
Convergence Analysis of Node Fault Injection During Training

Kevin Ho
Dept. of Computer Science

and Communication Engineering
Providence University

Sha-Lu, Taiwan
Email: ho@pu.edu.tw

Chi-sing Leung
Department of Electronic Engineering

City University of Hong Kong
Kowloon Tong, Hong Kong

Email: eeleungc@cityu.edu.hk

John Sum, Siu-chung Lau
Institute of Technology Management

National Chung Hsing University
Taichung, Taiwan.

Email: pfsum@nchu.edu.tw

Abstract—Improving fault tolerance of a neural network is
an important issue that has been studied for more than two
decades. Various algorithms have been proposed in sequel and
many of them have succeeded in attaining a fault tolerant
neural network. Amongst all, on-line node fault injection-based
algorithms are one type of these algorithms. Despite its simple
implementation, theoretical analyses on these algorithms are
far from complete. In this paper, an on-line node fault injection
training algorithm is studied. By node fault injection training,
we assume that the hidden nodes are random neuron in which
the output of these hidden nodes can be zeros in a random
manner. So, in each step of update, we randomly set the hidden
outputs to be zeros. The network output and the gradient
vector are calculated with these zero-output hidden nodes, and
thus apply the standard online weight algorithm to update the
weight vector. The corresponding objective function is derived
and the convergence of the algorithm is proved. By a theorem
from H. White, we show that the weight vector obtained by
this algorithm can converge with probability one. The weight
vector converges to a local minimum of the objective function
derived.

Keywords-convergence; learning; MLP; node fault;

I. INTRODUCTION

Regularization [26], [25], [31], [32], [41] and pruning
[16], [24], [27], [25], [38], [36] are common techniques
to attain a neural network with good generalization. These
techniques work well under the assumption that the trained
neural networks can be ideally implemented (i.e. fault-free
implementation). However, in electronic implementations
(like FPGA [17]), component failure, sign bit change, open
circuit [37], finite precision [39] and exposure to radiation
[48] will exist. If special care is not considered, the perfor-
mance of a neural network could degrade drastically.

Thus, various methods have been proposed to attain a
neural network that is able to tolerate fault/noise. Some of
these methods include injecting random node fault during
training [6], [40], applying weight decay learning [7], [10],
[29], injecting weight noise during training [12], [33], [34],
introducing network redundancy [37], formulating the train-
ing as a minmax problem [11], [35], hard-bounding weight
magnitude during training [8], [15], [23], regularization, [2],
[3], [4], [28], [43]. and others [42].

Amongst all, injecting fault/noise during training is almost
the simplest and effective method [?], [34], [31], [?], [46],
[51]. Sequin & Clay [40] and Bolt [6] are the first two

groups proposing injecting random node fault during train-
ing, and showing by simulations that the resultant multilayer
perceptron (MLP) is able to tolerate random node fault.
Instead of injecting node fault, Judd & Munro [22] proposed
training a MLP with random output hidden nodes. On the
other hand, Murray & Edward [33], [34] proposed injecting
weight noise during training. By simulations, they showed
that the resultant MLP is able to tolerate weight fault
and weight noise. Besides, the convergence of this training
method is better than the standard back-propagation. Jim et
al [21] applied the same idea to real-time-recurrent-learning
(RTRL). Similarly, they showed that the convergence of
this modified RTRL is better than the standard RTRL.
Moreover, the resultant RNN has better generalization than
the one obtained by the standard RTRL. Apart from inject-
ing fault/noise during training, injecting input noise during
training is another simple method [5], [30], [20]. Its idea is
similar. Random noise is injected to the input of a network
during training.

Although many on-line fault/noise injection learning al-
gorithms have been developed in the last two decades, not
many theoretical works have been done to analyze their
success/failure. Most of them are focused on the effect of
noise/fault on the network output or the prediction error
of a neural network. Analyses on the convergence and the
objective functions of these training algorithms are scarce
[1], [13], [14], [45].

Therefore, we have recently investigated the convergence
and the objective functions of some on-line fault/noise in-
jection training algorithms applying for radial basis function
(RBF) networks [18], [19], [44]. For injecting weight noise
during training, we showed that its convergence is with
probability one and the corresponding objective function is
mean square errors (MSE). It implies that this algorithm
is not able to improve generalization, nor fault tolerance.
For injecting node fault during training, we showed that its
convergence is with probability one and the corresponding
objective function is identical to the objective function of a
regularization algorithm in which a fault tolerant regularizer
is added [28].

While some breakthrough analyses have been done for
RBF, the convergence properties and the objective functions
of applying these algorithms for MLPs are still unknown.

Thus, we apply a theorem from H.White [49] and follow
the approach in [50] to prove the convergence of this on-
line node fault injection-based training algorithm for MLPs
and identify the objective function for this algorithm.

The rest of the paper will be devoted to this analysis. In
the next section, the model of a MLP with single linear out-
put node will be defined. Then, the node fault injection-based
training algorithm will be described in Section III. The main
results are presented in Section IV and Section V. The mean
update equation of training algorithm will be presented in
Section IV, and the objective function of the algorithm based
on this mean update equation will be derived. In Section V,
the convergence proof of the algorithm is presented. Finally,
Section VI gives the conclusion.

II. BACKGROUND

We assume that the training data set D = {(xk, yk)}Nk=1
is generated by an unknown system, where xk ∈ Rn is the
input and yk ∈ R is the output.

A. Network Model
This unknown system is thus approximated by a MLP

with n input nodes, m hidden nodes, and one linear output
node, defined as follows :

f(xk,d,A, c) = dT z(ATxk + c), (1)

where A = [a1, ⋅ ⋅ ⋅ ,am] ∈ Rn×m is the input-to-hidden
weight matrix, ai ∈ Rn is the input weight vector associated
with the itℎ hidden node, c = (c1, ⋅ ⋅ ⋅ , cm)T ∈ Rm is the
input-to-hidden bias vector, d ∈ Rm is the hidden-to-output
weight vector, and z = (z1, ⋅ ⋅ ⋅ , zm)T ∈ Rm is output
vector of the hidden layer. It is a vector function in which
the itℎ element is a function of input xk, the input weight
vector a)i and the input bias ci.

zi(xk,ai, ci) =
1

1 + exp(−(aTi xk + ci))
(2)

for i = 1, 2, ⋅ ⋅ ⋅ ,m.
For the sake of presentation, we let wi be the parametric

vector associated to the itℎ hidden node, where

wi = (di,a
T
i , ci)

T . (3)

Besides, we let w be a parametric vector augmenting all the
parametric vectors w1,w2, ⋅ ⋅ ⋅ ,wm, i.e.

w = (wT
1 ,w

T
2 , ⋅ ⋅ ⋅ ,wT

m)T . (4)

In other word, the output of the network can be denoted as
f(xk,w). Throughout the paper, we call w1, w2, ⋅ ⋅ ⋅ ,wm

and w the weight vectors.

B. Weight Decay Training Algorithm
In weight decay training, a sample is randomly drawn

from the dataset D at each update step. We denote the sample
being selected at the ttℎ step as {xt, yt}. Formally speaking,
we can let ±1(t), ±2(t), ⋅ ⋅ ⋅ , ±N (t) be N independent binary
random numbers and

∑N
k=1 ±k(t) = 1 for all t ≥ 0.

For t1 ∕= t2, random vectors (±1(t1), ⋅ ⋅ ⋅ , ±N (t1))
T and

(±1(t2), ⋅ ⋅ ⋅ , ±N (t2))
T are independent. Then, (xT

t , yt)
T can

formally be defined as the follows :
[

xt

yt

]
=

N∑

k=1

±k(t)

[
xk

yk

]
. (5)

The input xt is thus fed in the MLP, and the output
is calculated by (1) and (2). To shorten the length of the
equations, we denote zi(xt,ai(t), ci(t)) in (2) by zi(t) in
the rest of the paper. The update equations of the weight
vectors wi (for i = 1, 2, ⋅ ⋅ ⋅ ,m) can then be written as
follows :

wi(t+ 1)−wi(t)

= ¹(t) {(yt − f(xt,w(t)))gi(xt,w(t))

− ®wi(t)} , (6)

where

gi(xt,w(t)) =
∂

∂wi
f(xt,w)

∣∣∣∣
w=w(t)

(7)

=

⎡
⎣

zi(t)
di(t)zi(t)(1− zi(t))xt

di(t)zi(t)(1− zi(t))

⎤
⎦ , (8)

¹(t) > 0 is the step size at the ttℎ step, and ® > 0 is
the decay constant controlling the amount of decay of the
weight vector wi(t) in each update step.

Similar to the notation w (4), we can define a vec-
tor function g which augments all the vector functions
g1,g2, ⋅ ⋅ ⋅ ,gm, i.e.

g = (gT
1 ,g

T
2 , ⋅ ⋅ ⋅ ,gT

m)T . (9)

From (6),

w(t+ 1)−w(t)

= ¹(t) {(yt − f(xt,w(t)))g(xt,w(t))

− ®w(t)} , (10)

Conventionally, the initial weight vector w(0) is set to
a small random vector with elements around zero. The
objective function being minimized by this weight decay
training algorithm (6) is 1

N

∑N
k=1(yk−f(xk,w))2+®∥w∥22,

and its convergence is with probability one [49], [50].

III. INJECTING NODE FAULT DURING TRAINING

Node fault injection-based algorithm is basically a heuris-
tic modification of the weight decay training algorithm by
randomly setting zero values to the outputs of the hidden
nodes. To model this random node fault injection, we
introduce a binary random vector b(t) ∈ {0, 1}m at the
ttℎ update step.

P (bi(t)) =

{
1− p if bi(t) = 1
p if bi(t) = 0,

(11)

where the value 0 < p < 1 is the constant. For all i, j
(i ∕= j), t, t′ (t ∕= t′), the random variables bi(t), bi(t

′), bj(t)
are all identical and independent.

To save the space, we denote z̃i(xt,ai(t), ci(t)) by z̃i(t).
With bi(t), the output of the itℎ hidden node, denoted as z̃i,
will be given by

z̃i(t) = bi(t)zi(t). (12)

The output of a linear output MLP with node fault injection,
denoted as f̃ , will be given by

f̃(xt,w(t)) =

m∑

i=1

di(t)bi(t)zi(t). (13)

On the other hand, we let g̃i(xt,wi(t)) be the perturbed
counterpart of gi(xt,w(t)). By replacing zi by z̃i in (8),

g̃i(xt,w(t)) =

⎡
⎣

z̃i(t)
di(t)z̃i(t)(1− z̃i(t))xt

di(t)z̃i(t)(1− z̃i(t))

⎤
⎦ . (14)

Based on (6), (13) and (14), the update equation for wi

for all i = 1, ⋅ ⋅ ⋅ ,m is defined as follows :

wi(t+ 1)−wi(t)

= ¹(t)
{
(yt − f̃(xt,w(t)))g̃i(xt,w(t))

− ®wi(t)} , (15)

where ¹(t) > 0 is the step size at the ttℎ step and ® > 0
is called the decay constant. Similar to (10), (15) can be
rewritten as follows :

w(t+ 1)−w(t)

= ¹(t)
{
(yt − f̃(xt,w(t)))g̃(xt,w(t))

− ®w(t)} , (16)

where g̃ is a vector function augmenting g̃1, g̃2, ⋅ ⋅ ⋅ , g̃m,
i.e.

g̃ = (g̃T
1 , g̃

T
2 , ⋅ ⋅ ⋅ , g̃T

m)T . (17)

By using notation ±k(t), an alternative form for (15) is
given by

wi(t+ 1)−wi(t)

= ¹(t)

M∑

k=1

±k(t)(yk − f̃(xk,w(t)))g̃i(xk,w(t))

−®wi(t). (18)

This form is particular useful for the derivations of the mean
update equation and the objective function of the on-line
training algorithms.

IV. OBJECTIVE FUNCTION

Since bi(t) and bj(t) are independent for all i ∕= j, the
expectation of bi(t)bj(t) denoted by E[bi(t)bj(t)] is given
by

E[bi(t)bj(t)] =

{
(1− p) if i = j,
(1− p)2 if i ∕= j. (19)

For given xt and yt, one can show by using (19) that

E[ytz̃i(t)] = (1− p)ytzi(t), (20)

E[ytz̃i(t)(1− z̃i(t))] = (1− p)ytzi(t)(1− zi(t)). (21)

As

f̃(xt,w(t))z̃i(t)

=

⎛
⎝

m∑

j=1

dj(t)bj(t)zj(t)

⎞
⎠ bi(t)zi(t),

= bi(t)
2di(t)z

2
i (t)

+

m∑

j=1,j ∕=i

bi(t)bj(t)dj(t)zj(t)zi(t).

Hence,

E[f̃(xt,w(t))z̃i(t)]

= (1− p)di(t)z
2
i (t)

+ (1− p)2
m∑

j=1,j ∕=i

dj(t)zj(t)zi(t).

= (1− p)zi(t)

⎧
⎨
⎩pdi(t)zi(t) + (1− p)

m∑

j=1

dj(t)zj(t)

⎫
⎬
⎭

= (1− p)zi(t) {p di(t)zi(t) + (1− p)f(xt,w(t))} .(22)

and similarly

E[f̃(xt,w(t))z̃i(t)(1− z̃i(t))]

= (1− p)zi(t)(1− zi(t))

× {p di(t)zi(t) + (1− p)f(xt,w(t))} . (23)

Applying (20) - (23) and assuming that each sample in
the dataset D has equal probability to be selected in each
step, the expectation of (15) over all random variables
b1(t), ⋅ ⋅ ⋅ , bm(t) and ±1(t) ⋅ ⋅ ⋅ , ±N (t) for a given w(t) can
be expressed as follows :

E[wi(t+ 1)∣w(t)]

= wi(t) +
¹′(t)
N

N∑

k=1

(yk − f(xk,w(t)))gi(xk,w(t))

− ¹′(t)p
N

N∑

k=1

⎡
⎣∑

j ∕=i

dj(t)zj(t)

⎤
⎦gi(xk,w(t))

− ¹′(t)®′wi(t), (24)

where ¹′(t) = (1− p)¹(t) and ®′ = ®/(1− p).

The mean update equation for (24) can be written as
follows :

E[wi(t+ 1)∣w(t)] = wi(t)− ¹′(t)
∂

∂wi
V (w)

∣∣∣∣
w=w(t)

.

(25)
In which, the scalar function V (w) is called the objective
function of the algorithm (24). Let ∂

∂wV (w) denotes the
vector augmenting ∂

∂w1
V (w) ∂

∂w2
V (w), ⋅ ⋅ ⋅ , ∂

∂wm
V (w),

i.e.

∂

∂w
V (w) =

(
∂

∂w1
V (w)T , ⋅ ⋅ ⋅ , ∂

∂wm
V (w)T

)T

. (26)

Equation (25) can be written as follows :

E[w(t+1)∣w(t)] = w(t)−¹′(t)
∂

∂w
V (w)

∣∣∣∣
w=w(t)

. (27)

Theorem 1: The objective function of algorithm (24) is
given by

V (w) =
1

2N

N∑

k=1

(yk − f(xk,w))2

+
p

2N

N∑

k=1

dT (G(xk,w)−H(xk,w))d

+
®

2(1− p)
∥w∥22. (28)

The matrices G(xk,w) and H(xk,w) in (28) are given by

G(xk,w) = diag{z21(xk,w), ⋅ ⋅ ⋅ , z2m(xk,w)}, (29)
H(xk,w) = z(xk,w)z(xk,w)T , (30)

and ∥w∥22 = wTw.

(Proof) Taking derivative of (28) with respect to wi and then
setting wi to wi(t), one can show that (24) is equivalent to
(25). Q.E.D.

By (15), (24), (25) and (28), it is clear that (15) is a
stochastic gradient descent algorithm which minimizes the
objective function V (w). One should also note that the
factor

p

N

N∑

k=1

dT (G(xk,w)−H(xk,w))d (31)

in (28) is similar to the fault tolerant regularizer derived in
[28]. This regularizer has distinctive property in comparison
with the regularizers proposed for improving generalization
[9], [47]. Since the diagonal elements of the matrix G−H
are all zeros and the matrix is symmetric, the summation of
all its eigenvalues must be zero and the eigenvalues must be
real. Thus, it is not possible that all the eigenvalues are of
the same sign, or that all the eigenvalues are zeros. Some
eigenvalues are positive and some eigenvalues are negative.
That means, for fault tolerant, the matrix must contain some
positive eigenvalues and some negative eigenvalues. In other
words, the effect of the additional term (31) is not simply
penalizing the weight magnitudes. It could magnify weight
magnitude as well.

V. CONVERGENCE OF ALGORITHM

To accomplish the proof of convergence, we need the
following definitions for absolute value and norms. Let °
be any real number in R; and q = (q1, q2, ⋅ ⋅ ⋅ , qv)T be a
vector in Rv . The absolute value of a number ° is denoted
as ∣°∣. The l∞ norm and l2 norm of vector q are denoted
as ∥q∥∞ and ∥q∥2, where ∥q∥∞ = max{∣q1∣, ⋅ ⋅ ⋅ , ∣qv∣},
and ∥q∥2 =

[∑m
i=1 q

2
i

]1/2. By the definitions of l∞ and l2
norms,

∥q∥2 ≤ √
m ∥q∥∞. (32)

The convergence proof will be presented in the rest of
this section. We first show that ∥w(t)∥2 is bounded for
all t. Then, we apply a theorem in [49] to show that the
convergence of the algorithm (15).

A. Boundedness of ∥w(t)∥2
The boundedness of ∥w(t)∥2 will be explained one by

one from boundedness of ∥d(t)∥2, ∥ai(t)∥2 and ∣ci(t)∣ for
all i = 1, ⋅ ⋅ ⋅ ,m.

By (3), (14) and (15), the update of di(t) can be expressed
as follows :

di(t+ 1)− di(t)

= ¹(t)
{
(yt − dT (t)z̃(t))z̃i(t)− ®di(t)

}
. (33)

In vector-matrix form,

d(t+ 1)− d(t)

= ¹(t)
{
(yt − dT (t)z̃(t))z̃(t)− ®d(t)

}
. (34)

Let

B(t) = (1− ¹(t)®)Im×m − ¹(t)z̃(t)z̃T (t).

d(t+ 1) = B(t)d(t) + ¹(t)ytz̃(t). (35)

It can be shown that the eigenvalues of z̃(t)z̃T (t) are 0 and∑m
i=1 z̃i(t)

2 (see Lemma 6.3 in [50]). Thus, the eigenvalues
of the matrix B(t) in (35) are

1− ¹(t)® and 1− ¹(t)®− ¹(t)

m∑

i=1

z̃i(t)
2.

As 0 < z̃i(t) < 1, one can set the step size small enough
to ensure that the eigenvalues of B(t) is positive and less
than one. For instance, 0 < ¹(t) < 1

®+m . In such case
(1− ¹(t)®) will be the largest eigenvalue of B(t).

By the definition of l∞ norm, and the facts that ∣yt∣ < ∞
and 0 < z̃i(t) < 1,

∥d(t+ 1)∥∞ ≤ (1− ¹(t)®)∥d(t)∥∞ + ¹(t)·1, (36)

where ·1 = max ∣yt∣. The following lemma states the
boundedness of ∥d(t)∥2.

Lemma 1: For all t ≥ 0, the l2 norm of d(t) is bounded,
and is given by

∥d(t)∥2 ≤ ·2, (37)

where ·2 = max{√m·1/®,
√
m∥d(0)∥∞}.

(Proof) We consider the following cases: 1) the initial
condition of ∥d(0)∥∞ ≥ ·1/®; and 2) the initial condition
∥d(0)∥∞ < ·1/®. For each case, we prove by induction
that the condition (37) holds for all t ≥ 0.

Case 1: ∥d(0)∥∞ ≥ ·1/® implies

·2 =
√
m∥d(0)∥∞, (38)

·1 ≤ ®∥d(0)∥∞. (39)

Hence by (39), (36) can be rewritten as follows :

∥d(t+1)∥∞ ≤ (1−¹(t)®)∥d(t)∥∞+¹(t)®∥d(0)∥∞. (40)

Now, we are able to show by induction that ∥d(t)∥2 ≤ ·2.
For t = 0 in (40),

∥d(1)∥∞ ≤ (1− ¹(0)®)∥d(0)∥∞ + ¹(0)®∥d(0)∥∞,

= ∥d(0)∥∞.

Thus by (32),

∥d(1)∥2 ≤ √
m∥d(1)∥∞,

≤ √
m∥d(0)∥∞,

= ·2.

Condition (37) holds for t = 0.
For t = 1 in (40),

∥d(2)∥∞ ≤ (1− ¹(1)®)∥d(1)∥∞ + ¹(1)®∥d(0)∥∞,

≤ (1− ¹(1)®)∥d(0)∥∞ + ¹(1)®∥d(0)∥∞,

= ∥d(0)∥∞.

Thus by (32) and (38),

∥d(2)∥2 ≤ √
m∥d(2)∥∞,

≤ √
m∥d(0)∥∞,

= ·2.

Condition (37) holds for t = 1 as well.
Next, let the condition (37) holds for t = t′. For t = t′+1,

∥d(t′ + 1)∥∞ ≤ (1− ¹(t′)®)∥d(t′)∥∞ + ¹(t′)®∥d(0)∥∞,

≤ (1− ¹(t′)®)∥d(0)∥∞ + ¹(t′)®∥d(0)∥∞,

= ∥d(0)∥∞.

Thus by (32) and (38),

∥d(t′ + 1)∥2 ≤ √
m∥d(t′ + 1)∥∞,

≤ √
m∥d(0)∥∞,

= ·2.

Condition (37) holds for t = t′ + 1.
By the principle of mathematical induction, if ∥d(0)∥∞ ≥

·1/® condition (37) holds for all t ≥ 0.

Case 2: ∥d(0)∥∞ < ·1/® implies that

·2 =
√
m·1/®. (41)

For t = 0 in (36),

∥d(1)∥∞ < (1− ¹(0)®)∥d(0)∥∞ + ¹(0)·1,

< (1− ¹(0)®)
·1

®
+ ¹(0)·1,

=
·1

®
.

Thus by (32) and (41),

∥d(1)∥2 <
√
m∥d(1)∥∞,

<

√
m·1

®
,

= ·2.

Condition (37) holds for t = 0.
For t = 1 in (36),

∥d(2)∥∞ < (1− ¹(1)®)∥d(1)∥∞ + ¹(1)·1,

< (1− ¹(1)®)
·1

®
+ ¹(1)·1,

=
·1

®
.

Thus by (32) and (41),

∥d(2)∥2 <
√
m∥d(2)∥∞,

<

√
m·1

®
,

= ·2.

Condition (37) holds for t = 1.
Next, let the condition (37) holds for t = t′. For t = t′+1,

∥d(t′ + 1)∥∞ < (1− ¹(t′)®)∥d(t′)∥∞ + ¹(t′)·1,

< (1− ¹(t′)®)
·1

®
+ ¹(t′)·1,

=
·1

®
.

Thus by (32) and (41),

∥d(t′ + 1)∥2 <
√
m∥d(t′ + 1)∥∞,

<

√
m·1

®
,

= ·2.

Condition (37) holds for t = t′ + 1.
By the principle of mathematical induction, if ∥d(0)∥∞ <

·1/® condition (37) holds for all t ≥ 0.
Since condition (37) holds for both cases when

∥d(0)∥∞ ≥ ·1/® and ∥d(0)∥∞ < ·1/®, we can con-
clude that ∥d(t)∥2 ≤ max{√m·1/®,

√
m∥d(0)∥∞} for all

t ≥ 0. The proof is completed. Q.E.D.

By (3), (14) and (15), the update of ai(t) can be expressed
as follows :

ai(t+ 1)

= ai(t) + ¹(t)(yt − dT (t)z̃(t))z̃i(t)(1− z̃i(t))xt

−¹(t)® ai(t). (42)
= (1− ¹(t)®)ai(t)

+¹(t)(yt − dT (t)z̃(t))z̃i(t)(1− z̃i(t))xt. (43)

As ∣yt∣, ∥xt∥∞ and ∥z̃(t)∥∞ are bounded; and the proof in
Lemma 1 has showed that ∥d(t)∥∞ are bounded,

·3 = max
{∥(yt − dT (t)z̃(t))z̃i(t)(1− z̃i(t))xt∥∞

}
.

Thus,

∥ai(t+ 1)∥∞ ≤ (1− ¹(t)®)∥ai(t)∥∞ + ¹(t)·3. (44)

Applying the same technique as the boundedness proof of
d(t), we state without proof the following lemma on the
boundedness of ∥ai(t)∥2.

Lemma 2: For all i = 1, ⋅ ⋅ ⋅ ,m, the l2 norm of ai(t) is
bounded for all t ≥ 0 and is given by

∥ai(t)∥2 ≤ ·5, (45)

where ·5 = max{√n·3/®,
√
n∥ai(0)∥∞}.

Also by (3), (14) and (15), the update of ci(t) can be
expressed as follows :

ci(t+ 1)

= (1− ¹(t)®)ci(t)

+¹(t)(yt − dT (t)z̃(t))z̃i(t)(1− z̃i(t)). (46)

As ∣yt∣, ∥z̃(t)∥∞ and ∥d(t)∥∞ are bounded,

·4 = max
{∣∣(yt − dT (t)z̃(t))z̃i(t)(1− z̃i(t))

∣∣} .

Thus,

∣ci(t+ 1)∣ ≤ (1− ¹(t)®)∣ci(t)∣+ ¹(t)·4. (47)

Applying the same technique as the boundedness proof of
d(t), we state without proof the following lemma on the
boundedness of ∣ci(t)∣.

Lemma 3: For all i = 1, ⋅ ⋅ ⋅ ,m, ∣ci(t)∣ is bounded for
all t ≥ 0 and is given by

∣ci(t)∣ ≤ ·6, (48)

where ·6 = max{·4/®, ∣ci(0)∣}.

By Lemma 1-3, we can show the boundedness of
∥w(t)∥2, as stated in the following theorem.

Theorem 2: ∥w(t)∥2 ≤ ·7 for all t ≥ 0, where

·7 =
√
(n+ 2)m max{·1/®, ·3/®, ·4/®, ∥w(0)∥∞}.

(Proof) Since ∥w(t)∥2 ≤
√
(n+ 2)m∥w(t)∥∞ and

∥w(t)∥∞ ≤ max{·1/®, ∥d(0)∥∞,

·3/®, ∥a1(0)∥∞,

⋅ ⋅ ⋅ , ∥am(0)∥∞, ·4/®,

∣c1(0)∣, ⋅ ⋅ ⋅ , ∣cm(0)∣},

∥w(t)∥2 ≤
√
(n+ 2)m max{·1/®, ·3/®,

·4/®, ∥w(0)∥∞}
= ·7.

The proof is completed. Q.E.D.

B. Convergence proof
Now, we can proceed to the proof of convergence. Before

that, we need the following assumption on a nonnegative
number sequence °(t).

Assumption 1: °(t) is nonnegative for all t and it is a
decreasing sequence fulfilling the following conditions.

∑
t

°(t) = ∞,
∑
t

°2(t) < ∞. (49)

The convergence proof follows the same approach as in
[50], which applies the following theorem from H. White in
[49].

Lemma 4 ([49]): Let {Z(t)}t≥0 be a sequence of
bounded i.i.d. random vectors, and M : Rl × Rv → Rv

a continuously differentiable function. Suppose that, (i) for
each w ∈ Rl, the expectation

M̄(w) ≡ E[M(Z(t),w)] (50)

is bounded, (ii) there exists a twice continuously differen-
tiable function ℒ : Rl → R such that

(
∂

∂w
ℒ(w)

)T

M̄(w) ≤ 0 (51)

for all w ∈ Rl, and (iii) {°(t)}∞t=1 is a sequence satisfying
assumptions (49). Define the sequence {w(t)}t≥0 iteratively
by

w(t+ 1) = w(t) + °(t)M(Z(t),w(t)), (52)

where w(0) is arbitrarily given. Then either w(t) converges
to {w∣ (∂

∂wℒ(w)
)T

M̄(w) = 0} or w(t) diverges with
probability 1.

Now, we can state the convergence of the algorithm (15)
in the following theorem.

Theorem 3: For arbitrarily given w(0), w(t) defined
by (15) converges to {w∣ (∂

∂wV (w)
)T

M̄(w) = 0} with
probability 1.

(Proof) Compare (16) and (52), we can define

Z(t) = (xT
t , yt,b(t)

T)T , (53)
M(Z(t),w) = (yt − f̃(xt,w))g̃(xt,w)− ®w, (54)

°(t) = ¹′(t). (55)

Condition (i): As the elements in the vector Z(t) =
(xT

t , yt,b(t)
T)T are bounded and Lemma 1 to 3 show that

w(t) is bounded for all t, it implies that E[M(Z(t),w)] is
bounded. Condition (i) holds.

Condition (ii): From (27), it is clear that

M̄(w) = E[M(Z(t),w)]

= − ∂

∂w
V (w).

So, we can define that

ℒ(w) = V (w). (56)

From (28), one can show that V (w) twice differentiable.
Thus, ℒ(w) is twice differentiable. Besides,

(
∂

∂w
ℒ(w)

)T

M̄(w) = −∂V (w)

∂w

T
∂V (w)

∂w
≤ 0.

So, Condition (ii) holds.
Condition (iii): For the step size ¹′(t), one can define it

in a way to satisfy the conditions stated in (49). For instance,
one can set ¹′(t) ∝ t−1. Condition (iii) holds.

As Condition (i), (ii) and (iii) hold, it is concluded
by Lemma 4 that w(t) defined by (15) converges to
{w∣ (∂

∂wℒ(w)
)T

M̄(w) = 0} with probability 1 or w(t)
diverges with probability one.

However, Lemma 1 to 3 have showed that w(t) is
bounded for all t. In other words, w(t) cannot diverge.

Therefore, w(t) defined by (15) must converge
to {w∣ (∂

∂wℒ(w)
)T

M̄(w) = 0} (or equivalently
{w∣ (∂

∂wV (w)
)T

M̄(w) = 0}) with probability 1.
The proof is completed. Q.E.D.

VI. CONCLUSION

In this paper, we have presented an on-line node fault
injection training algorithm (15) for MLPs. Thus, we have
shown that the weight vectors (w(t) for all t ≥ 0) obtained
by this algorithm is always bounded. With this bounded-
ness condition, we have applied a theorem from H.White
(Lemma 4) and shown that the convergence of algorithm
(15) is with probability one (Theorem 3). Besides, the
objective function being minimized by this algorithm has
been found, as stated in (28). The equivalence between this
objective function and the one defined in [28] is remarked.

ACKNOWLEDGEMENT

The research work done in this paper is supported in part
by National Science Council, Taiwan, under Research Grants
97-2221-E-005-050 and 98-2221-E-005-048.

REFERENCES

[1] An G. The effects of adding noise during backpropagation
training on a generalization performance, Neural Computa-
tion, Vol.8, 643-674, 1996.

[2] Bernier J.L. et al, Obtaining fault tolerance multilayer per-
ceptrons using an explicit regularization, Neural Processing
Letters, Vol.12, 107-113, 2000.

[3] Bernier J.L. et al, A quantitative study of fault tolerance,
noise immunity and generalization ability of MLPs, Neural
Computation, Vol.12, 2941-2964, 2000.

[4] Bernier J.L. et al, Assessing the noise immunity and general-
ization of radial basis function networks, Neural Processing
Letter, Vol.18(1), 35-48, 2003.

[5] Bishop C.M., Training with noise is equivalent to Tikhonov
regularization, Neural Computation, Vol.7, 108-116, 1995.

[6] Bolt G., Fault tolerant in multi-layer Perceptrons. PhD Thesis,
University of York, UK, 1992.

[7] Catala M. A. and X.L. Parra, Fault tolerance parameter model
of radial basis function networks, IEEE ICNN’96, Vol.2,
1384-1389, 1996.

[8] Cavalieri S. and O. Mirabella, A novel learning algorithm
which improves the partial fault tolerance of multilayer NNs,
Neural Networks, Vol.12, 91-106, 1999.

[9] Chen S., Local regularization assisted orthogonal least squares
regression, Neurocomputing, pp. 559-585, 2006.

[10] Chiu C.T. et al., Modifying training algorithms for improved
fault tolerance, ICNN’94 Vol.I, 333-338, 1994.

[11] Deodhare D., M. Vidyasagar and S. Sathiya Keerthi, Synthe-
sis of fault-tolerant feedforward neural networks using min-
imax optimization, IEEE Transactions on Neural Networks,
Vol.9(5), 891-900, 1998.

[12] Edwards P.J. and A.F. Murray, Fault tolerant via weight
noise in analog VLSI implementations of MLP’s – A case
study with EPSILON, IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, Vol.45,
No.9, p.1255-1262, Sep 1998.

[13] Grandvalet Y., S. Canu, A comment on noise injection into
inputs in back-propagation learning, IEEE Transactions on
Systems, Man, and Cybernetics, 1995.

[14] Grandvalet Y., S. Canu and S. Boucheron, Noise injection:
Theoretical prospects, Neural Computation, Vol. 9, 1093-
1107, 1997.

[15] Hammadi N.C. and I. Hideo, A learning algorithm for fault
tolerant feedforward neural networks, IEICE Transactions on
Information & Systems, Vol. E80-D, No.1, 1997.

[16] Hassibi B and D.G. Stork, Second order derivatives for
network pruning: Optimal brain surgeon. In Hanson et al.
(eds) Advances in Neural Information Processing Systems,
164-171, 1993.

[17] S. Himavathi, D. Anitha and A. Muthuramalingam, Feedfor-
ward neural network implementation in FPGA using layer
multiplexing for effective resource utilization, IEEE Transac-
tions on Neural Networks, Vol.18, 880-888, 2007.

[18] Ho K., C.S. Leung, and J. Sum, On weight-noise-injection
training, M.Koeppen, N.Kasabov and G.Coghill (Eds.), Ad-
vances in Neuro-Information Processing, Springer LNCS
5507, pp. 919-926, 2009.

[19] K. Ho, C.S. Leung and J. Sum, Convergence and Objec-
tive Functions of Some Fault/Noise Injection-Based online
Learning Algorithms for RBF Networks, IEEE Transactions
on Neural Networks, in press.

[20] Jiang Y. et al, A study of the effect of noise injection on the
training of artificial neural networks, Proc. IJCNN’09, 2009.

[21] Jim K.C., C.L. Giles and B.G. Horne, An analysis of noise in
recurrent neural networks: Convergence and generalization,
IEEE Transactions on Neural Networks, Vol.7, 1424-1438,
1996.

[22] Judd S. and P. W. Munro, Nets with unreliable hidden nodes
learn error-correcting codes, in Advances in Neural Informa-
tion Proceesing Systems, Vol.5, S. J. Hanson, J. D. Cowan,
and C. L. Giles, Eds. San Mateo, CA: Morgan Kanfmanu,
pp. 89-96, 1993.

[23] Kamiura N., et al, On a weight limit approach for enhancing
fault tolerance of feedforward neural networks, IEICE Trans-
actions on Information & Systems, Vol. E83-D, No.11, 2000.

[24] LeCun Y. et al., Optimal brain damage, Advances in Neural
Information Processing Systems 2 (D.S. Touretsky, ed.) 396-
404, 1990.

[25] Leung C.S., K.W. Wong, P.F. Sum and L.W. Chan, A pruning
method for recursive least squared algorithm, Neural Net-
works, 14:147-174, 2001.

[26] Leung C.S., G.H. Young, J. Sum and W.K. Kan, On the reg-
ularization of forgetting recursive least square, IEEE Trans-
actions on Neural Networks, Vol.10, 1842-1846, 1999.

[27] Leung C.S., K.W.Wong, J. Sum, and L.W.Chan, On-line
training and pruning for RLS algorithms, Electronics Letters,
Vol.32, No.23, 2152-2153, 1996.

[28] Leung C.S., J. Sum, A fault tolerant regularizer for RBF
networks, IEEE Transactions on Neural Networks, Vol. 19
(3), pp.493-507, 2008.

[29] Leung C.S. and J. Sum Analysis on generalization error
of faulty RBF networks with weight decay regularizer, in
Proceedings of ICONIP 2008, Springer LNCS, 2009.

[30] Matsuoka K., Noise injection into inputs in back-propagation
learning, IEEE Transactions on Systems, Man, and Cybernet-
ics, Vol.22(3), 436-440, 1992.

[31] Moody J.E., Note on generalization, regularization, and archi-
tecture selection in nonlinear learning systems, First IEEE-SP
Workshop on Neural Networks for Signal Processing, 1991.

[32] Murata N., S. Yoshizawa and S. Amari. Network information
criterion–Determining the number of hidden units for an
artificial neural network model, IEEE Transactions on Neural
Networks, Vol.5(6), pp.865-872, 1994.

[33] Murray A.F. and P.J. Edwards, Synaptic weight noise dur-
ing multilayer perceptron training: fault tolerance and train-
ing improvements, IEEE Transactions on Neural Networks,
Vol.4(4), 722-725, 1993.

[34] Murray A.F. and P.J. Edwards, Enhanced MLP performance
and fault tolerance resulting from synaptic weight noise
during training, IEEE Transactions on Neural Networks,
Vol.5(5), 792-802, 1994.

[35] Neti C. M.H. Schneider and E.D. Young, Maximally fault
tolerance neural networks, IEEE Transactions on Neural
Networks, Vol.3(1), 14-23, 1992.

[36] Pedersen M.W., L.K. Hansen and J. Larsen. Pruning with gen-
eralization based weight saliencies: °OBD, °OBS. Advances
in Information Processing Systems 8 521-528, 1996.

[37] Phatak D.S. and I. Koren, Complete and partial fault tolerance
of feedforward neural nets, IEEE Transactions on Neural
Networks, Vol.6, 446-456, 1995.

[38] Reed R., Pruning algorithms – A survey, IEEE Transactions
on Neural Networks, Vol.4(5), 740-747, 1993.

[39] Antony W. Savich, Medhat Moussa and Shawki Areibi, The
impact of arithmetic representation on implementing MLP-BP
on FPGAs: A study, IEEE Transactions on Neural Networks,
Vol.18, 240-252, 2007.

[40] Sequin C.H. and R.D. Clay, Fault tolerance in feedforward
artificial neural networks, Neural Networks, Vol.4, 111-141,
1991.

[41] Sugiyama, M. and Ogawa, H., Optimal design of regulariza-
tion term and regularization parameter by subspace informa-
tion criterion, Neural Networks, Vol.15, 349-361, 2002.

[42] Sum J., C.S. Leung, L. Hsu, Y. Huang, An objective func-
tion for single node fault RBF learning, in Proceedings of
TAAI’2007.

[43] Sum J., C.S. Leung and K. Ho, On objective function,
regularizer and prediction error of a learning algorithm for
dealing with multiplicative weight noise, IEEE Transactions
on Neural Networks Vol.20(1), Jan, 2009.

[44] Sum J., C.S. Leung, and K. Ho, On node-fault-injection train-
ing an RBF network, M.Koeppen, N.Kasabov and G.Coghill
(Eds.), Advances in Neuro-Information Processing, Springer
LNCS 5507, pp. 324-331, 2009.

[45] Sum J. and K. Ho, SNIWD: Simultaneous weight noise
injection with weight decay for MLP training, in Proceedings
of ICONIP 2009, Springer LNCS 5863, 2009.

[46] Takanami I., M. Sato and Y. P. Yang, A fault-value injection
approach for multiple-weight-fault tolerance of MNNs, Proc.
of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks, vol. III, pp. 515-520, 2000.

[47] Tipping M.E., The relevance vector machine, in Advances in
Neural Information Processing Systems, Vol.12. p.652-658,
Cambridge, MA: MIT Press, 2000.

[48] Velazco R. et al, SEU fault tolerance in artificial neural
networks, IEEE Transactions on Nuclear Science, Vol. 42 (6),
1856-1862, 1995.

[49] White H., Some asymptotic results for learning in single
hidden-layer feedforward network models, Journal of Amer-
ican Statistical Associtation, Vol.84, No.408, p.1003-1013,
December, 1989.

[50] Zhang, Huisheng, Wei Wu, Fei Liu, and Mingchen Yao,
Boundedness and convergence of online gradient method with
penalty for feedforward neural networks IEEE Transactions
on Neural Networks, Vol.20(6), 1050-1054, June 2009.

[51] Zhu J.H. and P. Sutton, FPGA implementation of neural
networks – a survey of a decade of progress, Proceedings
of the 13th International Conference on Field Programmable
Logic and Applications, Lisbon, 2003.

