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Abstract—Injecting weight noise during training has been
proposed for almost two decades as a simple technique to
improve fault tolerance and generalization of a multilayer
perceptron (MLP). However, little has been done regarding
their convergence behaviors. Therefore, we presents in this
paper the convergence proofs of two of these algorithms for
MLPs. One is based on combining injecting multiplicative
weight noise and weight decay (MWN-WD) during training.
The other is based on combining injecting additive weight noise
and weight decay (AWN-WD) during training. Let m be the
number of hidden nodes of a MLP, ® be the weight decay
constant and Sb be the noise variance. It is showed that the
convergence of MWN-WD algorithm is with probability one if
® >

√
Sbm. While the convergence of the AWN-WD algorithm

is with probability one if ® > 0.
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I. INTRODUCTION

To improve the fault tolerance of a multilayer perceptron
(MLP), Murray & Edward [19], [20], [13] modified the
conventional backpropagation training by injecting multi-
plicative weight noise during each step of training. By sim-
ulations on character encoder and eye-classifier problems,
they found that the resultant multilayer perceptron has better
tolerance ability against random weight fault and weight
perturbation. Applying the same technique in real-time-
recurrent-learning (RTRL), Jim et al [17] have also found
that the generalization of a RNN can be improved. Moreover,
the convergence speed is faster than conventional RTRL.
While on-line weight noise injection training algorithms
have succeeded in improving fault tolerance of a MLP, the
generalization of a RNN, and convergence speed of training,
not much analytical work has been done in regard to the
(i) convergence proofs and (ii) objective functions of these
algorithms.

Even the authors in [12], [20], [17] have only provided
preliminary analyses on the effect of the prediction error
of a neural network that is corrupted by weight noise (see
Section II.C in [12], [20] for the analysis for MLP and see
Section 3 in [17] for the analysis for RNN). G.An in [1] has
attempted to these problems. In his paper, he considered
three different on-line back-propagation training with noise
injection. One of them is based on additive weight noise
injection (see Section 4 in [1]). While his works in the
other two algorithms are correct, his analysis on the case of

weight noise injection is questionable. It is because he has
not verified if the algorithm based on weight noise injection
fulfils the conditions depicted in Bottou’s Theorem [8]. By
following the mathematics in [1], one can clearly figure out
that the cost function derived by G. An is the prediction error
of a MLP if it is corrupted by additive weight noise. It is
not the corresponding objective function for on-line weight
noise injection training algorithm for MLP.

Even though some other works have been done regarding
the prediction error (or sensitivity analysis) of a MLPs [2],
[3], [4], [5], [6], [12], [21], none of them worked on their
convergence proofs. Until recently, we have showed that
the convergence of injecting weight noise during training
a RBF is with probability one [14], [16]. Nevertheless,
we have showed that the objective function of injecting
multiplicative weight noise (or additive weight noise) during
training is essentially the mean square errors function. It
means, injecting weight noise during training does not help
to improve the fault tolerance or the generalization ability
of a RBF. Unfortunately, our approach to the proof for RBF
[16] cannot be applied to MLPs simply because Gladyshev
Theorem is not applicable to MLPs.

After all, for almost fifteen years, the convergence proofs
of these weight noise injection-based algorithms for MLP
have yet been accomplished and their corresponding objec-
tive functions are still unknown.

Therefore, the primary focus of this paper is to analyze
the convergence of these weight noise injection-based algo-
rithms with application to MLPs. Two specific algorithms
will be analyzed. The first one is based on combining mul-
tiplicative weight noise injection and weight decay during
training. While the other is based on combining additive
weight noise injection and weight decay during training. The
main theorem we applied is the classical Doob’s Martingale
Convergence Theorem [11], [10].

The rest of the paper will present the main conver-
gence theorems and the corresponding proofs for these
weight noise injection-based algorithms for MLPs. In the
next section, the background on the network model, the
weight decay training algorithm will be described. Then
in Section 3, the algorithms based on combining weight
noise injection and weight decay during training will be
summarized. Their corresponding objective functions will



be reviewed. In Section 4, the convergence of the algorithm
based on combining multiplicative weight noise and weight
decay during training will be proved. The convergence of
the algorithm based on combining additive weight noise and
weight decay during training will be proved in Section 5.
Section 6 will prove that with probability one their weight
vectors converge to local minimum of their corresponding
objective functions. Conclusions are given in the last section.

II. BACKGROUND

We assume that the training data set D = {(xk, yk)}Nk=1
is generated by an unknown system, where xk ∈ Rn is the
input vector and yk ∈ R is the output.

A. Network Model
This unknown system is thus approximated by a MLP

with n input nodes, m hidden nodes, and one linear output
node, defined as follows :

f(xk,d,A, c) = dT z(ATxk + c), (1)

where A = [a1, ⋅ ⋅ ⋅ ,am] ∈ Rn×m is the input-to-hidden
weight matrix, ai ∈ Rn is the input weight vector associated
with the itℎ hidden node, c = (c1, ⋅ ⋅ ⋅ , cm)T ∈ Rm is the
input-to-hidden bias vector, d ∈ Rm is the hidden-to-output
weight vector, and z = (z1, ⋅ ⋅ ⋅ , zm)T ∈ Rm is output
vector of the hidden layer in which

zi(xk,ai, ci) =
1

1 + exp(−(aTi xk + ci))
(2)

for i = 1, 2, ⋅ ⋅ ⋅ ,m.
For the sake of presentation, we let wi ∈ R(n+2) be the

parametric vector associated to the itℎ hidden node, i.e.

wi = (di,a
T
i , ci)

T , (3)

and w ∈ Rm(n+2) be a parametric vector augmenting
all the parametric vectors w1,w2, ⋅ ⋅ ⋅ ,wm. The output is
denoted as f(xk,w). Throughout the paper, we call w1,
w2, ⋅ ⋅ ⋅ ,wm and w the weight vectors.

Next, we let g(xk,w) be ∇wf(xk,w), where

g(xk,w) = (∇w1f(xk,w)T , ⋅ ⋅ ⋅ ,∇wmf(xk,w)T )T .

As ∇wif(xk,w) depends entirely on xk and wi, we denote
it by gi(xk,wi). Thus,

g(xk,w) = (g1(xk,w1)
T , ⋅ ⋅ ⋅ ,gm(xk,wm)T )T ,

and

gi(xt,wi) =

⎡
⎣

zi
dizi(1− zi)xk

dizi(1− zi)

⎤
⎦ , (4)

where zi = zi(xk,ai, ci).
If we let ∇wg(x,w) ∈ Rm(n+2)×m(n+2) be the Hessian

matrix of f(x,w) with respect to the weight vector w, one
can readily show that

∇wg(x,w) =

⎡
⎢⎣

∇w1g1(x,w1) ⋅ ⋅ ⋅ 0(n+2)×(n+2)

...
. . .

...
0(n+2)×(n+2) ⋅ ⋅ ⋅ ∇wmgm(x,wm)

⎤
⎥⎦ ,

(5)

where
∇wi

gi(x,w) = ∇∇wi
f(x,w) (6)

for all i = 1, ⋅ ⋅ ⋅ ,m.

B. Weight Decay Training
In weight decay training, a sample is randomly drawn

from the dataset D at each update step. We denote the sample
being selected at the ttℎ step as {xt, yt}. Once the input xt

has been fed in the MLP, the output is calculated by (1) and
(2).

f(xt,w(t)) = d(t)T z(t) (7)
z(t) = z(A(t)Txt + c(t)). (8)

By replacing wi and xk in (4) by w(t) and xt respectively,
the update equations for the weight vectors wi (for i =
1, 2, ⋅ ⋅ ⋅ ,m) can thus be written as follows :

wi(t+ 1)−wi(t)

= ¹(t) {(yt − f(xt,w(t)))gi(xt,wi(t))− ®wi(t)} ,(9)

where ¹(t) > 0 is the step size at the ttℎ step, and ® > 0 is
the decay constant. The last term −®wi(t) in (9) sometimes
is called forgetting term [18].

It has been proved in [?], [?] that the convergence of (9)
is with probability one if

∑
t ¹(t) = ∞ and

∑
t ¹(t)

2 <
∞. However, we will show later in this paper that these
conditions can be replaced by ¹(t) → 0.

III. COMBINING WEIGHT NOISE INJECTION AND WEIGHT
DECAY DURING TRAINING

Let b1(t),b2(t), ⋅ ⋅ ⋅ ,bm(t) ∈ R(n+2) be random vectors
associated with the weight vectors w1(t),w2(t), ⋅ ⋅ ⋅ ,wm(t)
at step t. Elements in each random vector bi(t) are indepen-
dent mean zero Gaussian distributed random variables with
variance denoted by Sb, i.e.

P (bi(t)) ∼ N (
0, SbI(n+2)×(n+2)

)
(10)

for all t ≥ 0. Furthermore, bi(t1) and bi(t2) are independent
for t1 ∕= t2.

We let w̃i(t) = (d̃i(t), ãi(t)
T , c̃i(t))

T be the perturbed
weight vector associated with the itℎ hidden node and the
perturbed output of the itℎ hidden node is denoted by
z̃i(t) = zi(xt, ãi(t), c̃i(t)).

The update of wi based on weight noise injection with
weight decay can be written as follows :

wi(t+ 1)−wi(t)

= ¹(t)(yt − f(xt, w̃(t)))gi(xt, w̃i(t))

− ¹(t)®wi(t). (11)

where w̃i(t) is a perturbed weight vector and

gi(xt, w̃i(t)) =

⎡
⎣

z̃i(t)

d̃i(t)z̃i(t)(1− z̃i(t))xt

d̃i(t)z̃i(t)(1− z̃i(t))

⎤
⎦ , (12)

¹(t) > 0 is the step size at the ttℎ step, and ® > 0 is the
decay constant.



A. MWN-WD algorithm

If the weight vector is perturbed by multiplicative weight
noise, w̃i(t) in (11) is given by

w̃i(t) = wi(t) + bi(t)⊗wi(t), (13)

where ⊗ is the elementwise multiplication operator defined
as follows :

bi(t)⊗wi(t) = (bi1(t)wi1(t), ⋅ ⋅ ⋅ , bi(n+2)(t)wi(n+2)(t))
T .

(14)
As in [3], [4], [19], [20], the noise variance Sb is assumed
to be a small positive value1.

The output f(xt, w̃(t)) and gi(xt, w̃i(t)) in (11) are
approximated by

f(xt, w̃) ≈ f(xt,w) +

m∑

i=1

gi(xt,wi)
T (bi ⊗wi) (15)

and

gi(xt, w̃i) ≈ gi(xt,wi)+∇wigi(xt,wi) (bi ⊗wi) , (16)

where ∇wigi(xt,wi) is given by (6). In (15) and (16) The
parentheses (t) attached with wi(t), w̃i(t) and bi(t) are
omitted to save space.

Suppose each sample in the dataset D has equal prob-
ability to be selected. By (11), (15) and (16), the condi-
tional expectation of wi(t + 1) over all random vectors
b1(t), ⋅ ⋅ ⋅ ,bm(t) on w(t) is given by :

E[wi(t+ 1)∣w(t)] = wi(t) + ¹(t)hi(w(t)), (17)

where

hi(w(t))

=
1

N

N∑

k=1

(yk − f(xk,w(t)))gi(xk,w(t))

−Sb

N

N∑

k=1

∇wigi(xk,wi(t))vi(xk,wi(t))

−®wi(t) (18)

and

vi(xk,wi(t)) = wi(t)⊗wi(t)⊗ gi(xk,w(t)). (19)

We have showed that [16]

hi(w(t)) = −∇wiV (w(t)), (20)

1Note that this condition is not required in the convergence proof
presented in Section 4.

where

V (w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

m∑

i=1

(
wT

i gi(xk,wi)
)2
}

−Sb

N

N∑

k=1

∫
u(xk,w)dw

+
®

2
wTw (21)

and

u(xk,w) =

⎡
⎢⎢⎣

w1 ⊗ g1(xk,w1)⊗ g1(xk,w1)
w2 ⊗ g2(xk,w2)⊗ g2(xk,w2)

...
wm ⊗ gm(xk,wm)⊗ gm(xk,wm)

⎤
⎥⎥⎦

(22)
The 3rd term in (21) is a line integral. In the later section, we
will show that w(t) generated by (11) and (13) converges
to a local minimum of this objective function V (w).

B. AWN-WD algorithm

The definition of AWN-WD algorithm is similar to MWN-
WD algorithm. The update equation is based on (11) but the
perturbed weight vector is now given by

w̃i(t) = wi(t) + bi(t). (23)

Thus, the output f(xt, w̃(t)) and gi(xt, w̃i) in (11) are
approximated by

f(xt, w̃) ≈ f(xt,w) +

m∑

i=1

gi(xt,wi)
Tbi, (24)

and

gi(xt, w̃i) ≈ gi(xt,wi) +∇wigi(xt,wi)bi, (25)

where ∇wigi(xt,wi) is given by (6). Again, the parentheses
(t) attached with wi(t), w̃i(t) and bi(t) are omitted to save
space.

Suppose each sample in the dataset D has equal prob-
ability to be selected. By (11), (24) and (25), the condi-
tional expectation of wi(t + 1) over all random vectors
b1(t), ⋅ ⋅ ⋅ ,bm(t) on w(t) is given by :

E[wi(t+ 1)∣w(t)] = wi(t) + ¹(t)h′
i(w(t)), (26)

where h′
i(w(t))

h′
i(w(t)) =

1

N

N∑

k=1

(yk − f(xk,w(t)))gi(xk,w(t))

−Sb

N

N∑

k=1

∇wigi(xt,wi)gi(xk,w(t))

−®wi(t). (27)



We have shown that [16]

h′
i(w(t)) = −∇wi

V ′(w(t)), (28)

where

V ′(w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

m∑

i=1

∥gi(xk,w)∥22

+
®

2
∥w∥22

}
. (29)

In the later section, we will show that w(t) generated by
(11) and (23) converges to a local minimum of this objective
function V ′(w).

IV. CONVERGENCE OF MWN-WD ALGORITHM

The convergence proof is conducted by the following
steps. First, we consider the update of the output weight
vector d(t) and apply Doob’s Martingale Convergence The-
orem to show that limt→∞ ∥d(t)∥2 exists. As the exis-
tence of limt→∞ ∥d(t)∥2 cannot imply the existence of
limt→∞ d(t), we consider the update of the elements in d(t)
and apply Doob’s Martingale Convergence Theorem to show
the existence of their limits.

The existence of limt→∞ ∥d(t)∥2 and limt→∞ di(t) (for
all i = 1, ⋅ ⋅ ⋅ ,m), together with the Doob’s Martingale
Convergence Theorem are then applied to show the existence
of limt→∞ ai(t) and limt→∞ ci(t). Finally, we conclude that
limt→∞ w(t) exists.

Here and after, we let bd(t) be the random vector
associated with the output vector d. That is,

bd(t) = (b11(t), b21(t), ⋅ ⋅ ⋅ , bm1(t))
T , (30)

where bi1(t) is the first element in bi(t). Besides, we use
the notation Ed[⋅∣w(t)] denoting the conditional expectation
that is taken over the random vector bd(t) only.

A. Existence of limt→∞ ∥d(t)∥2
By (1), (11) and (12), the update of di(t) can be expressed

as follows :

di(t+ 1)− di(t)

= ¹(t)
{
(yt − d̃T (t)z̃(t))z̃i(t)− ®di(t)

}
. (31)

In vector-matrix form,

d(t+ 1)− d(t)

= ¹(t)
{
(yt − d̃T (t)z̃(t))z̃(t)− ®d(t)

}
. (32)

Based on (32), the boundedness of E[∥d(t)∥2] and the
existence of limt→∞ ∥d(t)∥2 can be stated in the following
lemma.

Lemma 1: For the algorithm based on (11) and (13),
if 0 < ¹(t)(® − √

Sbm) < 1 for all t ≥ 0, then
limt→∞ ∥d(t)∥2 exists and is finite with probability one,

Proof: We rewrite the update of d(t) given by (32) as
follows :

d(t+ 1) = (1− ¹(t)®)d(t) + ¹(t)ytz̃(t)

−¹(t)z̃(t)z̃T (t)d(t)

−¹(t)z̃(t)z̃T (t) (bd(t)⊗ d(t)) . (33)

Here, we let

B(t) = (1− ¹(t)®)Im×m − ¹(t)z̃(t)z̃T (t). (34)

Equation (33) can be written as follows :

d(t+ 1) = B(t)d(t) + ¹(t)ytz̃(t)

−¹(t)z̃(t)z̃T (t) (bd(t)⊗ d(t)) . (35)

Since the elements in bd(t) are identical and independent
mean zero Gaussian random variables with variance Sb,

Ed

[
(bd(t)⊗ d(t)) (bd(t)⊗ d(t))

T ∣w(t)
]

= Sb

⎡
⎢⎢⎢⎣

d1(t)
2 0 ⋅ ⋅ ⋅ 0

0 d2(t)
2 ⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ dm(t)2

⎤
⎥⎥⎥⎦ .

Hence,

Ed[∥z̃(t)z̃T (t) (bd(t)⊗ d(t)) ∥22∣w(t)]

= Sb∥z̃(t)z̃T (t)d(t)∥22, (36)

where Tr is the trace operator.
Given w(t), the expectation of the ∥d(t + 1)∥22 over the

random vector bd(t) is given by

Ed[∥d(t+ 1)∥22∣w(t)]

= ∥B(t)d(t) + ¹(t)ytz̃(t)∥22 + ¹(t)2Sb∥z̃(t)z̃T (t)d(t)∥22
≤ ∥B(t)d(t) + ¹(t)ytz̃(t)∥22 + ¹(t)2Sbm

2∥d(t)∥22
≤

(
∥B(t)d(t) + ¹(t)ytz̃(t)∥2 + ¹(t)

√
Sbm∥d(t)∥2

)2

.(37)

The last inequality based on the fact that the eigenvalues of
z̃(t)z̃T (t) are 0 and

∑m
i=1 z̃i(t)

2.
Further by Jensen Inequality that Ed[∥d(t+1)∥2∣w(t)] ≤(

Ed[∥d(t+ 1)∥22∣w(t)]
)1/2, and then by Triangle Inequality,

Ed[∥d(t+ 1)∥2∣w(t)]

≤ ∥B(t)d(t)∥2 + ¹(t) ∥ytz̃(t)∥2 + ¹(t)
√
Sbm∥d(t)∥2

≤ (1− ¹(t)(®−
√
Sbm)) ∥d(t)∥2 + ¹(t) ∥ytz̃(t)∥2 .(38)

The last inequality based on the fact that the eigenvalues
z̃(t)z̃T (t) are 0 and

∑m
i=1 z̃i(t)

2. Hence, the eigenvalue of
B(t) must be less than or equal to (1− ¹(t)®).

To save space, we let ®′ = ®−√
Sbm. As yt is generally

bounded for all t ≥ 0, ∥ytz̃(t)∥2 is bounded by a positive
constant. Let it be ·d. Thus,

Ed[∥d(t+ 1)∥2∣w(t)] ≤ (1− ¹(t)®′) ∥d(t)∥2 + ¹(t)·d.
(39)



As the right hand side of (39) is independent of the random
vector b(t),

E[∥d(t+1)∥2∣w(t)] ≤ (1−¹(t)®′) ∥d(t)∥2+¹(t)·d. (40)

Equivalently,

E[∥d(t+ 1)∥2 − ·d/®
′∣w(t)]

≤ (1− ¹(t)®′) (∥d(t)∥2 − ·d/®
′) . (41)

Let
¯(t) = ∥d(t)∥2 −

·d

®′ . (42)

It is clear that {¯(t)}t≥0 is a supermartingale and

E[∣¯(t)∣] ≤ E[∣¯(t− 1)∣] ≤ ⋅ ⋅ ⋅ ≤ E[∣¯(0)∣]. (43)

By Doob’s Martingale Convergence Theorem, limt→∞ ¯(t)
exists and is finite with probability one. Then from (42),
limt→∞ ∥d(t)∥2 exists and is fine with probability one. The
proof is completed. Q.E.D

Lemma 1 is crucial for the following proofs on the
existence of limt→∞ d(t), limt→∞ ai(t) and limt→∞ ci(t).
The idea can be described in the rest of this subsection.

As limt→∞ ∥d(t)∥2 exits with probability one,
limt→∞ E[∥d(t + 1)∥2∣w(t)] = limt→∞ ∥d(t + 1)∥2.
Thus, for any small positive ², there exists a time t∗ such
that

P (∣∥d(t)∥2 − ·d/®
′∣ > ²) = 0 (44)

for all t ≥ t∗ or equivalently

∥d(t)∥2 < ·d/®
′ + ² (45)

is with probability one for all t ≥ t∗.
Making use of (44), we can therefore derive inequalities

bounding E[di(t+1)∣w(t)], E[aij(t+1)∣w(t)] and E[ci(t+
1)∣w(t)] for t ≥ t∗, for i = 1, 2, ⋅ ⋅ ⋅ ,m and j = 1, 2, ⋅ ⋅ ⋅ , n.

Then, we can define supermartingales for each di(t),
aij(t) and ci(t) respectively and show the existence of their
limits by Doob’s Martingale Convergence Theorem.

B. Existence of limt→∞ d(t)

To show the existence of the limit of d(t), we consider
(31) and t ≥ t∗.

Ed[di(t+ 1)∣w(t)] = (1− ¹(t)®)di(t)

+¹(t)(yt − dT (t)z̃(t))z̃i(t)

≤ (1− ¹(t)®)di(t) + ¹(t)·d

+¹(t)∥d(t)∥2. (46)

As a result of (44),

Ed[di(t+ 1)∣w(t)] ≤ (1− ¹(t)®)di(t) + ¹(t)·d

+¹(t)(·d/®
′ + ²). (47)

Since the right hand side is independent of other random
variables in b(t), we can write that

E[di(t+ 1)∣w(t)] ≤ (1− ¹(t)®)di(t) + ¹(t)·d

+¹(t)(·d/®
′ + ²) (48)

for all t ≥ t∗.
Hence, we can define a random process {°(t)}t≥0 in

which
°(t) = di(t+ t∗)− ·d + ·d/®

′ + ²

®
(49)

and clearly E[∣°(t)∣∣w(t∗)] ≤ ⋅ ⋅ ⋅ ≤ E[∣°(0)∣∣w(t∗)].
Therefore, by Doob’s Martingale Convergence Theorem,
limt→∞ °(t) exists and is finite with probability one. We
can conclude that limt→∞ di(t) exists and is finite with
probability one. As the same procedure applies to all i =
1, 2, ⋅ ⋅ ⋅ ,m, we can have the following lemma.

Lemma 2: For the algorithm based on (11) and (13), if
0 < ¹(t)(® −√

Sbm) < 1 for all t ≥ 0, then limt→∞ d(t)
exists and its elements are finite with probability one,

C. Existence of limt→∞ ai(t)

The proof of the existence of limt→∞ ai(t) is similar that
of the proof of Lemma 2. By (1), (11) and (12), the update
of ai(t) can be expressed as follows :

ai(t+ 1)

= (1− ¹(t)®)ai(t) + ¹(t)ytz̃i(t)(1− z̃i(t))d̃i(t)xt

−¹(t)z̃i(t)(1− z̃i(t))d̃i(t)xtz̃
T (t)d̃(t). (50)

Note from (13) and (30) that

d̃i(t) = di(t) + bi1(t)di(t) (51)

and

d̃i(t)d̃(t) = (di(t) + bi1(t)di(t)) (bd(t)⊗ d(t)) . (52)

Let us consider the jtℎ element in ai(t).

aij(t+ 1)

= (1− ¹(t)®)aij(t) + ¹(t)ytz̃i(t)(1− z̃i(t))d̃i(t)xtj

−¹(t)z̃i(t)(1− z̃i(t))d̃i(t)xtj z̃
T (t)d̃(t). (53)

Lemma 3: For the algorithm based on (11) and (13), if
0 < ¹(t)(® − √

Sbm) < 1 for all t ≥ 0, then for all i =
1, 2 ⋅ ⋅ ⋅ ,m, limt→∞ ai(t) exists and its elements are finite
with probability one.

Proof: Given w(t) and taking expectation of (53) over
bd(t), Ed[aij(t+ 1)∣w(t)] can be expressed as follows :

Ed[aij(t+ 1)∣w(t)]

= (1− ¹(t)®)aij(t) + ¹(t)ytv1(t)di(t)

−¹(t)v1(t)di(t)z̃
T (t)(d(t) + Sbdi(t)ei), (54)

where
v1(t) = z̃i(t)(1− z̃i(t))xtj (55)

and
ei = (0, ⋅ ⋅ ⋅ , 0, 1, 0, ⋅ ⋅ ⋅ , 0)T . (56)

Again, for t ≥ t∗, by (44) and (54),

Ed[aij(t+ 1)∣w(t)]

≤ (1− ¹(t)®)aij(t) + ¹(t)∣di(t)∣∣xtj ∣
+¹(t)∣xtj ∣

(∣di(t)∣∥d(t)∥2 + Sbdi(t)
2
)
. (57)



Since ∣xtj ∣ is bounded, say by ·x, we can replace the second
term and the third term by ¹(t)·a, where

·a = (·d/®
′ + ²)2·x(1 + Sb). (58)

Thus,

Ed[aij(t+ 1)∣w(t)] ≤ (1− ¹(t)®)aij(t) + ¹(t)·a. (59)

As the right hand side is independent of other random
variables,

E[aij(t+ 1)∣w(t)] ≤ (1− ¹(t)®)aij(t) + ¹(t)·a. (60)

Similar to Lemma 2, we can define a random process
{»(t)}t≥0 as follows : »(t) = aij(t + t∗) − ·a

® for all
t ≥ t∗ and clearly E[∣»(t)∣∣w(t∗)] ≤ ⋅ ⋅ ⋅ ≤ E[∣»(0)∣∣w(t∗)].
Therefore, by Doob’s Martingale Convergence Theorem,
limt→∞ »(t) exists and is finite with probability one. We
can conclude that limt→∞ aij(t) exists and is finite with
probability one. Thus, for all i = 1, ⋅ ⋅ ⋅ ,m, limt→∞ ai(t)
exists and its elements are finite with probability one.

D. Existence of limt→∞ ∣ci(t)∣
By (1), (11) and (12), the update of ci(t) can be expressed

as follows :

ci(t+ 1)

= (1− ¹(t)®)ci(t) + ¹(t)ytz̃i(t)(1− z̃i(t))d̃i(t)

−¹(t)z̃i(t)(1− z̃i(t))d̃i(t)z̃
T (t)d̃(t). (61)

Suppose, we define two augmented vectors as that

x′
t =

[
xt

1

]
and a′i(t) =

[
ai(t)
ci(t)

]
.

We can combine (50) and (61) together and come up with
the following update equation.

a′i(t+ 1)

= (1− ¹(t)®)ai(t) + ¹(t)ytz̃i(t)(1− z̃i(t))d̃i(t)x
′
t

−¹(t)z̃i(t)(1− z̃i(t))d̃i(t)x
∗
t z̃

T (t)d̃(t). (62)

Repeating the same steps as the proof of Lemma 3,
we can conclude the existence of limt→∞ a′i(t) and thus
limt→∞ ci(t) is with probability one.

Lemma 4: For the algorithm based on (11) and (13), if
0 < ¹(t)(® − √

Sbm) < 1 for all t ≥ 0, then for all i =
1, 2 ⋅ ⋅ ⋅ ,m, limt→∞ ci(t) exists and is finite with probability
one.

E. Existence of limt→∞ w(t)

As a direct implication from Lemma 2-4, we state without
proof the following theorem for the weight vector w(t).

Theorem 1: For the algorithm based on (11) and (13), if
0 < ¹(t)(®−√

Sbm) < 1 for all t ≥ 0, then limt→∞ w(t)
exists and its elements are finite with probability one.

Let us define a bounded region Ω²̄(w
∗) which is centered

at w∗ and ∥w −w∗∥ ≤ ²̄ for all w ∈ Ω²̄(w
∗). Theorem 1

implies that for any arbitrary small positive ²̄, there must
exist a bounded region Ω²̄(w

∗) and a time t̄(w∗), such that
for all t ≥ t̄(w∗)

P (w(t) ∈ Ω²̄(w
∗)) = 1. (63)

This final equation is very useful in the subsequent analysis.

V. CONVERGENCE OF AWN-WD ALGORITHM

Basically, the steps of proof for the AWN-WD algorithm
are the same as the proof for the MWN-WD algorithm.
The only difference is in the definition of w̃. Owing to
save space, we skip some of the proofs in this section.
Only the existence of limt→∞ ∥d(t)∥2 is proved, as it is
the key step to show that noise variance Sb does not affect
the convergence.

Theorem 2: For the algorithm based on (11) and (23), if
0 < ¹(t)® < 1 for all t ≥ 0, then limt→∞ w(t) exists and
its elements are finite with probability one.

Proof: Replace bd(t)⊗d(t) in (33) and (35) by bd(t), the
update of d(t) is given by

d(t+ 1) = B(t)d(t) + ¹(t)ytz̃(t)− ¹(t)z̃(t)z̃T (t)bd(t).
(64)

Note that z̃(t) in (64) is now depended on w(t) + b(t)
instead of w(t) + b(t)⊗w(t).

Given w(t), the expectation of the ∥d(t + 1)∥22 over the
random vector bd(t) is then given by

Ed[∥d(t+ 1)∥22∣w(t)]

= ∥B(t)d(t) + ¹(t)ytz̃(t)∥22
+¹(t)2Ed[b

T
d (t)

(
z̃(t)z̃T (t)

)2
bd(t)∣w(t)]. (65)

As,

Ed[b
T
d (t)

(
z̃(t)z̃T (t)

)2
bd(t)∣w(t)]

= Tr
{
Ed[

(
z̃(t)z̃T (t)

)2
bd(t)b

T
d (t)∣w(t)]

}

= SbTr

⎧
⎨
⎩
z̃(t) z̃T (t)z̃(t)︸ ︷︷ ︸

∥z̃(t)∥2
2

z̃T (t)

⎫
⎬
⎭

= Sb∥z̃(t)∥22Tr
{
z̃(t)z̃T (t)

}

= Sb∥z̃(t)∥42
≤ Sbm

2. (66)

The last inequality is due to the fact that the elements in
z̃(t) are all in between 0 and 1. ∥z̃(t)∥2 ≤ √

m. As a result,

Ed[∥d(t+ 1)∥22∣w(t)]

= ∥B(t)d(t) + ¹(t)ytz̃(t)∥22 + ¹(t)2Sbm
2. (67)

By Jensen Inequality and Triangle Inequality,

Ed[∥d(t+ 1)∥2∣w(t)]

≤ ∥B(t)d(t)∥2 + ¹(t) ∥ytz̃(t)∥2 + ¹(t)
√
Sbm

≤ (1− ¹(t)®) ∥d(t)∥2 + ¹(t) ∥ytz̃(t)∥2
+¹(t)

√
Sbm. (68)



As yt is bounded for all t ≥ 0, ∥ytz̃(t)∥2 is bounded
by a positive constant. We can then let ·′

d be the bound of
∥ytz̃(t)∥2 +

√
Sbm.

We can then replace ®′ by ® and ·d by ·′
d in the steps

from (39) to (43) and conclude that if 0 < ¹(t)® < 1,
limt→∞ ∥d(t)∥2 exists and is fine with probability one.

As the proofs for the existence of limt→∞ d(t),
limt→∞ ai(t) and limt→∞ ci(t) following similar steps as
the proof for MWN-WD algorithm, their proofs are skipped.
Q.E.D.

One should note that the condition for the convergence
of AWN-WD algorithm does not depend the value of Sb. It
depends on the values of the step size ¹(t) and the decay
constant ® only.

VI. ASYMPTOTIC PROPERTIES OF V (w∗)

While Theorem 1 and Theorem 2 state the existence of
w(t) when t → ∞, they could not imply that their limits
are located in local minimum of the corresponding objective
functions. Therefore, it is necessarily to show that their
locations are at local minimum. As the steps of proofs for
both the MWN-WD algorithm and AWN-WD algorithm are
the same, only the theorem and the proof regarding the
MWN-WD algorithm will be presented in this section. The
theorem regarding the AWN-WD algorithm will be stated
without proof.

Before proceed to the statement of theorem, we need to
make three more assumptions on the noise variance Sb and
the step size ¹(t) as follows :

Sb ≪ 1, (69)
¹(t) → 0 for all t ≥ 0, (70)
∞∑
¿=t

¹(¿) = ∞ for all t ≥ 0. (71)

The first assumption on Sb a common assumption made
by other researchers [3], [4], [19], [20]. With this as-
sumption, the approximations for f(xt,w(t)) (15) and
gi(xt,wi(t)) (16) will be making sense. The objective
function (21) is in simple close form.

The second assumption is owing to simplify the approxi-
mation of V (w(t+1))−V (w(t)) by ignoring higher order
terms containing ¹(t)2. The third assumption is to ensure
that

∑∞
¿=t ¹(¿)∥∇wV (w(¿))∥22 diverges if ∥∇wV (w(t))∥2

does not converge.
With the assumptions on (69), (70) and (71), the property

of ∇wV (w∗) can then be stated as the following theorem.

Theorem 3: For the algorithm based on (11) and (13), if
(i) (® − √

Sbm) > 0, (ii) Sb ≪ 1, (iii) ¹(t) → 0 for all
t ≥ 0 and (iv)

∑∞
¿=t ¹(t) = ∞ for any t ≥ 0, then w(t)

converges to the location in which

∇wV (w∗) = lim
t→∞

∇wV (w(t)) = 0, (72)

where V (w) is a scalar function given by (21).

Proof: First of all, as hi(w) is the gradient vector of V (w)
with differentiable functional elements,

V (w) is differentiable for all w and (73)
∇wV (w) is differentiable for all w. (74)

From Condition (i) and (iii), limt→∞ w(t) exists and
with finite elements. By virtue of Theorem 1 and (73),
limt→∞ V (w(t)) and limt→∞ ∇wV (w(t)) exist with prob-
ability one.

It implies that for any arbitrary ²V , there exists a time tV ,
such that

P (∣V (w∗)− V (w(t))∣ ≤ ²V ) = 1 (75)

for all t ≥ tV .
By Taylor expansion of V (w(t+ 1)) about w(t),

V (w(t+ 1)) = V (w(t)) + (∇wV (w(t)))
T
Δw(t), (76)

where

Δw(t) = ¹(t)(yt − d̃T (t)z̃(t))g(xt,w(t)), (77)

in which g = (gT
1 ,g

T
2 , ⋅ ⋅ ⋅ ,gT

m)T . By (17) and (18),

E[V (w(t+ 1))∣w(t)] = V (w(t))− ¹(t) ∥∇wV (w(t))∥2 .
(78)

Hence,

E[V (w∗)− V (w(tV ))∣w(tV )]

= −
∞∑

¿=tV

¹(¿)E
[
∥∇wV (w(¿))∥2

∣∣∣w(tV )
]
. (79)

From (75), the right hand side of (79) must be with proba-
bility one smaller than ²V .

∞∑
t=tV

¹(t)E
[
∥∇wV (w(t))∥2

∣∣∣w(tV )
]
≤ ²V . (80)

By virtue of (71) and the inequality that E[∥q∥] ≤
(E[∥q∥22])1/2, it can be proved by contradiction that

E [∥∇wV (w∗)∥∣w(tV )] = 0. (81)

As ∥∇wV (w∗)∥ is non-negative, ∥∇wV (w∗)∥ = 0. Hence

∇wV (w∗) = 0. (82)

The proof is completed. Q.E.D.

For the AWN-WD algorithm, we let w∗∗ be the limit
limt→∞ w(t). The the property of ∇wV ′(w∗∗) is stated
without proof as the following theorem.

Theorem 4: For the algorithm based on (11) and (23), if
(i) ® > 0, (ii) Sb ≪ 1, (iii) ¹(t) → 0 for all t ≥ 0 and (iv)∑∞

¿=t ¹(t) = ∞ for any t ≥ 0, then w(t) converges to the
location in which

∇wV ′(w∗∗) = lim
t→∞

∇wV ′(w(t)) = 0, (83)

where V ′(w) is a scalar function given by (29).



VII. CONCLUSION

In this paper, we have presented two training algorithms
based on on-line combining weight noise injection and
weight decay. Their algorithms and objective functions have
been presented. Their convergence are proved. Apart from
the convergence proof, we have also showed that the loca-
tions the weight vectors converge to the local minimum of
the corresponding objective functions.
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APPENDIX

The content of this appendix is adapted from Chapter 4,
Theorem 4.2, in [10]. A stochastic process {´t, t ≥ 1} is a
supermartingale if E[∣´t∣] < ∞ for all t and

E[´t+1∣´t, ´t−1, ⋅ ⋅ ⋅ , ´1] ≤ ´t. (84)

Lemma 5 (Doob’s Martingale Convergence Theorem):
If {´t, t ≥ 1} is a supermartingale such that for some
Á < ∞ and E[∣´t∣] ≤ Á for all t, then limt→∞ ´t exists
and is finite with probability one.


