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Abstract—While weight noise injection during training has
been adopted in attaining fault tolerant neural networks (NNs),
theoretical and empirical studies on the online algorithms
developed based on these strategies have yet to be complete. In
this paper, we present results on two important aspects in online
learning algorithms based on combining weight noise injection
and weight decay. Through intensive computer simulations, the
convergence behaviors of those algorithms and the performance
of the NNs generated by these algorithms are elucidated. It is
found that (i) the online learning algorithm based on purely
multiplicative weight noise injection does not converge, (ii)
the algorithms combining weight noise injection and weight
decay exhibit better convergence behaviors than their pure
weight noise injection counterparts, and (iii) the neural net-
works attained by those algorithms combining weight noise
injection and weight decay show better fault tolerance abilities
than the neural networks attained by the pure weight noise
injection-based algorithms. These empirical results not just can
supplement our recent work done on the convergence behaviors
of the weight noise injection-based learning algorithms [16],
but also provide new information on effect of weight noise and
weight decay on the neural networks that are generated by
these algorithms.

Keywords-Cross Entropy Error, MLP, Mean Square Errors,
Regression, Weight Decay, Weight Noise Injection

I. INTRODUCTION

Many methods have been developed throughout the last
two decades to improve tolerance of a neural network
towards random node fault, stuck-at node fault and weight
noise. Known methods include injecting random or stuck-
at node fault during training [26], [4], injecting (synaptic)
weight noise during training (specially for multilayer percep-
trons (MLP) [22], [23], a recurrent neural network (RNN)
[17], or a pulse-coupled neural networks (PCNN) [11],
injecting node noise (response variability) during training
[2] (specifically for a model of PCNN) applying weight
decay training [8], introducing network redundancy [25],
formulating the training algorithm as a nonlinear constraint
optimization problem [9], [24], bounding weight magnitude
during training [6], [12], [18], and adding fault tolerant
regularizer [3], [19], [28]. Amongst all, the weight/node
noise-injection-based on-line training algorithms are of least
theoretical studied [1], [2], [22], [23]. Especially, the ob-
jective functions and the convergence properties of these
algorithms for multilayer perceptron (MLP) have not been
derived and proved.

Murray & Edward in [10], [23] have derived the pre-
diction error of a (trained) MLP if multiplicative weight
noise is injected after training (see Section II.A and II.B in
[23]). For the dynamics of the weight vector during training,

Table I
ALGORITHMS TO BE INVESTIGATED IN THIS PAPER. BPA STANDS FOR

THE STANDARD BACKPROPAGATION ALGORITHM.

Algorithm Objective Structure
BPA MSE Linear output
BPA+WN (8) & (10) Linear output
BPA+WD MSE + WD Linear output
BPA+WN+WD (8) & (10) Linear output
BPA CEE Sigmoid output
BPA+WD CEE + WD Sigmoid output
BPA+WN Unknown Sigmoid output
BPA+WN+WD Unknown Sigmoid output

MSE: Mean Square Errors, CEE: Cross entropy error
WN: Weight Noise, WD: Weight Decay

only a qualitative analysis has been presented (see Section
II.C in [23]). Convergence proof and objective function have
not been analyzed. An has attempted to derive an objective
function for this weight-noise injection training algorithm
(see Section 4 in [1]). However, An has not succeeded
to a convergence proof. The objective function derived is
not true objective function for training with weight noise
injection. It is again the prediction error of a trained MLP
if weight noise is injected after training. Until recently,
Ho et al [13] have showed that the convergence of output
weight noise injection-based training a radial basis function
(RBF) network is almost sure. For MLP, theoretical study
on the effect of injecting weight noise during training is still
missing. The performance of the neural network generated
by these algorithms is unknown.

In this regard, the convergence behaviors of the weight
noise injection-based learning algorithms are investigated in
this paper. Besides, the performance of the neural networks
that are generated by these algorithms are studied. The main
contribution of this paper is to provide intensive simulation
results to supplement our theoretical work done in other
papers [16], [27]. In the next section, the algorithms to be
studied in the paper will be defined. The datasets and the
simulation results are elucidated in Section 3. Section 4 gives
the conclusions.

II. WEIGHT NOISE INJECTION DURING TRAINING

The learning algorithms to be investigated in this paper
are depicted in Table I. In which four of them are originated
from the conventional BPA based on minimizing mean
square errors (MSE). While the other four are originated
from the BPA based on minimizing cross entropy error
(CEE).



A. MSE-based

Let f(⋅, ⋅) ∈ Rl be a single output multilayer perceptron
(MLP) consisting of m hidden nodes, n input nodes and l
linear output nodes.

f(x,w) = DT z(ATx+ c), (1)

where D = [d1,d2, ⋅ ⋅ ⋅ ,dl] ∈ Rm×l is the hidden to output
weight vector, A = [a1,a2, ⋅ ⋅ ⋅ ,am] ∈ Rn×m is the input
to hidden weight matrix, ai ∈ Rn is the input weight vector
of the itℎ hidden node and c ∈ Rm is the input to hidden
bias vector. w in (1) is a vector augmenting all the param-
eters, i.e. w = (dT

1 ,d
T
2 , ⋅ ⋅ ⋅ ,dT

l ,a
T
1 ,a

T
2 , ⋅ ⋅ ⋅ ,aTm, cT )T .

z = (z1, z2, ⋅ ⋅ ⋅ , zm)T ∈ Rm is the hidden output vector.
For i = 1, 2, ⋅ ⋅ ⋅ ,m,

zi(s) =
1

1 + exp(−s)
. (2)

Training dataset is denoted by D = {(xk,yk)}Nk=1. The
MSE is defined as follows :

MSE =
1

N

N∑

k=1

(yk − f(xk,w))2. (3)

For simplicity, we assume that there is only one output
node, i.e. l = 1. In such case, the gradient of f(x,w) with
respect to w is denoted by g(xt,w(t)). The Hessian matrix
of f(x,w) is denoted by gw(xt,w(t)).

The online weight noise injection training for f(x,w)
given a dataset D can be written as follows :

w(t+ 1) = w(t) + ¹t(yt − f(xt, w̃(t)))g(xt, w̃(t)), (4)

where

w̃(t) = w(t) + b⊗w(t). (multi. noise) (5)
w̃(t) = w(t) + b. (additive noise) (6)

Here b⊗w = (b1w1, b2w2, ⋅ ⋅ ⋅ , bMwM )T and bi, for all i,
is a mean zero Gaussian distribution with variance Sb.

For simultaneous weight noise injection and weight
decay, the update equations are similar except the decay
term is added.

w(t+ 1) = w(t) + ¹t {(yt − f(xt, w̃(t)))g(xt, w̃(t))

−®w(t)} . (7)

It has been shown in that the objective function being
minimized by injecting multiplicative weight noise with
weight decay during training is given by [14]

V(w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

M∑

j=1

w2
j gj(xk,w)2

⎫
⎬
⎭

−Sb

N

N∑

k=1

∫ w

w0

u(xk, r)dr +
®

2
∥w∥2. (8)

where

u(xk,w) =
[
w1g1(xk,w)2 ⋅ ⋅ ⋅ wMgM (xk,w)2

]
(9)

The objective function being minimized by injecting ad-
ditive weight noise with weight decay is given by [14]

V(w) =
1

2

{
1

N

N∑

k=1

(yk − f(xk,w))2

+
Sb

N

N∑

k=1

M∑

j=1

gj(xk,w)2 + ®∥w∥2
⎫
⎬
⎭ .(10)

While the parameter ® in (8) and (10) is zero, the
functions are the objective functions of the pure weight noise
injection-based learning algorithms.

B. CEE-based

Cross entropy error (CEE)-based algorithms applied
mainly to the MLP with sigmoid output neurons. Let us
denote the output by h(x,w). The output is defined as
follows :

h(x,w) = z(f(x,w)) (11)
f(x,w) = DT z(ATx+ c), (12)

where the parameters D, z, A, ais and c are defined in the
same way as for the linear output MLP. The CEE is defined
as follows :

CEE =
1

N

N∑

k=1

yk lnℎ(xk,w)+ (1− yk) ln(1−ℎ(xk,w)).

(13)
The online weight noise injection training for ℎ(x,w)

given a dataset D can be written as follows :

w(t+ 1) = w(t) + ¹t(yt − ℎ(xt, w̃(t)))g(xt, w̃(t)), (14)

where w̃(t) is defined in the same way as in (5) and (6)
depended on the noise type.

For simultaneous weight noise injection and weight
decay, the update equations are given by

w(t+ 1) = w(t) + ¹t {(yt − ℎ(xt, w̃(t)))g(xt, w̃(t))

−®w(t)} , (15)

where w̃(t) is defined in the same way as in (5) and (6)
depended on the noise type.

While the update equations for the learning algorithms
(14) and (15) are similar to the MSE-based algorithms (4)
and (7), their objective functions have not been discovered.

III. SIMULATIONS

In this section, we will first present the datasets being
used for studies and then methodology to evaluate the
performance of the networks will be followed.



Table II
TRAINING DATA AND TESTING DATA FOR THE SIMULATIONS.

2D Map MG NAR XOR Char. Recog.
Train data 100 500 500 100 800
Test data 100 500 500 100 793
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Figure 1. 2D mapping data.

A. Datasets

Five datasets are used to examine the convergence prop-
erties of the algorithms and the performance of the neural
networks being generated. The datasets are used for (i)
2D mapping, (ii) Mackey-Glass, (iii) NAR, (iv) XOR and
(v) Character recognition, in which three of them are for
regression and two are for classification. The numbers of
the training data and testing data for the simulations are
depicted in Table II.

1) 2D Mapping: It is as artificial dataset consisting of 200
data points, which is generated from the following equation.

yk = sin(xk1) sin(xk2) + ek, (16)

where xk1, xk2 are the ktℎ sample inputs and yk be its target
output, ek is a mean zero Gaussian noise with variance 0.01.
Amongst these 200 data points, 100 of them are randomly
selected to be the training dataset, and the other 100 data
points are the testing dataset. Fig. 1 shows the data set.

2) Mackey-Glass: It is a benchmark time-series dataset
available on the Internet. The data is generated by the
differential equation given by

dx(t)

dt
= 0.2

x(t− ¿)

1 + x(t− ¿)10
− 0.1x(t), (17)

with x(0) = 1.2 and ¿ = 17. In our simulations, we use
1000 points in the time series as shown in Fig. 2. The first
500 points (from k = 5 to 504) are picked for training and
others are for testing. A MLP is trained to predict the current
value y(k) based on the past observations y(k − 1), y(k −
2), y(k−3), y(k−4). In other words, xk = [y(k−1), y(k−
2), y(k − 3), y(k − 4)]T .

3) NAR: We consider the following nonlinear autoregres-
sive (NAR) time series [7], given by

y(k) = (0.8− 0.5 exp(−y2(k − 1)))y(k − 1)

−(0.3 + 0.9 exp(−y2(k − 1)))y(k − 2)

+0.1 sin(¼y(k − 1)) + e(k), (18)

200 400 600 800 1000 1200 1400

Figure 2. Mackey-Glass time series.

100 200 300 400 500 600 700 800 900 1000

Figure 3. NAR time series.

where e(k) is a mean zero Gaussian random variable with
variance equals to 0.09. One thousand samples were gen-
erated given y(0) = y(1) = 0.1, as shown in Fig. 3. The
first 500 data points were used for training and the other
500 points were used for testing. The task is used to predict
y(k) based on the past observation y(k − 1) and y(k − 2).
In other words, xk = [y(k − 1), y(k − 2)]T .

4) XOR: It is an artificial data set with two inputs and
one output. Let xk1, xk2 be the input and yk is the target
output.

yk = sign(xk1)sign(xk2). (19)

Amongst these 200 data points, 100 of them are randomly
selected as the training dataset, and the other 100 data points
are the testing dataset.

5) Character Recognition: Character recognition data set
[5] 1 consists of 1593 handwritten digits collected from
around 80 people. Each person wrote on a paper all the digits
from 0 to 9, twice. The digits were scanned and stretched in
a 16x16 rectangular box in a gray scale of 256. Then each
pixel of each image was scaled into a binary (1/0) value
using a fixed threshold. Fig. 4 shows the sample data set.
The 800 data set is as training data and the rest 793 data as
testing data.

B. Methodology
Table III summarizes the structure of the networks for

simulations. For the first three simulations, we use linear
output MLPs. For the last two simulations, we use sigmoid
output MLPs.

1archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit



Figure 4. Samples of character recognition data.

Table III
NODE NUMBERS AND NODE TYPES WHICH ARE DEFINED FOR

SIMULATIONS.

2D Map MG NAR XOR Char. Recog.
Input 2 4 2 2 256
Hidden(*) 10 10 10 6 20
Output 1 LN 1 LN 1 LN 1 SN 10 SN

Hidden nodes are all sigmoid nodes.
SN : Sigmoid node; LN : Linear node

C. Noise variance and weight decay
Five different weight noise variance

(0, 10−5, 10−4, 10−3, 10−2), and the four different weight
decay constants (0, 10−5, 10−4, 10−3) are set during
training. Altogether, 20 different settings are investigated
for each dataset. The step size for all simulations are set to
0.1 and the total number of epoches is 105.

D. Results
We study the change of weights during training so as

to identify the convergence behaviors of the learning algo-
rithms. Besides, the fault tolerances of the neural networks
being generated are investigated.

Let f(x,w) be the trained MLP with linear output node
and ℎ(x,w) be the trained MLP with sigmoid output node.
For the regression problems, we measure the performance
of a MLP by its prediction errors:

MSE =
1

Ntest

Ntest∑

k=1

(yk − f(xk,w +△w))2, (20)

where △w is the weight noise added during testing. For the
classification problems, we measure the performance of a
MLP by its classification errors:

CE =
1

Ntest

Ntest∑

k=1

∣(yk − sign(ℎ(xk,w +△w)− 0.5))∣, (21)

where △w is the weight noise added during testing.
For a neural network that is generated by multiplicative

weight noise injection during training, multiplicative weight
noise with different variance will be added during testing.
The weight noise injected during testing is with variances
[0, 0.002, 0.004, ..., 0.04], a total of 21 cases. For each noise
variance, 100 networks are generated and their testing MSEs
are recorded. Then, we evaluate the fault tolerance ability of
a neural network by the average testing MSEs. For a neural
network that is generated by additive weight noise injection
during training, the evaluation method is the same except
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Figure 5. Testing MSE of 2D mapping-MWN.
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Figure 6. Testing MSE of 2D mapping-AWN.

that the noise injected is additive instead of multiplicative.
Here, we only present the key results. For the results of all
settings, readers can refer to [20].

1) 2D mapping: For MWN, the MLP generated by the
algorithm based on combining weight noise injection with
weight decay during training gives the best performance.
The MLP generated by the algorithm based on pure back-
propagation gives the worst performance, as shown in Fig 5.
For AWN, the MLP generated by the algorithm based on
combining weight noise injection with weight decay during
training also gives the best performance. The MLP generated
by the algorithm based on only weight noise injection gives
the worst performance, as shown in Fig 6.

For both cases of MWN and AWN, it is clear from Fig 7
and Fig 8 that the MSE value converges during training.
However, the weights do not converge when ® = 0. The
weights diverge when ® = 0 and Sb = 10−2. Once a small
weight decay has been added, say ® = 10−5, the weights
converge.

2) Mackey-Glass: For MWN, the MLP generated by the
algorithm based on combining weight noise injection with
weight decay during training gives the best performance.
The MLP generated by the algorithm based on pure back-
propagation gives the worst performance, as shown in Fig 9.
For AWN, the MLP generated by the algorithm based on
combining weight noise injection with weight decay during
training also gives the best performance. The MLP generated
by the algorithm based on only weight noise injection gives
the worst performance, as shown in Fig 10.

For both cases of MWN and AWN, it is clear from Fig 11
and Fig 12 that the MSE value converges during training.
However, the weights do not converge when ® = 0. The
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Figure 7. Change of the MSE and weights against time for the 2D mapping
problem with multiplicative weight noise injection. From top to bottom, the
parameters (®, Sb) are (0, 0), (0, 10−2), (10−5, 0) and (10−5, 10−2).
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Figure 8. Change of the MSE and weights against time for the 2D mapping
problem with additive weight noise injection. From top to bottom, the
parameters (®, Sb) are (0, 0), (0, 10−2), (10−5, 0) and (10−5, 10−2).

weights diverge when ® = 0 and Sb = 10−2. Once a small
weight decay has been added, say ® = 10−5, the weights
converge.

3) NAR: For MWN, the MLP generated by the algorithm
based on combining weight noise injection with weight
decay during training gives the best performance. The MLP
generated by the algorithm based on pure back-propagation
gives the worst performance, as shown in Fig 13. For AWN,
the MLP generated by the algorithm based on combining
weight noise injection with weight decay during training
also gives the best performance. The MLP generated by the
algorithm based on only weight noise injection gives the
worst performance, as shown in Fig 14.

For both cases of MWN and AWN, it is clear from Fig 15
and Fig 16 that the MSE value converges during training.
However, the weights do not converge when ® = 0. The
weights diverge when ® = 0 and Sb = 10−2. Once a small
weight decay has been added, say ® = 10−5, the weights
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Figure 9. Testing MSE of Mackey-Glass-MWN.
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Figure 10. Testing MSE of Mackey-Glass-AWN.

converge.
4) XOR: For MWN, the MLP generated by the algorithm

based on combining weight noise injection with weight
decay during training gives the best performance. The MLP
generated by the algorithm based on pure back-propagation
gives the worst performance, as shown in Fig 17. For AWN,
the MLP generated by the algorithm based on combining
weight noise injection with weight decay during training
also gives the best performance. The MLP generated by the
algorithm based on only weight noise injection gives the
worst performance, as shown in Fig 18.

For both cases of MWN and AWN, it is clear from Fig 19
and Fig 20 that the MSE value converges during training.
However, the weights do not converge when ® = 0. The
weights diverge when ® = 0 and Sb = 10−2. Once a small
weight decay has been added, say ® = 10−5, the weights
converge.

5) Characters recognition: For the case of multiplicative
weight noise injection during training, we have the following
findings as shown Fig 21. (1) When the noise variance is
less than 0.02, the MLP generated by adding weight decay
during training gives the best performance. (2) When the
noise variance is greater than 0.02, the MLP generated by
the algorithm based combining weight noise injection with
weight decay during training gives the best performance.
The MLP generated by the algorithm based on weight noise
injection gives the worst performance.

For the case of additive weight noise injection during
training, we have the following findings as shown Fig 22.
(1) When the noise variance is less than 0.01, the MLP
generated by adding weight decay during training gives the
best performance. (2) When the noise variance is in between
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Figure 11. Change of the MSE and weights against time for the
Mackey-Glass problem with multiplicative weight noise injection. From
top to bottom, the parameters (®, Sb) are (0, 0), (0, 10−2), (10−5, 0)
and (10−5, 10−2).

MSE Win Wout Bias

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

MSE

0 20 40 60 80 100
−8

−6

−4

−2

0

2

4
Weight of input

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3
Weight of output

0 20 40 60 80 100
−6

−5

−4

−3

−2

−1

0

1
Bias

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

MSE

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

2

4

6
Weight of input

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Weight of output

0 20 40 60 80 100
−14

−12

−10

−8

−6

−4

−2

0

2
Bias

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

MSE

0 20 40 60 80 100
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Weight of input

0 20 40 60 80 100
−3

−2

−1

0

1

2

3
Weight of output

0 20 40 60 80 100
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Bias

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

MSE

0 20 40 60 80 100
−8

−6

−4

−2

0

2

4
Weight of input

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Weight of output

0 20 40 60 80 100
−7

−6

−5

−4

−3

−2

−1

0

1
Bias

Figure 12. Change of the MSE and weights against time for the Mackey-
Glass problem with additive weight noise injection. From top to bottom, the
parameters (®, Sb) are (0, 0), (0, 10−2), (10−5, 0) and (10−5, 10−2).
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Figure 13. Testing MSE of NAR-MWN.
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Figure 14. Testing MSE of NAR-AWN.
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Figure 15. Change of the MSE and weights against time for the NAR
problem with multiplicative weight noise injection. From top to bottom, the
parameters (®, Sb) are (0, 0), (0, 10−2), (10−5, 0) and (10−5, 10−2).
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Figure 16. Change of the MSE and weights against time for the NAR
problem with additive weight noise injection. From top to bottom, the
parameters (®, Sb) are (0, 0), (0, 10−2), (10−5, 0) and (10−5, 10−2).
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Figure 17. Classification error of XOR-MWN.
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Figure 18. Classification error of XOR-AWN.

0.01 and 0.03, the MLP generated by combining weight
noise injection with weight decay during training gives the
best performance. (3) When the noise variance is greater
than 0.03, the MLP generated by weight noise injection
during training gives the best performance.

For both cases of MWN and AWN, it is clear from Fig 19
and Fig 20 that the MSE value converges during training.
However, the weights do not converge when ® = 0. The
weights diverge when ® = 0 and Sb = 10−2. Once a small
weight decay has been added, say ® = 10−5, the weights
converge.

IV. CONCLUSIONS

In this paper, we have altogether presented eight different
types of online weight noise injection-based algorithms. In
which, four of them are extended from the original back-
propagation algorithm based on minimizing mean square
errors (MSE). While the other four are extended from the
original back-propagation algorithm based on minimizing
cross entropy error (CEE). For those algorithms based on
MSE, the output neuron is defined as a linear neuron.
For those algorithms based on CEE, the output neuron is
defined as a sigmoid neuron. To study the convergence
behaviors of these algorithms and the fault tolerance abilities
of the multilayer perceptron (MLP) models attained by
these learning algorithms, extensive computer simulations
are conducted based on five datasets. Simulation results
show that the online learning algorithm based on purely
multiplicative weight noise injection does not converge.
These results complement a recent analysis by us [16], [27]
on the objective functions of the weight noise injection-
based algorithms. Besides, simulation results show that the
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Figure 19. Change of the MSE and weights against time for the XOR
problem with multiplicative weight noise injection. From top to bottom, the
parameters (®, Sb) are (0, 0), (0, 10−3), (10−4, 0) and (10−4, 10−3).
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Figure 20. Change of the MSE and weights against time for the XOR
problem with additive weight noise injection. From top to bottom, the
parameters (®, Sb) are (0, 0), (0, 10−2), (10−3, 0) and (10−3, 10−2).
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Figure 21. Classification error of Handwritten recognition-MWN.
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Figure 22. Classification error of Handwritten recognition-AWN.

algorithms combining weight noise injection and weight
decay exhibit better convergence behaviors than their
pure weight noise injection counterparts. For multiplica-
tive weight noise injection-based algorithms, the benefit of
adding weight decay during training is much clear. Adding
weight decay during training is able to alleviate the diver-
gence effect due to multiplicative weight noise injection.
Finally, our simulation results have shown that the neural
networks attained by the algorithms combining weight
noise injection and weight decay could have better fault
tolerance abilities than the neural networks attained by
the pure weight noise injection-based algorithms.
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