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Abstract

One should be noted that an AI model is in essence a computational
model. Given an input vector with numbers, the Al model computes the
output vector with numbers. In this article, the key concepts on compu-
tational models are presented with introducing a few computational Al
models. Perceptron learning rule and backpropagation learning rule are
introduced. Simulation results are shown to illustrate the properties of
those learning rules which are associated with their computational models,
namely simple Perceptron and multilayered Perceptron (MLP). Further-
more, recurrent networks are introduced and highlighted their potential
applications in problems regarding sequence generations.
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1 McCulloch-Pitts Neuronal Networks

McCulloch-Pitts model is the first mathematical model proposed by W. McCul-
loch and W. Pitts in 1943 [1]. This model abstracts the all-or-none property of
a neuron — If the stimulus feeding to a neuron is larger enough, the neuron fires.

1.1 McCulloch-Pitts Neuron Model

Consider a neuron with n inputs and let x1,--- ,x, be the inputs. x; € {0,1}
fori=1,---,n. Let y = f(x) be the neuron output. The output is defined as

follows :
fx)=nh <Z wiT; — b) , (1)
i=1
where ;
1 ifu>0,
h(“):{ 0 ifu<O0. @

1.2 2-Input-1-Output M-P Neuron

Figure 1 shows a model with two inputs. In the figure, w; and wy are called
the synaptic weights. They act like scaling factors controlling the effects of
the inputs to the neuron. b is called the threshold (or bias). If the weighted
sum of the inputs is larger than the threshold b, the neuron fires (equivalently,
f(x) = 1. The h(:) in the neuron is a step function as defined in (2).

One should be noted that the inputs are all binary variables which are non-
negatives. If the value of wy (resp. wz) is positive, the effect of z1 (resp. z2) to
the neuron is ezcitatory. If the value of wy (resp. wq) is negative, the effect of
x1 (resp. x2) to the neuron is inhibitory.

1.3 Geometrical Interpretation

For a two-input-one-output neuron as shown in Figure 1, its mathematical model
can simply be given by

f(wl,l'g) = h(wlxl —+ Woxo — b) (3)
—_—————
w(x1,z2)

Here, the function wu(z1,x2) inside h(-) is called a decision boundary. It par-
titions a 2-D plane into two parts. On one side of the decision boundary,
h(u(z1,22)) > 1. On the other side, h(u(z1,z2)) < 0.

Figure 2 shows the two examples, in which

u(xi,x2) = w1 +x2— 1.

8
u(xy,xe) = -2+ garg —1.
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f(x1, 22) = h(wz + wory — b).

U

1 ifu>0
h(“)_{o if u < 0.

Figure 1: A McCulloch-Pitts model of a neuron with two inputs. Here, w; and
wo are the synaptic weights; b is called the bias and h(-) is a step function. If
the value of w; (resp. ws) is positive, the effect of z1 (resp. z3) to the neuron
is excitatory. If the value of wy (resp. wsq) is negative, the effect of x; (resp.
x2) to the neuron is inhibitory.

w(zy, 20) = o1 + 20 — 1.

L2

h(u) =0

L1

L1

(a) (b)

Figure 2: Two exemplar decision boundaries. (a) u(xy,z2) = z1 + z2 — 1.
(b) u(z1,x2) = —2x1 + 8x2/3 — 1.
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Figure 3: Geometrical interpretation of three logical operations, namely logical
AND (left), logical OR (middle) and XOR (right), and their truth tables.

1.4 Logical Operations Realization

For a single two-input McCulloch-Pitts neuron with specified values for wq, ws
and b, one can use the neuron to perform some logical operations. Figure 3
shows the geometries of three logical operations and their truth tables.

1.4.1 AND: wy =wy=1,b=1.5
For wy = we = 1, b = 1.5, the neuronal model is given by
f(l‘l,l'g) = h($1 + 29 — 15) (4)

As z1,29 € {0,1}, f(x1,22) = 1 if and only if ;1 = zo = 1. The neuron as
defined by (4) performs logical AND. It acts as an AND gate.

1.4.2 OR:wi=wy=1,b=0.5
For wy = we = 1, b = 0.5, the neuronal model is given by
f(xl,xg) = h(Il + X2 — 05) (5)

As z1,29 € {0,1}, f(x1,22) = 0 if and only if ;1 = zo = 0. The neuron as
defined by (5) performs logical OR. It acts as an OR gate.

1.4.3 NAND: w; =wy =-1,b=-1.5
For wy = wy = —1, b = —1.5, the neuronal model is given by

f($1,$2) = h(—xl — X2 + 15) (6)



As z1,29 € {0,1}, f(z1,22) = 0 if and only if z; = 29 = 1. The neuron as
defined by (6) performs logical NAND. It acts as an NAND gate.

1.4.4 NOR: w; =wy;=-1,b=-0.5
For wy = we = —1, b = —0.5, the neuronal model is given by
f(.Il,{EQ) = h(—fbl — X9 + 05) (7)

As z1,29 € {0,1}, f(z1,22) = 1 if and only if z; = 29 = 0. The neuron as
defined by (7) performs logical NOR. It acts as an NOR gate.

1.4.5 XOR Operation

For the above logical operations, their successes rely on proper designs of their
decision boundaries given by

W1T1 + Wako — b=0. (8)

For each of the above logical operations, only one decision boundary is needed.
As highlighted in [2], a single two-input McCulloch-Pitts neuron is unable to
perform XOR operation. To do so, three two-input McCulloch-Pitts neurons
are needed.

Figure 4 shows the network of three neurons which performs the XOR op-
eration. Two neurons are needed in the (so-called) hidden layer. The outputs
of the hidden neurons feed their output to the output neuron. The neurons
in the hidden layer are defined to perform logical OR and logical NAND. Let
fi(x1,z2) and fa(x1,z2) be the outputs of the hidden neurons. By (4), (5) and
(6), we get that

fi(z1,22) = h(z1 + 22 —0.5),

fa(@1,2) = h(—x1— 22+ 1.5),

f(x1,22) = h(xy + 20 — 1.5).
That is to say, with the settings of w11 = wia = 1, by = 0.5, w2y = wae = —1,
by = =15, a1 = as = 1, § = 1.5 for the three two-input McCulloch-Pitts

neurons as shown in Figure 4, XOR can be implemented.

1.5 Network of McCulloch-Pitts Neurons

To go beyond, one can claim that all multiple-input-multiple-output binary sys-
tem can be implemented by a network of two-input McCulloch-Pitts neurons.
In view of the processing in each neuron, these networks are basically computa-
tional models. Given an input x, the network simply computes the outputs in
accordance with the computations of the neurons in the network. A network of
two-input McCulloch-Pitts neurons is essentially a computational model. Pre-
cisely, it is a multiple-binary-input-multiple-binary-output computational model*.

1Note that this model is a special class of models. For the input (resp. output) value is not
limited to binary, the model is simply called multiple-input-multiple-output (MIMO) model
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Figure 4: A network of three two-input McCulloch-Pitts neurons performs XOR
operation. The neurons in the hidden layer are defined to perform logical OR
and logical NAND. The parameters of the model are set to be w1 = w1z = 1,
b1 = 05, W21 = W22 = —1, bQ = —15, a1 = Qg = 1, ﬂ =15

1.5.1 Decision Network

To play Tic-Tac-Toe, one needs to block the opponent to fill up a line. If a line
has already filled up with two opponent symbols, we should fill in the reminding
un-filled cell with our symbol. To make this decision, Figure 5 shows a network
of McCulloch-Pitts neurons for this decision making — Should a symbol be put
on the cell corresponding to x1, x2 or x3?

1.5.2 3-Input-4-Output Neuronal Network

To accomplish this, an AI model with three inputs and four outputs can be
designed. In it, there are even types of neurons. Some of them are single-input-
single-output neurons (a-type and b-type). Some of them are two-input-single-
output neurons (f-type and g-type) and some of them are three-input-single-
output neurons (c-type, d-type and e-type). Their mathematical models are
given as follows :

falzi) = h(—z; —0.5), 9)

fo(z:) = h(z; —0.5), (10)
fe(yi,y2,9y3) = h(yr +y2 +ys — 1.5), (11)
fa(yr,y2,93) = h(=y1 —y2 —y3 +2.5), (12)
fe(yi,92,93) = h(y1 +y2 +ys — 1.5), (13)
fi(fe; fa) = h(fe+ fa—1.5), (14)
fo(fr,2zi) = h(fe— 2 —0.5), (15)

(equi. system).



for i = 1,2,3. The outputs are defined as follows :

01 = fo(fr.21), 02 = fo(fr,22), 03 = fy(fs,23), 04 = fe(y1,y2,y3)- (16)

If 0; = 1, fill in the cell z; with a symbol. If o4 = 1, the game is over.

While there are one-input-one-output neurons and two-input-one-output
neurons in this network, we can replace them by using three-input-one-output
neurons. The idea is straight forward. To implement an one-input-one-output
neuron, we can set the weights of two inputs to zeros as shown in Figure 6. This
idea can be extended to N-input-one-output neuron. The network as shown in
Figure 5 can be implemented as a multilayered network as shown in Figure 7.
With proper design on the values for the weights and biases, this network is able
to (but not limited to) replicate the functionalities of the network as shown in
Figure 5.

1.5.3 9-Input-10-Output Neuronal Network

Note that there are eight lines to be diagnosed — three rows, three columns and
two diagonals. Decision on the next move in a tic-tac-toe game can be solved by
a (bigger) network consisting of nine inputs and ten outputs. This big network
is basically a consolidation of eight of the above network of McCulloch-Pitts
neurons. Each network makes decision on the next possible move for a line.

1.6 Model Complexity

The complexity of a neuronal model is normally determined by the number
of neurons and the number of parameters in the model. For comparison, the
number of neurons and the number of parameters in the neuronal networks
presented above are depicted in Table 1.

For the model denoted as (Ng — Ny —--- — Np,) in Table 1 is a multilayered
network with Ny inputs and Ny outputs. Nip,---,Np_; are the number of
neurons in each layers. The total number of neurons is clearly Zézl N and
the total number of parameters is Zszl Ni (Ng—1 +1). In which, NyNg_1 is
the number of connections (i.e. parameters) between the k-layer neurons and
the (k — 1)-layer neurons.

1.7 Digital Computer and M-P Networks

Note that a computer is essentially constructed by a network of AND, OR,
NAND, NOR and XOR logic gates to perform both logical and arithmetics
operations. As a network of two-input McCulloch-Pitts neurons can perform
the operations as the logic gates, a digital computer can thus be implemented by
these two-input McCulloch-Pitts neurons. In this regard, a connection between
computer and brain was established. A human brain can do more than a digital
computer.
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Figure 5: A network of McCulloch-Pitts Neurons could make decision for a step
in a Tic-Tac-Toe game — Should a symbol be put on the cell corresponding
to x1, zo or x3? In this network, there are seven different types of neurons.
Some of them are single-input-single-output neurons (a-type and b-type). Some
of them are two-input-single-output neurons (f-type and g-type) and some of
them are three-input-single-output neurons (c-type, d-type and e-type). Here,
if o4 = 1, it means game over. Note that there are eight lines to be diagnosed
— three rows, three columns and two diagonals. Decision on the next move in a
tic-tac-toe game can be solved by a network consisting of eight of this network
of McCulloch-Pitts Neurons.
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Figure 6: Implementation of an one-input-one-output neuron by three-input-
one-output neuron. For the redundant weights, we simply set them to be zeros.
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Figure 7: A 3-input-4-output multilayered network of all N-input-one-output
neurons. Note that this network is also called a computational model. With
proper design on the values for the weights and biases, this network is able to
(but not limited to) replicate the functionalities of the network as shown in
Figure 5.



Table 1: Complexity of some McCulloch-Pitts neuronal networks. The last

model denoted as (Ng — - -+ — Np) is a No-input- Ny -output network.
Model No. of Neurons No. of Parameters
AND 1 3
OR 1 3
NAND 1 3
NOR 1 3
XOR 3 9
Figure 5 13 36
Figure 7 21 125
(No—-—-=No) | Yy N Yy Ne (N1 +1)

1.7.1 Number of Processing Nodes

For a digital computer, a processing node refers to a logic gate which is a
two-input-one-output system. For a McCulloch-Pitts neuron, it is an N-input-
one-output processing node. In terms of the number of processing nodes, a
McCulloch-Pitts neuronal network could be structural simpler than a digital
computer.

An obvious example is on the number of inputs. A logic gate can only accept
two inputs, while a McCulloch-Pitts neuron can accept more than two inputs.
For the logical operation with three inputs and its output ’1’ if and only if all
three inputs are '1’, two AND logic gates are needed for this operation. Using
McCulloch-Pitts neuron, we need only one. The network complexity could be
reduced.

1.7.2 Beyond Digital Computations

Moreover, McCulloch-Pitts neuron accepts scalar inputs instead of binary. This
neuron can be designed to solve problems with scalar inputs. Therefore, a
network of McCulloch-Pitts neurons can be designed to solve 2-class classi-
fication problems — object recognition problems in which only two classes of
objects are to be recognized. Along this line of thought, multiple networks
of McCulloch-Pitts neurons can thus be applied to general object recognition
problems with multiple classes of objects to be recognized. Furthermore, the
model of McCulloch-Pitts neuron was applied in signal processing [3].

1.8 M-P Network as a Computational Model

It is no doubt that a network of McCulloch-Pitts neurons is essentially a com-
putational model. As long as all the neuronal models have been defined, the
operations of the network are defined accordingly. Each neuron simply performs
a computation and gives results. The computational models developed along



Table 2: Interpretations of the variables and parameters in a M-P neuron.

Input z; =1 Electric pulse stream of a fixed firing rate r.
Input z; =0 No pulse stream received.

Output f(-) =1 Electric pulse stream of a fixed firing rate r.
Output f(-) =0 No pulse stream generated.

w; >0 Excitatory synapse.
w; =0 No connection.
w; <0 Inhibitory synapse.

this line are called Perceptrons which are developed and advocated by Frank
Rosenblatt in the 1950s to 1960s [4, 5, 6].

In the example delineated in Figure 5, all parameters in the network are
pre-defined by me. One question is then aroused. What if the parameters are
not given, is it possible to develop a learning algorithm for this model to get
these parameters? The answer is clearly YES. The learning rule associated with
Perceptrons were later named as Perceptron learning rule in [2].

1.9 Interpretation of an M-P Neuron

One question regarding the M-P neuron is on the interpretations of the input
and the output. If z; = 1, the McCulloch-Pitts receives a electric pulse stream
of a fixed firing rate, say r. If the output of a McCulloch-Pitts neuron is one, the
neuron generates a stream of electric pulses with firing rate r to the subsequent
neurons. Table 2 summaries the physical meanings of the parameters in an M-P
neuron.

1.10 Learning Classification

Figure 8 shows the use of a single 2-input-1-output McCulloch-Pitts neuron for
data classification. The data in Group I is indicated by a circle and the data in
Group II is indicated by a square. The main problem is to find the parameters
wy,we and b for the decision boundary u(xy,x2).

1.10.1 Step 1: Indexing, labeling and assessment
To solve this classification problem, the first step is to assign indices and labels

for the data.

Indexing and labeling. Suppose the total number of data is N. We as-
sign each data a unique index. For the k" data, x; = (21, 2r2) and dj be
respectively the coordinate and label of the k" data. Its label dj is defined as

10



Group I
Group 11

L1

u(zy, re) = w1y + Woxe — b //x\

Figure 8: Use of a single 2-input-1-output McCulloch-Pitts neuron for data
classification. The data in Group I is indicated by a circle and the data in
Group II is indicated by a square.

follows? : . o
dy = { 1 if xi is in Group I, (17)

0 if x is in Group IL

Assessment. To assess how good a neuron with parameters wy, w2 and b can
perform, we need to define a reasonable assessment measure. One can define

the measure as the total prediction errors3.

N
E(wlvw%b):Zldk_f(xk)lv (18)
k=1

where f(xj) is the prediction of the neuron on the group to which the data
xi, belongs. If the prediction is identical to the actual label, |dy — f(xx)| = 0.
Otherwise, |dr — f(xx)| = 1. The values of |d — f(xx)| = 1 are depicted in
Table 3 for clarification. In other words, di — f(xx)| = 0 if only if the prediction
is correct. So, E(w1,ws,b) is the total prediction errors of a neuron with model
parameters wy, we and b. If E (w1, ws,b) = 0, the neuron with parameters wy, ws
and b is an optimal model.

2Note that this labelling is arbitrary. One can define dj, = 0 if x;, is in Group ITand dj, = 1
if xg, is in Group II.

30ne should be noted that the total prediction errors E(wi,ws,b) is a non-differentiable
function. Obtaining a learning rule which minimizes this function is not easy.

11



Table 3: Values of |d — f(xx)]-

di f(xx) | |de — f(xx)]
0 0 0
0 1 1
1 0 1
1 1 0

Next, in search of (wy,ws,b). With the above labelling, the second step is
to develop a method to find the values wy,ws and b their corresponding total
prediction errors E(w,ws,b) is a minimum. Here, two methods are introduced,
namely brute-force search and Perceptron learning.

1.10.2 Step 2: Brute-force search

Its key idea is to search all possible combinations of (wy, ws,b). For instance,

wi = —5,-4.99,—4.98, --,4.98,4.99,5.
wy = —5,—4.99,—4.98, --,4.98,4.99,5.
b = —5,-4.99, —4.98,---,4.98,4.99, 5.

In such case, the total number of combinations of (wq,ws,ws) is 10013, Tt is
more than 10° combinations. For each (wy,ws,b), we feed in the data one by
one to the inputs of the neuron and then calculate the neuronal output. Finally,
the performance of this neuron F (w1, ws, b) is calculated. Repeating the process
for all 10013 combinations, we will have 10012 values of E (w1, ws2,b). In the end,
those models with zero prediction error are the optimal models.

It is clear that brute-force search is not an efficient method to obtain an
optimal model. For the number of parameters is larger, this method is infeasible.
However, for some learning problems, this method is still a key for the search
of model parameters.

1.10.3 Step 2: Perceptron learning

Long in the history, developing an efficient learning rule for a network of M-P
neurons has been a challenging problem. Perceptron learning is one learning
developed by Frank Rosenblatt in the 1950s [4, 5, 6]. For Perceptron learning,
there are two modes of learning : batch mode and online mode.

Batch mode. For the batch mode, the M-P neuron predicts the labels for all
N data. That is to say, the M-P neuron calculates f(xx) for k =1,--- | N. Then,
these predictions are then compared with the actual labels to get (dr — f(xx))
for k=1,---, N. Subsegently, the parameters wy,w- and b are updated based
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on the following equations.

N

wi(t+1) = wi(t)+pY (dx = f(xr)ar, (19)
k;l

we(t+1) = wo(t)+ MZ(dk — f(xk))2r2, (20)
k=1

N
bt+1) = b(t)—pY (de— f(xx)), (21)

k=1

where wy(0), w2(0) and b(0) are arbitrary numbers. In (19), (20) and (21), the
factor p is called the learning step size which value is usually set to be a small
number, say p = 0.001.

Online mode. In contrast to the batch mode learning, the update of wy, wo
and b is conducted one data at a time. Once a data (x¢,d;) is randomly selected
from the dataset, the M-P neuron calculates the prediction f(x;) and then
(di — f(x¢)). Subsequently, the parameters wy,ws and b are updated based on
the following equations.

w1 (f =+ 1) = Wi (t) + Nt(dt — f(xt))xtlu (22)
’wz(t + 1) = wsy (t) + Nt(dt - f(xt )$t27 (23)
bt+1) = b(t) — pe(de — f(xe)), (24)

where i is a small number corresponding for the learning step size at time ¢,
say pr = 0.01/t. Besides, w1(0), w2(0) and b(0) are arbitrary numbers. It can
be shown that with proper setting* on s, the online learning rule as stated in
(22), (23) and (24) is able to get (precisely, converge to) an optimal model for
the classification problem.

1.11 Illustrative Examples

Either for the batch mode learning as stated in (19), (20) and (21) or the online
mode learning as stated in (22), (23) and (24), one should see that the update
of the model parameters is relied on those data whose predictions are incorrect.

1.11.1 Separable data

To illustrate the behavior of the Perceptron learning rule, a set of two groups of
data are randomly generated and shown in Figure 9. In this dataset, 100 data
are belongs to Group I and 100 data are belongs to Group II. It is clear from
Figure 9 that these two groups of data are separable.

4The conditions are that >_7°; u: = oo and > 52, p? < oo.
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Figure 9: Two groups of data which are separable.

1.11.2 Settings

To determine the model parameters wi, w2 and b, the online mode Perceptron
learning rule as stated in (22), (23) and (24) is applied with p; = 0.005 for all
t and the maximum of iteration is set to be 2000. Two initial conditions are
simulated : (a) w1(0) = w2(0) =b=1 and (b) w1(0) = wz(0) =b=0.

1.11.3 Results

Figure 10(Top) shows the changes of the parameters wy, ws and b obtained by

the online Perceptron learning rule over time ¢t = 1, - -+ ,2000. Figure 10(Middle)
shows the changes of the prediction errors 22:1 |di — f(xx)| over time from k =

1 to k = t. The decision boundaries obtained are shown in Figure 10(Bottom).

It should be noted that the results shown in Figure 10 could be slightly

difference if the same experiment is repeated. It is because of the online learning.

In each step, the data to be selected is random. Therefore, sequence of data
being selected for update in an experiment is clearly different from the sequence

of data being selected in another experiment. The results shown in Figure 10(a)

or Figure 10(b) are corresponding to one experiment, not for all.

1.11.4 Comments

Applying Perceptron learning rule for a single M-P neuron, one needs to set the
values for the initial conditions of wy, wo and b. Besides, the learning rate p and
the maximum number of iterations have to be set. Different initial conditions
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Figure 10: Changes of the parameters w;, wo and b over time for the dataset as
shown in Figure 9. (a) With the initial condition (w;(0),w=(0),b(0)) = (1,1,1),
the parameters converge to (0.8019, —0.2029,1.2500) after ¢t > 750. (b) With
the initial condition (w1(0),w2(0),b(0)) = (0,0,0), the parameters converge to
(0.0286, —0.0322,0.0025) after ¢ > 100. Top: Changes of parameters. Middle:
Prediction errors. Bottom: Decision boundary.
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Figure 11: Separable and non-separable data. For separable dataset, it is able
to find an M-P neuron its total prediction errors is zero. For non-separable
dataset, the minimum total prediction errors must be non-zero.

of wy, wy and b might give different values of the convergent w;, wy and b,
i.e. different models. For the learning rate g and the maximum number of
iteration, the smaller the value of p will lead to larger number of iterations.
The settings of all these factors are basically determined by trial-and-error, i.e.
by the experience of the developer.

1.12 Pitfall of a Network of M-P Neurons

A pitfall of the network of McCulloch-Pitts neurons is clearly on the development
of a learning rule for multilayered M-P neuronal networks. For the case of
single M-P neuron, the learning rule as stated in (22), (23) and (24) is able to
let the neuron to attain an optimal for two-class linear separable classification
problems. For a classification problem which is not linear separable, learning
rule is difficult to be developed as the neuronal output is a step function.

Figure 11 shows two examples. For either example, a good 1-input-1-output
M-P neuron can be defined as follows :

f(z) =h(x), ieew=1,b=0.

For the dataset as shown in Figure 11a, this model gives perfect predictions to
all data, i.e. F(1,0) = 0. However, for the dataset as shown in Figure 11b,
E(1,0) > 0.

1.13 Network of M-P Neurons for 3-Class Data

Applying the network of M-P neurons, it could be difficult to get a learning
rule for a 3-class data classification problem. Figure 12 shows the distributions
of the three classes of data and the Perceptron model which is able to solve
this classification problem. The M-P neurons in the first layer perform the two
decisions as indicated in Figure 12(a). Once the decision boundaries have been
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Figure 12: Three-Class classification problem. (a) Geometrical illustration of
the distributions of the three classes of data. (b) The Perceptron model which
can solve this classification problem.

obtained, the neurons at the output layer simply perform the logical operations
depicted below.

fix) fo(x) [ o1 02 o3 | Group
0 0 0 0 0 -
0 1 1 0 0 I
1 0 0 0 1 IIT
1 1 0 1 0 11

It is clear that the Perceptron model as shown in Figure 12(b) can be de-
signed to solve the 3-class classification problem. However, the learning rule for
the update of the model parameters is not easily defined. Nevertheless, learning
rule for the update of the model parameters in a multilayered M-P neuronal
network is even difficult.

2 Sigmoidal Neuronal Networks

For a multilayered network of McCulloch-Pitts neurons, as shown in Figure 7,
developing a learning rule for this network is difficult as the neuronal function
is non-differentiable. Techniques from functional approximation and parametric
estimation are not applicable, as those techniques require the (transfer function)
model is differentiable.

In this regard, Paul Werbos in 1974 [7] suggested replacing the McCulloch-
Pitts neuron by a differentiable function its shape is similar to an M-P neuron.
Later, Rumelhart, Hinton and Williams [8] independently in 1986 suggested
the same replacement. While Paul Werbos did not specify which differentiable
function for a neuron model, Rumelhart, Hinton and Williams specifically in-
troduced the sigmoid function as the neuron model. By that, the output of a
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Figure 13: Sigmoid function could be considered as a relaxation of the step
function in the McCulloch-Pitts model. The plots show the output versus the
value of u. If T' — 0, the output is identical to a step function as in the
McCulloch-Pitts model.

neuron is given by

1
flan,w) = exp (u(z1,22)/T) .
1
- 1+ exp (w11 + waze — b)/T) 2

where u(z1,z2) = wix1 + waza — b as usual and the factor T is called the
temperature. Figure 13 shows the plots of the output of a neuron against the
input w for T =0.01, T =0.05 and 7' = 0.1.

2.1 Sigmoid Neuron

For a neuron with n inputs x = (z1,--- ,2,)7, the output of a neuron is modeled

as follows : )

Jx) = 1+exp(Xl, wiz; —b)
It should be noted that the temperature factor T' is absorbed (redundant) in
the parameters, i.e. w; < w;/T and b+ b/T.

(27)

2.2 Interpretation of a Sigmoid Neuron

Similar to that of a McCulloch-Pitts neuron, the physical meaning of the inputs,
the outputs and the weights can be interpreted. In contrast to the M-P neuron,
the value of an input to a sigmoid neuron is the firing rate of the impulse
stream received from the input neuron. The sign of a weight w; indicates if the
connection is excitatory or inhibitory. The output of a neuron is the firing rate
of the impulse steam to be generated. This interpretation is usually called the
rate coding system.
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2.3 Multilayered Perceptron (MLP)

Therefore, the multilayered neuronal network with this sigmoid neuron is then
called a multilayered Percertron (MLP) or back-propagation network (BPN).
From a mathematical function point of view, MLP is just a multiple-input-
multiple-output function which can be denoted as f(x, w), where x is the input
and w is the vector of the function parameters.

2.4 Backpropagation (BP) Learning

For a sigmoid multilayered Percetron (MLP), the learning algorithm as proposed
by Rumelhart et al is called backpropagation (BP). The learning algorithm is
basically a gradient descent algorithm in search of the model parameters w)
in which its prediction errors E(w) is a minimum. Here, the parameters of an
MLP is denoted as a vector w. Thus, the online learning for an MLP is given

as follows : OE(w(t))
\%\%
— (28)

where E(w(t)) is the total prediction errors as follows :

w(t+1)=w(t) —

Z dk — X;C,W))Q. (29)

Here, one should be noted that the total prediction errors as stated in (29) is
different from that defined in (18).

2-Input-1-Output Sigmoid Neuron. For a two-input-one-output neuron,
w = (w1, w3, b), the learning algorithm as stated in (28) can be stated as follows :

wi(t+1) = wilt) + prelt)f (xe, wit))an (30)
walt+1) = wnlt) + peelt) ' (xe, wit))aes (31)
bE+1) = () — pee(t)f (xe, w(b)), (32)

where

et) = di— f(x,w(t)
(%, w(t)) fOee, w(t))(1 = f (%0, w(t)))-
Again, the factor u, is the learning step at the time t. If u,; satisfies a proper

condition®, it can be shown that BP learning can obtain a model (w1, ws,b)
such that 1ts E(w) is a minimum.

5The conditions are that 392,y = oo and Y52, p? < oo.
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