply the Gladyshev Theorem for the convergence proof.
Normally, the first condition can easily be satisfied. It is because the step size
µt could be pre-defined. So, we skip the proof of Condition (C1) for simplicity
and then prove only the Condition (C2) and (C3).

4.1 Injecting multinode fault (Theorem 2)

To prove the condition (C2), we need to consider the mean update equation
h(θ(t)). By taking the expectation of the second part of the Equation (6) with
respect to βi, xt and yt, h(θ(t)) will be given by

h(θ(t)) =

{
1
N

N∑

k=1

(yk − φT (xk)θ(t))φ(xk)− p(Hφ −Qg)θ(t)

}
. (17)

In which, the solution θ∗ is given by

θ∗ = [Hφ + p(Qg −Hφ)]−1
Y. (18)

Hence, for all ‖θ − θ∗‖ > 0, we have

−(θ − θ∗)T h(θ) = −(θ − θ∗)T (Y − [Hφ + p(Qg −Hφ)] θ) ,

which is greater than zero. Therefore, Condition (C2) is satisfied.
For Condition (C3), we consider the Equation (6). By triangle inequality, it

is clearly that

‖M(θ, ω)‖2 ≤ ‖y2
t φ̃T (xt)φ̃(xt)‖+ θT (φ̃(xt)φ̃T (xt))2θ. (19)



Since,
∫

(φ̃T φ̃)φ̃φ̃T P (β)dβ ≤ φT φλmax

{∫
φ̃φ̃T P (β)dβ

}

≤ (φT φ)2. (20)

Putting Equation (20) into Equation (19), it is clear that
∫ {‖M(θ, ω)‖2} P (β)dβ ≤ ‖y2

t φT (xt)φ(xt)‖+ (φ(xt)T φ(xt))2‖θ‖2. (21)

Further taking the expectation of the above inequality with respect to xt and
yt, one can readily show that Condition (C3) can be satisfied and the proof is
completed.

With reference to Equation (17), the constant factor (1 − p) can be put
together with µt and treated as a new step size. Hence, the objective function
of the above algorithm is given by

L(θ|D) =
1
N

N∑

k=1

(yk − f(xk, θ))2 + pθT (Qg −Hφ)θ. (22)

The proof for Theorem 2 is completed. Q.E.D.
It is worthwhile noted that Equation (14) is also identical to the objective

function derived for batch model in [16].

4.2 WD-based multinode fault injection training (Theorem 3)

The corresponding h(θ(t)) will be given by

h(θ(t)) = (1− p)

{
1
N

N∑

k=1

(yk − φT (xk)θ(t))φ(xk)− p(Hφ −Qg)θ(t)

}
− λθ(t).

(23)
In which, the solution θ∗ is given by

θ∗ =
[
Hφ + p(Qg −Hφ) +

λ

1− p
IM×M

]−1

Y. (24)

Hence, for all ‖θ − θ∗‖ > 0, we have

−(θ − θ∗)T h(θ) = −(θ − θ∗)T

(
Y −

[
Hφ + p(Qg −Hφ) +

λ

1− p
IM×M

]
θ

)
,

which is greater than zero. Therefore, Condition (C2) is satisfied.
For Condition (C3), we consider the Equation (9) and the similar technique

as for the case of injecting multinode fault, one can readily show that
∫ {‖M(θ, ω)‖2} P (β)dβ ≤ ‖y2

t φT (xt)φ(xt)‖+
{
(φ(xt)T φ(xt))2 + λ2

} ‖θ‖2.
(25)



Further taking the expectation of the above inequality with respect to xt and
yt, one can readily show that Condition (C3) can be satisfied and the proof is
completed.

With reference to Equation (23), the objective function is given by

L(θ|D) =
1
N

N∑

k=1

(yk − f(xk, θ))2 + θT

{
p(Qg −Hφ) +

λ

1− p
IM×M

}
θ. (26)

The proof for Theorem 3 is completed. Q.E.D.
One should notice that the weight decay effect is scaled up when random

node fault is injected.

5 Conclusions

In this paper, proofs on the convergences of two node-fault-injection-based on-
line training RBF methods have been shown and their corresponding objective
functions have been deduced. For the injecting multinode-fault training, it is also
found that the objective function is identical to the one that is proposed in [16]
for batch-mode training an RBF to deal with multinode fault.

For the weight decay-based multinode fault injection training, two additional
regularization terms are obtained in the objective function. The first one is iden-
tical to the extra term obtained for pure multinode fault injection training. The
other is a weight decay term with a constant factor λ/(1−p) is depended on the
fault rate p. The constant factor can amplify the penalty of weight magnitude if
the fault rate is large.

It is worthwhile noted that for λ not equal to zero, regularization effect will
still exist in null fault rate situation. Generalization can be improved. So, it is
suspected that weight decay-based multimode fault injection training might lead
to network model with good generalization and multinode fault tolerance ability.
Further investigation along the line should be valuable for future research.

Acknowledgement

The research work reported in this paper is supported in part by Taiwan NSC
Research Grant 97-2221-E-005-050-.

References

1. An G. The effects of adding noise during backpropagation training on a general-
ization performance, Neural Computation, Vol.8, 643-674, 1996.

2. Bernier J.L. et al, Obtaining fault tolerance multilayer perceptrons using an explicit
regularization, Neural Processing Letters, Vol.12, 107-113, 2000.

3. Bishop C.M., Training with noise is equivalent to Tikhonov regularization, Neural
Computation, Vol.7, 108-116, 1995.



4. Bolt G., Fault tolerant in multi-layer Perceptrons. PhD Thesis, University of York,
UK, 1992.

5. Cavalieri S. and O. Mirabella, A novel learning algorithm which improves the
partial fault tolerance of multilayer NNs, Neural Networks, Vol.12, 91-106, 1999.

6. Chandra P. and Y. Singh, Fault tolerance of feedforward artificial neural networks
– A framework of study, Proceedings of IJCNN’03 Vol.1 489-494, 2003.

7. Chiu C.T. et al., Modifying training algorithms for improved fault tolerance,
ICNN’94 Vol.I, 333-338, 1994.

8. Deodhare D., M. Vidyasagar and S. Sathiya Keerthi, Synthesis of fault-tolerant
feedforward neural networks using minimax optimization, IEEE Transactions on
Neural Networks, Vol.9(5), 891-900, 1998.

9. Gladyshev E., On stochastic approximation, Theory of Probability and its Appli-
cations, Vol.10, 275-278, 1965.

10. Grandvalet Y., S. Canu, A comment on noise injection into inputs in back-
propagation learning, IEEE Transactions on Systems, Man, and Cybernetics,
25(4), p.678-681, 1995.

11. Grandvalet Y., S. Canu, S. Boucheron, Noise injection : Theoretical prospects,
Neural Computation, Vol.9(5), p.1093-1108, 1997.

12. Hammadi N.C. and I. Hideo, A learning algorithm for fault tolerant feedforward
neural networks, IEICE Transactions on Information & Systems, Vol. E80-D, No.1,
1997.

13. Ho K., C.S. Leung, J. Sum, On weight-noise-injection training, in Proc.
ICONIP’2008, Springer LNCS, 2009.

14. Kamiura N., et al, On a weight limit approach for enhancing fault tolerance of
feedforward neural networks, IEICE Transactions on Information & Systems, Vol.
E83-D, No.11, 2000.

15. Lai T.L., Stochastic approximation, Annals of Statistics, Vol. 31, No. 2, 391-406,
2003.

16. Leung C.S., J. Sum, A fault tolerant regularizer for RBF networks, IEEE Trans-
actions on Neural Networks, Vol. 19 (3), pp.493-507, 2008.

17. Neti C. M.H. Schneider and E.D. Young, Maximally fault tolerance neural net-
works, IEEE Transactions on Neural Networks, Vol.3(1), 14-23, 1992.

18. Phatak D.S. and I. Koren, Complete and partial fault tolerance of feedforward
neural nets., IEEE Transactions on Neural Networks, Vol.6, 446-456, 1995.

19. Reed R., R.J. Marks II & S. Oh, Similarities of error regularization, sigmoid gain
scaling, target smoothing, and training with jitter, IEEE Transactions on Neural
Networks, Vol.6(3), 529-538, 1995.

20. Sequin C.H. and R.D. Clay, Fault tolerance in feedforward artificial neural net-
works, Neural Networks, Vol.4, 111-141, 1991.

21. Sum J., C.S. Leung and K. Ho, On objective function, regularizer and prediction
error of a learning algorithm for dealing with multiplicative weight noise, accepted
for publication in IEEE Transactions on Neural Networks.

22. Takase H., H. Kita and T. Hayashi, A study on the simple penalty term to the
error function from the viewpoint of fault tolearnt training, Proc. IJCNN 2004,
1045-1050, 2004.

23. Tchernev E.B., R.G. Mulvaney, and D.S. Phatak, Investigating the Fault Tolerance
of Neural Networks, Neural Computation, Vol.17, 1646-1664, 2005.


