
SNIWD: Simultaneous Weight Noise Injection
With Weight Decay for MLP Training

John Sum1 and Kevin Ho2

1 Institute of Technology Management, National Chung Hsing University
Taichung 402, Taiwan. pfsum@nchu.edu.tw

2 Department of Computer Science and Communication Engineering,
Providence University, Sha-Lu, Taiwan. ho@pu.edu.tw

Abstract. Despite noise injecting during training has been demonstrated
with success in enhancing the fault tolerance of neural network, theoret-
ical analysis on the dynamic of this noise injection-based online learning
algorithm has far from complete. In particular, the convergence proofs
for those algorithms have not been shown. In this regards, this paper
presents an empirical study on the non-convergence properties of in-
jecting weight noises during training a multilayer perceptron, and an
online learning algorithm called SNIWD (simultaneous noise injection
and weight decay) to overcome such non-convergence problem. Simula-
tion results show that SNIWD is able to improve the convergence and
enforce small magnitude on the network parameters (input weights, in-
put biases and output weights). Moreover, SNIWD is able to make the
network have similar fault tolerance ability as using pure noise injection
approach.

1 Introduction

Improve tolerance of a neural network towards random node fault, stuck-at node
fault and weight noise have been researching for almost two decades [4, 6, 5, 7,
9, 12, 13, 16, 17, 19], Many methods such as injecting random node fault [18, 3],
injecting weight noise during training (for multilayer perceptrons (MLP) [14,
15], a recurrent neural network (RNN) [11], or a pulse-coupled neural networks
(PCNN) [8]) or node noise (response variability) during training [2] (for PCNN)
during training have been developed and demonstrated with success via intensive
computer simulations. Despite the idea of injecting weight noise during train-
ing is straight forward and its implementation is extremely elegant, theoretical
analysis regrading their convergence and the objective functions in which the
algorithms are minimizing is scarce [1, 2, 14, 15].

Murray & Edward although have found that injecting multiplicative weight
noise can enhance the fault tolerance of a MLP [15], they have not put forward
the objective function for this algorithm. While G.An in [1] has attempted to de-
rive an objective function for injecting weight-noise during training (see Section
4 in [1]), he failed to prove the convergence of this algorithm and nevertheless



the objective function derived is not the true one. In terms of Murray & Ed-
ward’s terminology, the objective derived by G.An is essentially the prediction
error of a MLP if weight noise is injected after training. Until very recent, Ho et
al [10] have shown the first complete analysis on the convergence of injecting
output weight noise (either multiplicative or additive) during training a radial
basis function (RBF) network.

In view of lacking understand on injecting weight noise during training a
MLP, simulated experiments have been conducted. We found that pure noise
injection during training might lead to non-convergence of network parameters,
even the training error has been converged. Rather, adding weight decay together
with noise injection during training is able to overcome such non-convergence
problem. In this paper, we will present this comparative study based on purely
noise injection training algorithm and simultaneous weight noise injection with
weight decay (SINWD).

In the next section, the online weight noise injection algorithms will be pre-
sented. Their convergence properties, in terms of training error and network
parameters, and their fault tolerance abilities will be shown by a simple example
in Section 3. Section 4 gives the conclusions of this paper.

2 Noise Injection During Training

Let f(⋅, ⋅) ∈ Rl be a single output multilayer perceptron (MLP) consisting of m
hidden nodes, n input nodes and l linear output nodes.

f(x,w) = DT z(ATx+ c), (1)

where D = [d1,d2, ⋅ ⋅ ⋅ ,dl] ∈ Rm×l is the hidden to output weight vector, z =
(z1, z2, ⋅ ⋅ ⋅ , zm)T ∈ Rm is the output of the hidden nodes, A = [a1,a2, ⋅ ⋅ ⋅ ,am] ∈
Rn×m is the input to hidden weight matrix, ai ∈ Rn is the input weight vector
of the itℎ hidden node and c ∈ Rm is the input to hidden bias vector.

w in (1) is a vector augmenting all the parameters, i.e.

w = (dT
1 ,d

T
2 , ⋅ ⋅ ⋅ ,dT

l ,a
T
1 ,a

T
2 , ⋅ ⋅ ⋅ ,aTm, cT )T .

For i = 1, 2, ⋅ ⋅ ⋅ ,m, zi(x,ai, ci) = ¿(aTi x+ci), where ¿(⋅) is the neuronal transfer
function. Training dataset is denoted by D = {(xk,yk)}Nk=1. The random noise
vector is denoted by b. For simplicity, we assume that there is only one output
node, i.e. l = 1. In such case, the gradient of f(x,w) with respect to w is denoted
by g(xt,w(t)). The Hessian matrix of f(x,w) is denoted by gw(xt,w(t)).

2.1 Pure Weight Noise Injection

The online weight noise injection training algorithm for f(x,w) given a
dataset D can be written as follows :

w(t+ 1) = w(t) + ¹t(yt − f(xt, w̃(t)))g(xt, w̃(t)). (2)

w̃(t) = w(t) + b⊙w(t). (multiplicative weight noise) (3)

w̃(t) = w(t) + b. (additive weight noise) (4)



Pure noise injection With weight decay

Add. weight noise (Fig 1) Sb = .01, ® = 0 Sb = .01, ® = .00001
Mul. weight noise (Fig 3) Sb = .01, ® = 0 Sb = .01, ® = .00001

Table 1. Settings of the experiments.

Here b⊙w = (b1w1, b2w2, ⋅ ⋅ ⋅ , bMwM )T and bi, for all i, is a mean zero Gaussian
distribution with variance Sb.

2.2 SNIWD

For simultaneous weight noise injection and weight decay (SNIWD), the update
equations are similar except the decay term is added.

w(t+ 1) = w(t) + ¹t {(yt − f(xt, w̃(t)))g(xt, w̃(t))− ®w(t)} . (5)

w̃(t) = w(t) + b⊙w(t). (multiplicative weight noise) (6)

w̃(t) = w(t) + b. (additive weight noise) (7)

Clearly, the difference between pure noise injection during training, and the
one with weight decay lies in the last term of the update equation, i.e. −®w(t),
which can limit the growth of ∥w(t)∥ to infinity.

3 Simulation Study

To illustrate the effect of injection noise during training MLP with and with-
out adding weight decay, a training dataset consisting of 100 samples that are
generated from an XOR function is used for the MLP training.

Let (xk, yk) be the k
tℎ input and output pair. xk is uniformly random selected

from [−1, 1]× [−1, 1]. The output vector yk ∈ {0, 1} is generated by the following
equation.

yk = sign(xk1)sign(xk2). (8)

Then, an MLP consisting of 2 input nodes, 10 hidden nodes and 1 linear
output nodes is trained. Four experiments are carried out. The values of Sb

and ® are depicted in Table 1. The step size for all eight experiments is set
to 0.05. The change of parameters during training are shown in Figure 1 and
Figure 3. To validate the fault tolerance ability, each network that is trained
with online additive (multiplicative) weight noise injection will be injected S′

b

additive (multiplicative) weight noise after training and then the testing error is
evaluated. The last step is repeated 100 times, the statistics of the testing errors
are displayed in box-plot form and shown in Figure 2 and Figure 4 respectively
for additive weight noise injection and multiplicative weight noise injection. The
range of S′

b is from 0 to 0.04.
In accordance with the simulation results, it is clear that the network param-

eters do not converge for pure weight noise injection cases. Even the training



Pure additive weight noise Additive weight noise with WD

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

MSE

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

MSE

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

8
Input Weight

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3
Input Weight

0 20 40 60 80 100
1

2

3

4

5

6

7

8

9
Bias

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5
Bias

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Output Weight

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Output Weight

Fig. 1. Dynamical changes of the network parameters while additive weight noise is
injected during training. Note that the total number of training steps is 100 × 1000.
Every two consecutive points are taken at an interval of 1000 steps.



Pure additive weight noise Additive weight noise with WD

0 0.01 0.02 0.03 0.04
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Weight Decay = 0; Sb0 = 0.01

0 0.01 0.02 0.03 0.04
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Weight Decay = 1e−005; Sb0 = 0.01

Fig. 2. Testing error versus different values of S′
b, for the networks obtained in Figure 1.

error has shown converge, many network parameters are still increasing. Adding
weight decay is able to control the growth of the network parameters, especially
the input weights. If weight decay is added, their magnitudes converge to be-
low 4. Without weight decay, their magnitude can diverge to as large as 10, see
Figure 3.

Moreover, as observed from Figure 2 and Figure 4 that the fault tolerance
abilities of a network trained by pure noise injection and SNIWD are quite
similar. Except that, SNIWD gives slightly better performance when S′

b is close
to 0.01. For S′

b is larger than 0.02, the situation is reverse.

4 Conclusion

In this paper, we have presented simulation results comparing the convergence of
network parameters (including input weights, input biases and output weights)
that are obtained by purely noise injection and simultaneous noise injection
with weight decay. We have found that purely injecting weight noise during
training a MLP might not be able to improve its fault tolerance, as the some of
network parameters might diverge. By simulations, we have found that adding
weight decay simultaneously with weight noise injection during training is able
to overcome such problem. For a network that is trained by SNIWD approach, its
network parameters are with smaller magnitude compared with pure weight noise
injection approach. Convergence of network parameters is almost guaranteed.
The fault tolerance ability of that network is comparable to that is trained by
purely noise injection approach. Due to page limit, we are not able to derive
the objective functions in which those algorithms are minimizing in this paper.
Those theoretical results will be presented in our future papers.



Pure multiplicative weight noise Multiplicative weight noise with WD

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

MSE

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

MSE

0 20 40 60 80 100
−15

−10

−5

0

5

10

15
Input Weight

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4
Input Weight

0 20 40 60 80 100
1

2

3

4

5

6

7

8
Bias

0 20 40 60 80 100

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Bias

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5
Output Weight

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5
Output Weight

Fig. 3. Dynamical changes of the network parameters while additive weight noise is
injected during training. Note that the total number of training steps is 100 × 1000.
Every two consecutive points are taken at an interval of 1000 steps.



Pure multiplicative weight noise Multiplicative weight noise with WD

0 0.01 0.02 0.03 0.04
0.01

0.015

0.02

0.025

0.03

0.035

0.04
Weight Decay = 0; Sb = 0.01

0 0.01 0.02 0.03 0.04
0.01

0.015

0.02

0.025

0.03

0.035

0.04
Weight Decay = 1e−005; Sb = 0.01

Fig. 4. Testing error versus different values of S′
b, for the networks obtained in Figure 3.

Acknowledgement

The research work reported in this paper is supported in part by Taiwan NSC
Research Grant 97-2221-E-005-050.

References

1. An G. The effects of adding noise during backpropagation training on a general-
ization performance, Neural Computation, Vol.8, 643-674, 1996.

2. Basalyga G. and E. Salinas, When response variability increases neural network
robustness to synaptic noise, Neural Computation, Vol.18, 1349-1379, 2006.

3. Bolt G., Fault tolerant in multi-layer Perceptrons. PhD Thesis, University of York,
UK, 1992.

4. Bernier J.L. et al, Obtaining fault tolerance multilayer perceptrons using an explicit
regularization, Neural Processing Letters, Vol.12, 107-113, 2000.

5. Cavalieri S. and O. Mirabella, A novel learning algorithm which improves the
partial fault tolerance of multilayer NNs, Neural Networks, Vol.12, 91-106, 1999.

6. Chiu C.T. et al., Modifying training algorithms for improved fault tolerance,
ICNN’94 Vol.I, 333-338, 1994.

7. Deodhare D., M. Vidyasagar and S. Sathiya Keerthi, Synthesis of fault-tolerant
feedforward neural networks using minimax optimization, IEEE Transactions on
Neural Networks, Vol.9(5), 891-900, 1998.

8. Edwards P.J. and A.F. Murray, Fault tolerant via weight noise in analog VLSI
implementations of MLP’s – A case study with EPSILON, IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal Processing, Vol.45, No.9,
p.1255-1262, Sep 1998.

9. Hammadi N.C. and I. Hideo, A learning algorithm for fault tolerant feedforward
neural networks, IEICE Transactions on Information & Systems, Vol. E80-D, No.1,
1997.

10. Ho K., C.S. Leung, and J. Sum, On weight-noise-injection training, M.Koeppen,
N.Kasabov and G.Coghill (Eds.), Advances in Neuro-Information Processing,
Springer LNCS 5507, pp. 919V926, 2009.



11. Jim K.C., C.L. Giles and B.G. Horne, An analysis of noise in recurrent neural
networks: Convergence and generalization, IEEE Transactions on Neural Networks,
Vol.7, 1424-1438, 1996.

12. Kamiura N., et al, On a weight limit approach for enhancing fault tolerance of
feedforward neural networks, IEICE Transactions on Information & Systems, Vol.
E83-D, No.11, 2000.

13. Leung C.S., J. Sum, A fault tolerant regularizer for RBF networks, IEEE Trans-
actions on Neural Networks, Vol. 19 (3), pp.493-507, 2008.

14. Murray A.F. and P.J. Edwards, Synaptic weight noise during multilayer perceptron
training: fault tolerance and training improvements, IEEE Transactions on Neural
Networks, Vol.4(4), 722-725, 1993.

15. Murray A.F. and P.J. Edwards, Enhanced MLP performance and fault tolerance
resulting from synaptic weight noise during training, IEEE Transactions on Neural
Networks, Vol.5(5), 792-802, 1994.

16. Neti C. M.H. Schneider and E.D. Young, Maximally fault tolerance neural net-
works, IEEE Transactions on Neural Networks, Vol.3(1), 14-23, 1992.

17. Phatak D.S. and I. Koren, Complete and partial fault tolerance of feedforward
neural nets., IEEE Transactions on Neural Networks, Vol.6, 446-456, 1995.

18. Sequin C.H. and R.D. Clay, Fault tolerance in feedforward artificial neural net-
works, Neural Networks, Vol.4, 111-141, 1991.

19. Sum J., C.S. Leung and K. Ho, On objective function, regularizer and prediction
error of a learning algorithm for dealing with multiplicative weight noise, IEEE
Transactions on Neural Networks Vol.20(1), Jan, 2009.


