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Abstract

While injecting noise (input noise or weight noise) or faults (weight fault or node fault) during training has
been applied to improve fault tolerance of a neural network, not much analysis has been done to reveal the
success of such learning methods. In this paper, a list of eight fault-injection-based on-line learning algorithms
will be described. Potential research problems alongside will be introduced.
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1 Introduction

In conventional learning theory, neural networks (NN) are trained to achieve good generalization. Which could
be accomplished by adding regularizer [27, 26, 35, 36, 49] or pruning [19, 25, 28, 26, 44, 41], so as to reduce
the weights’ magnitudes or model complexity. These methods work well under the assumption that the neural
network after training can be ideally implemented (i.e. fault-free implementation). It is true if a neural network is
hard-coded in a program that is running in a computer with very high precision data representation. However, it
is not true for electronic implementations, like FPGA [20]. Component failure, sign bit change, open circuit [42],
finite precision [46] and even exposure to radiation [60] could degrade the performance of such an implementation
drastically. In such case, the performance of a neural network will be questionable even if it has been trained to
achieve very good generalization.

In this regard, many methods have been developed throughout the last two decades in order to tackle such
fault tolerant problem. One approach is to inject random fault or noise during training [47, 10], the other is
introducing network redundancy [42], applying weight decay learning [12], formulating the training algorithm as
a nonlinear constraint optimization problem [13, 39], bounding weight magnitude during training [11, 18, 22], and
adding fault tolerant regularizer [5, 6, 8, 29, 56]. Please refer to [54, 57] for a survey in fault tolerant learning.
Amongst all, only the technique of adding input noise during training has widely been studied. Analysis on
injecting weight (or node) fault or weight (or node) noise during training are of little investigation. Extension of
those fault (or noise) injection techniques together with weight decay will be even scarce.

Table 1 for a list of the research works related to on-line fault (noise)-injection-based learning algorithms. and
apparent that only injecting additive input noise (or called jitter noise in some papers) has been widely analyzed,
[1, 9, 16, 17, 45]. While An in [1] has attempted, by applying the theory developed by Bottou (Theorem 1 in
[3]), to derive the objective function for injecting weight noise on-line learning algorithm, his results are not
convincing. It is because he has not shown that the on-line update equation can fulfill the conditions stated in
Bottou Theorem.

For other cases, the objective functions that are minimizing as well as their convergence properties have yet
been revealed. Objective function is an important piece of information for knowing the solution of a learning
algorithm, and by which the similarities and differences amongst different algorithms can be analyzed. Their
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Table 1: Research works related to fault (or noise) injection-based learning algorithms.

Year/Ref. Fault NN Description
1991 [10, 47] Node fault MLP Injecting random node fault

during BP training
1993 [37, 38] Weight noise MLP Adding weight noise

during BP training
1994 [12] Weight noise MLP Apply weight decay algorithm

with random node fault injection
during training

1995 [9] – – Analysis on injecting input noise
1995 [45] – – Analysis on injecting input noise
1996 [1] – – Analysis on injecting input noise

Analysis on injecting weight noise
1997 [16, 17] – – Analysis on injecting input noise
1997 [18] Node fault MLP Weight magnitude bounding

(Heuristic modification of BP)
1999 [11] Node fault MLP Weight magnitude bounding

(Heuristic modification of BP)
1999 [48] Multinode fault MLP Constraint BP1

(Heuristic modification of BP)
2000 [22] Node fault MLP Weight magnitude bounding

(Heuristic modification of BP)
2000 [40] Multiplicative weight noise RBF Apply weight decay algo.
2000 [5, 7] Multiplicative weight noise MLP Explicit regularization

(Gradient descent algorithm)
2002 [43] Single node fault MLP Nonlinear program2

(Batch mode learning)
2004 [59] Node fault MLP Apply penalty term3

(Stochastic gradient descent)
2007 [55] Multiplicative weight noise RBF Apply KL divergence

(Stochastic gradient descent)
2008 [30] Multiplicative weight noise RBF Analysis on the generalization error

Apply weight decay
2008 [21] – RBF Convergence proof of

injecting multinode fault
2008 [58] – RBF Convergence proof of

injecting weight noise

1 The objective function is minθ{maxθ̃ maxk(yk − f(xk, θ̃|θ))2}
2 The objective function is 1/N

∑N

k=1
(yk − f(xk, θ))2 + α|Ωθ̃|−1

∑
θ̃∈Ω

θ̃
1/N

∑N

k=1
(yk − f(xk, θ̃|θ))2

3 The objective function is 1/N
∑N

k=1
(yk − f(xk, θ))2 + α

n
|θ|n
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Figure 1: Conventional learning theory and fault tolerant learning theory.

prediction errors can be deduced. In this regards, a complete analysis on the properties of these algorithms is
inevitable. In this paper, eight fault-injection-based on-line learning algorithms will briefly described. Four of
them are pure fault-injection-based algorithms : (1) training with weight noise injection, (2) training with node
noise injection, (3) training with weight fault injection, and (4) training with node fault injection. While the
other four are algorithms that combine fault-injection together with weight decay : (1) training with weight noise
injection plus weight decay, (2) training with node noise injection plus weight decay, (3) training with weight
fault injection plus weight decay, and (4) training with node fault injection plus weight decay. Discussion on
the difference between fault/noise injection learning and training based on the idea of noise immunity will be
highlighted. Potential future works along the direction will be suggested.

2 Fault tolerant models

Let M0 be the unknown system to be modeled. The input and output of M0 are denoted by x and y respectively.
The only information we know about M0 is a set of measurement data D, where D = {(xk, yk)}N

k=1. Making
use of this data set, an estimated model M̂ that is good enough to capture the general behavior of the unknown
system can be obtained. For many real-time applications, this good model M̂ will furthermore be mapped onto a
hardware implementation, like FPGA or DSP chip. We denote the inaccurate implementation of M̂ by M̃. The
conceptual difference amongst M0, M̂ M̃ is shown in Figure 1. Finally, we let Ω be the set of models in which
M̂ and M̃ are defined.

In conventional learning theory, it is assumed that the implementation of a model M0 is fault-free. Therefore
M̃ will be identical to M̂. In FTL, such assumption is not existed. An implementation of a model M0, denoted
by M̃, is a random model probabilistically depended on the model M̂. Let the set of models in which M̃ can
be defined is denoted by Ω̃M, it is clear that Ω̃M must be a subset of Ω and the distribution of M̃ is given by
P (M̃|M̂).
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For k = 1, 2, · · · , N
M0 : yk = f(xk) + ek, (1)

where (xk, yk) is the kth input-output pair that is measured from an unknown deterministic system f(x) with
random output noise ek, ek ∼ N (0, Se). To model the unknown system, we assume that f(x) can be realized by
an RBF network, i.e.

M : yk =
M∑

i=1

θiφi(xk) + ek (2)

for all k = 1, 2, · · · , N and φi(x) for all i = 1, 2, · · · ,M are the radial basis functions given by

φi(x) = exp
(
− (x− ci)2

σ

)
, (3)

cis are the radial basis function centers and the positive parameter σ > 0 controls the width of the radial basis
functions. Thus, a model M in Ω is represented by an M -vector, θ = (θ1, θ2, · · · , θM )T and the model set Ω will
be isomorphic to RM .

2.1 Multiplicative noise

Multiplicative noise exists whenever a weight value or a node output is encoded in a low precision binary form.
Let β = (β1, β2, · · · , βM )T be the implementation of a model θ, denoted by θ̃ is given by

θ̃ = θ + Aθβ, (4)
Aθ = diag {θ1, θ2, · · · , θM} , (5)

where βi for all i = 1, 2, · · · ,M are independent mean zero Gaussian noise with variance Sβ .

P (βi) =
1√

2πSβ

exp
(
− β2

i

2Sβ

)
. (6)

For the case that the output of a node is corrupted by multiplicative noise, the output of the ith node φ̃i will
be given by

φ̃ = φ + Aφβ, (7)
Aφ = diag {φ1, φ2, · · · , φM} , (8)

where βi is defined as Equation (6).

2.2 Multinode/weight fault

We assume that a node, or a weight, fault is equivalent to permanently set the output of the node, or the value
of a weight, zero. A faulty RBF, with f̂(x, θ̃), where φ̃ = (φ̃1, φ̃2, · · · , φ̃M )T and

φ̃ = φ−Aφβ, (9)
Aφ = diag {φ1, φ2, · · · , φM} . (10)

where βi = 1 if the ith node is normal and βi = 0 if the ith node is fault. We assume that all nodes are of equal
fault rate p, i.e.

P (βi) =
{

p if βi = 1
1− p if βi = 0.

(11)

for i = 1, 2, · · · , M , Besides, β1, · · · , βM are independent random variables.
For multiweight fault, the model is similar. With the same definition on the random vector β as Equation (11),

θ̃ = θ −Aθβ, (12)
Aθ = diag {θ1, θ2, · · · , θM} , (13)

where βi = 1 if the ith node is normal and βi = 0 if the ith node is fault. Note that the model is also similar to
the case of multiplicative weight noise. But their definitions on βi are different.
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3 Fault/Noise Injection-Based FT Learning

In conventional training by minimizing mean square errors, the update equation for θ(t) is given by

θ(t + 1) = θ(t) + µt(yt − φT (xt)θ(t))φ(xt), (14)

where µt (for t ≥ 1) is the step size at the tth iteration. While in online fault/noise injection-bsed learning, the
form of the update equation is similar to Equation (14) except that the θ(t) or φ(xt) in the second term of the
right hand side is replaced by the fault/noise injection form, denoted by θ̃(t) or φ̃(xt).

3.1 Pure fault/noise injection

In this subsection, four different type of pure fault/noise injection-based FT learning algorithms will be summa-
rized.

Weight noise injection: While a network is trained by the idea of weight noise injection, the update equation
will be given by

θ(t + 1) = θ(t) + µt(yt − φT (xt)θ̃(t))φ(xt), (15)

where µt is (for t ≥ 1) the step size at the tth iteration,

θ̃i(t) =
{

θi(t) + βi for additive noise injection,
θi(t) + βiθi(t) for multiplicative noise injection. (16)

βi for all i = 1, 2, · · · ,M are independent mean zero Gaussian noise with variance Sβ . Normally, it is assumed
that the value of Sβ is small. Although, the theoretical proof presented later in this paper applies to any bounded
value, it is meaningless to consider a large value of Sβ .

Multiplicative node noise injection: For a RBF network that is trained by injecting multiplicative node
noise, the update equation is given by

θ(t + 1) = θ(t) + µt(yt − φ̃T (xt)θ(t))φ̃(xt), (17)

φ̃i = (1 + βi)φi, βi ∼ N (0, Sβ), (18)

for all i = 1, 2, · · · ,M .

Multiweight fault injection: For a RBF network that is trained by injecting multiweight fault, the update
equation is given by

θ(t + 1) = θ(t) + µt(yt −
M∑

i=1

φT
i (xt)(1− βi)θi(t))φ(xt), (19)

P (βi) =
{

p if βi = 1
(1− p) if βi = 0 (20)

for all i = 1, 2, · · · ,M .

Multinode fault injection: While an RBF network is trained by multinode fault injection, the update equation
is given by

θ(t + 1) = θ(t) + µt(yt − φ̃T (xt)θ(t))φ̃(xt), (21)

φ̃i = (1− βi)φi. (22)

We assume that all nodes are of equal fault rate p, i.e. P (βi) = p if βi = 1 and P (βi) = (1 − p) of βi = 0, for
i = 1, 2, · · · ,M . Besides, β1, · · · , βM are independent random variables.
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3.2 Fault/Noise injection plus weight decay

This type of training algorithms extends the idea of pure fault injection by adding a decay term, either λθ or
λθ̃ (0 < λ ¿ 1), in the update equation. The four counter algorithms, extended from the pure fault/noise
injection-based algorithms will be described in the subsequent paragraphs.

Weight noise injection: While a network is trained by the idea of weight noise injection together with weight
decay, the update equation will be given by

θ(t + 1) = θ(t) + µt

{
(yt − φT (xt)θ̃(t))φ(xt)− λθ̃

}
, (23)

where µt is (for t ≥ 1) the step size at the tth iteration,

θ̃i(t) =
{

θi(t) + βi for additive noise injection,
θi(t) + βiθi(t) for multiplicative noise injection. (24)

βi for all i = 1, 2, · · · ,M are independent mean zero Gaussian noise with variance Sβ .

Multiplicative node noise injection: For a RBF network that is trained by multiplicative node noise injection
together with weight decay, the update equation is given by

θ(t + 1) = θ(t) + µt

{
(yt − φ̃T (xt)θ(t))φ̃(xt)− λθ(t)

}
, (25)

φ̃i = (1 + βi)φi, βi ∼ N (0, Sβ), (26)

for all i = 1, 2, · · · ,M .

Multiweight fault injection: For a RBF network that is trained by injecting multiweight fault together with
weight decay, the update equation is given by

θ(t + 1) = θ(t) + µt

{
(yt −

M∑

i=1

φT
i (xt)(1− βi)θi(t))φ(xt)− λθ̃

}
, (27)

P (βi) =
{

p if βi = 1
(1− p) if βi = 0 (28)

for all i = 1, 2, · · · ,M .

Multinode fault injection: For a RBF network, f(xt, θ(t)) = φ(xt)T θ(t), that is trained by injecting multin-
ode fault during weight decay learning,

θ(t + 1) = θ(t) + µt

{
(yt − φ̃T (xt)θ(t))φ̃(xt)− λθ̃(t)

}
, (29)

φ̃i = (1− βi)φi, (30)

for all i = 1, · · · ,M . P (βi) = p if βi = 1 and P (βi) = (1− p) of βi = 0.

4 Discussions

4.1 Fault injection versus noise immunity

In some recent studies on fault tolerance, researchers based on the idea of noise immunity [6, 8, 29, 56]. It should
be noted that the generic idea applied to develop learning algorihtms based on noise immunity and fault injection
is quite different. The former refers to a property that will happen when a neural network is implemented. It can
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equally be considered as adding noise to a network after it has been well-trained. The latter refers to an on-line
training technique for improving fault tolerance. In which, noise is added during training.

Therefore, an objective function derived from the sense of noise immunity reflects the error sensitivity of a
network if its weights or nodes are perturbed, e.g. [9, 45]. Let LWN (θ) and LNF (θ) be the objective functions
for weight noise immunity and node fault immunity respectively.

LWN (θ) =
1
N

N∑

k=1

∫
(yk − φT (xk)(θ + ∆θ))2P (∆θ)d∆θ. (31)

LNF (θ) =
1
N

N∑

k=1

∫
(yk − (φ(xk) + ∆φ(xk))T θ)2P (∆φ(xk))d∆φ(xk). (32)

Here P (∆θ) and P (∆φ(xk)) correspond to the proabability density functions of the noise corrupted θ and the
faulty φ. They are depended on the fault/noise model defined. Since the factor inside the summation is of second
order form, extra term will be introduced once the integration has been taken. It can readily be shown that the
objective functions can be written as follows [5, 56] [29]:

LWN (θ) =
1
N

N∑

k=1

(yk − φT (xk)θ)2 + θT RWNθ. (33)

LNF (θ) =
1
N

N∑

k=1

∫
(yk − φT (xk)θ)2 + θT RNF θ. (34)

The regularization matrices RWN and RNF are defined in terms of

1
N

N∑

k=1

φ(xk)φT (xk), and diag

{
1
N

N∑

k=1

φ2
1(xk),

1
N

N∑

k=1

φ2
2(xk) · · · , 1

N

N∑

k=1

φ2
M (xk)

}
.

Finally, fault tolerant learning algorithms are developed by apply gradient descent in accordance with these
objective functions. Clearly, these objective functions are basically equivalent to regularization learning. The
extra term play a role as a regularizer controlling the weight magnitudes.

For on-line fault/noise injection-based learning algorithms, their development are solely based on heuristic
modification of the original MSE based learning algorithm. At the time the algorithms firstly proposed, objective
functions were unknown. Except in certain cases (like adding input noise and injecting multinode fault) their
objective functions are proved to the same [9, 29, 45] as its immunity based counterpart. For other cases, their
actual objective functions are still yet to be uncovered.

4.2 Stochastic approximation

Theory of stochastic approximation has been developed for more than half a century for the analysis of recursive
algorithms. Advanced theoretical works for complicated recursive algorithms have still been under investigation
[24]. The theorem applied to the proof could be based on Gladyshev Theorem [15]. Variant forms of the theorem
can also be found in the Section II of Chapter 9 in [34] and the theorem stated in [33].

Let θ(t) and M(θ(t), ω(t)) for all t = 0, 1, 2, and so on be m-vectors. ω(t) for all t = 0, 1, 2, and so on are i.i.d.
random vectors with probability density function P (ω) Consider a recursive algorithm defined as follows :

θ(t + 1) = θ(t)− µtM(θ(t), ω(t)). (35)

In which, the expectation of M(θ, ω) over ω, i.e.

M̄(θ) =
∫

M(θ, ω)P (ω)dω, (36)

has unique solution θ∗ such that M̄(θ∗) = 0. Gladyshev Theorem states the conditions that θ(t) obtained by the
Equation (35) can converge to θ∗ as t →∞.
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Table 2: Potential theoretical research problems.

Algorithms RBF MLP
Weight Noise Done [21] In progress [21]
Weight Fault In progress –
Node Noise In progress –
Node Fault Done [58] –
Weight Noise with WD Done [30] –
Weight Fault with WD In progress –
Node Noise with WD In progress –
Node Fault with WD Done [30] –

Theorem 1 (Gladyshev Theorem [15]) Suppose M̄(θ) has unique solution at θ∗, i.e. M̄(θ∗) = 0 and there
exists positive constants κ1 and κ2 such that the following conditions are satisfied :

(C1) µt ≥ 0,
∑

t µt = ∞ and
∑

t µ2
t < ∞.

(C2) infε<‖θ−θ∗‖<ε−1(θ − θ∗)T M̄(θ) > 0, for all ε > 0.

(C3)
∫ ‖M(θ, ω)‖2P (ω)dω ≤ κ1 + κ2‖θ‖2.

Then for t →∞, θ(t) obtained by Equation (35) converges to θ∗ with probability one.

Normally, the first coniditon can easily be satisfied. It is because the step size µt could be defined as

µt =
const.

t
for all t ≥ 1.

Therefore, the proof of Condition (C1) can be skipped. The core of the proof will be on the Condition (C2) and
Condition (C3).

5 Future Works

While the convergence analysis on the pure fault injection-based learning algorithms can be done by applying the
Galdyshev Theorems, many open problems are still yet to be solved. In addition to the literature survey provided
in the earlier sections, some specific problems especially those fault injection plus weight decay together to fault
tolerant learning are with particular valuable for futher investigation.

Convergence properties: What is the convergence properties of injecting fault (or noise) to weight (or node)
during normal training, and during weight decay training ?

Objective functions: What is the convergence properties of injecting fault (or noise) to weight (or node) during
normal training, and during weight decay training ?

Prediction errors: What is the prediction error of an RBF that is trained by injecting fault (or noise) to weight
(or node) during normal training, and during weight decay training ?

Connection to biological learning: What is the connection between fault-injection-based learning and bio-
logical learning in our brain ?

Table 2 summarizes a list of potential research problems in regard to the theoretical aspects of on-line fault/noise
injection-based fault tolerant learning. Clearly, theoretical works for multilayer perception (MLP) are still open
for further investigation.
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