
Computational (AI) Models

John Sum

Institute of Technology Management

National Chung Hsing University

Taichung 402, Taiwan

March 28, 2025

Abstract

One should be noted that an AI model is in essence a computational
model. Given an input vector with numbers, the AI model computes the
output vector with numbers. In this article, the key concepts on compu-
tational models are presented with introducing a few computational AI
models. Perceptron learning rule and backpropagation learning rule are
introduced. Simulation results are shown to illustrate the properties of
those learning rules which are associated with their computational models,
namely simple Perceptron and multilayered Perceptron (MLP). Further-
more, recurrent networks are introduced and highlighted their potential
applications in problems regarding sequence generations. Subsequently,
aspects of deep neural networks are introduced and comparisons among a
human brain, an electronic brain and a computer are delineated.

Contents

1 McCulloch-Pitts Neuronal Networks 1
1.1 McCulloch-Pitts Neuron Model 1
1.2 2-Input-1-Output M-P Neuron 1
1.3 Geometrical Interpretation . 1
1.4 Logical Operations Realization 3

1.4.1 AND: w1 = w2 = 1, b = 1.5 3
1.4.2 OR: w1 = w2 = 1, b = 0.5 3
1.4.3 NAND: w1 = w2 = −1, b = −1.5 3
1.4.4 NOR: w1 = w2 = −1, b = −0.5 4
1.4.5 XOR Operation . 4

1.5 Network of McCulloch-Pitts Neurons 4
1.5.1 Decision Network . 5
1.5.2 3-Input-4-Output Neuronal Network 5
1.5.3 9-Input-10-Output Neuronal Network 6

1.6 Model Complexity . 6

i

1.7 Digital Computer and M-P Networks 6
1.7.1 Number of Processing Nodes 9
1.7.2 Beyond Digital Computations 9

1.8 M-P Network as a Computational Model 9
1.9 Interpretation of an M-P Neuron 10
1.10 Learning Classification . 10

1.10.1 Step 1: Indexing, labeling and assessment 10
1.10.2 Step 2: Brute-force search 12
1.10.3 Step 2: Perceptron learning 12
1.10.4 Reinforcement Interpretation 13

1.11 Illustrative Examples . 14
1.11.1 Separable data . 14
1.11.2 Settings . 14
1.11.3 Results . 14
1.11.4 Comments . 15

1.12 Pitfall of a Network of M-P Neurons 15
1.13 Network of M-P Neurons for 3-Class Data 15

2 Sigmoidal Neuronal Networks 18
2.1 Sigmoid Neuron . 19
2.2 Interpretation of a Sigmoid Neuron 19
2.3 Multilayered Perceptron (MLP) 19
2.4 Backpropagation (BP) Learning 19

2.4.1 Batch Mode . 20
2.4.2 Online Mode . 20
2.4.3 Online Learning for a 2-Input-1-Output Neuron 20
2.4.4 Illustrative Examples . 21

2.5 Comments on Sigmoid MLP . 21
2.5.1 Logistic Regression . 21
2.5.2 Divergence of w(t) . 21
2.5.3 Weight Decay (Forgetting Factor) 23
2.5.4 Trial-and-Error Factors 23

3 Beyond Decision Making 23
3.1 Time Sequence Prediction/Generation 24
3.2 Sequence Generation . 24
3.3 Text Generation . 24

3.3.1 Word Embedding . 24
3.3.2 Language Dependent . 26
3.3.3 Non-Explainable . 26

4 Deep Neural Networks 26
4.1 Multiple Layers . 26
4.2 Large-Scale . 26
4.3 Convolution Layers . 27
4.4 Rectified Linear Neurons . 27

ii

4.5 Tackling Vanishing Gradient Problem 28
4.6 Application of GPU . 30

5 Brain, Electronic Brain and Computer 30
5.1 Processing Unit . 30
5.2 Model Structure . 30
5.3 Detail Structure & Signal Flow 30
5.4 Speak, Listen and See . 30
5.5 Intelligence . 31
5.6 Learning Mechanism . 31

iii

List of Figures

1 A McCulloch-Pitts model of a neuron with two inputs. Here, w1

and w2 are the synaptic weights; b is called the bias and h(·) is a
step function. If the value of w1 (resp. w2) is positive, the effect
of x1 (resp. x2) to the neuron is excitatory. If the value of w1

(resp. w2) is negative, the effect of x1 (resp. x2) to the neuron is
inhibitory. 2

2 Two exemplar decision boundaries. (a) u(x1, x2) = x1 + x2 − 1.
(b) u(x1, x2) = −2x1 + 8x2/3− 1. 2

3 Geometrical interpretation of three logical operations, namely
logical AND (left), logical OR (middle) and XOR (right), and
their truth tables. 3

4 A network of three two-input McCulloch-Pitts neurons performs
XOR operation. The neurons in the hidden layer are defined to
perform logical OR and logical NAND. The parameters of the
model are set to be w11 = w12 = 1, b1 = 0.5, w21 = w22 = −1,
b2 = −1.5, α1 = α2 = 1, β = 1.5 5

5 A network of McCulloch-Pitts Neurons could make decision for
a step in a Tic-Tac-Toe game – Should a symbol be put on the
cell corresponding to x1, x2 or x3? In this network, there are
seven different types of neurons. Some of them are single-input-
single-output neurons (a-type and b-type). Some of them are
two-input-single-output neurons (f-type and g-type) and some of
them are three-input-single-output neurons (c-type, d-type and
e-type). Here, if o4 = 1, it means game over. Note that there
are eight lines to be diagnosed – three rows, three columns and
two diagonals. Decision on the next move in a tic-tac-toe game
can be solved by a network consisting of eight of this network of
McCulloch-Pitts Neurons. 7

6 Implementation of an one-input-one-output neuron by three-input-
one-output neuron. For the redundant weights, we simply set
them to be zeros. 8

7 A 3-input-4-output multilayered network of all N-input-one-output
neurons. Note that this network is also called a computational
model. With proper design on the values for the weights and
biases, this network is able to (but not limited to) replicate the
functionalities of the network as shown in Figure 5. 8

8 Use of a single 2-input-1-output McCulloch-Pitts neuron for data
classification. The data in Group I is indicated by a circle and
the data in Group II is indicated by a square. 11

9 Two groups of data which are separable. 14

iv

10 Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. (a) With the initial condition (w1(0), w2(0), b(0)) =
(1, 1, 1), the parameters converge to (0.8019,−0.2029, 1.2500) af-
ter t ≥ 750. (b) With the initial condition (w1(0), w2(0), b(0)) =
(0, 0, 0), the parameters converge to (0.0286,−0.0322, 0.0025) af-
ter t ≥ 100. Top: Changes of parameters. Middle: Prediction
errors. Bottom: Decision boundary. 16

11 Separable and non-separable data. For separable dataset, it is
able to find an M-P neuron its total prediction errors is zero. For
non-separable dataset, the minimum total prediction errors must
be non-zero. 17

12 Three-Class classification problem. (a) Geometrical illustration
of the distributions of the three classes of data. (b) The Percep-
tron model which can solve this classification problem. 17

13 Sigmoid function could be considered as a relaxation of the step
function in the McCulloch-Pitts model. The plots show the out-
put versus the value of u. If T → 0, the output is identical to a
step function as in the McCulloch-Pitts model. 18

14 Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. (a) With the initial condition (w1(0), w2(0), b(0)) =
(1, 1, 1). (b) With the initial condition (w1(0), w2(0), b(0)) =
(0, 0, 0). Here, µ = 0.01. Top: Changes of parameters. Middle:
Prediction errors. Bottom: Decision boundary. One should be
noted that the sum of absolute errors (SAE) converges but the
parameters w1(t), w2(t) and b(t) do not converge in both cases. . 22

15 Computational model for a time sequence data prediction. pt is
the true value at time t. Based on this value, the computational
model is applied to predict the values p̂t+1 to p̂t+N 24

16 A computational model for sequence generation. Here, p =
(p1 · · · pM)T are inputs to the model. The computational model
thus generates the outputs p̂1 · · · p̂N in response to the inputs p. 25

17 A simple recurrent network in which the output of the network is
fed back to the input of the network. Again, the key is to find the
parameters for the computational model so that the network is
able to generate the sequence of data. The computational model
structure of all LLMs is typically designed along this idea. 25

18 Model structure of the LeNet 5 in [9]. The F1, F3 and F5 layers
perform convolution. So, these layers are called convolution layers
as well. Note that only the neurons in the F5 and F6 layers are
sigmoidal neurons. The neurons in the other layers are not. . . . 27

19 A rectified linear unit neuron. Its transfer function is defined as
f(x) = max{0, x}. 28

20 A MLP with three neurons. 29

v

List of Tables

1 Complexity of some McCulloch-Pitts neuronal networks. The
last model denoted as (N0 − · · · −NL) is a N0-input-NL-output
network. 9

2 Interpretations of the variables and parameters in a M-P neuron. 10
3 Values of |dk − f(xk)|. 12
4 Comparisons of different neuron models. 28
5 Comparisons among human brain, electronic brain and computer. 31

vi

1 McCulloch-Pitts Neuronal Networks

McCulloch-Pitts model is the first mathematical model proposed by W. McCul-
loch and W. Pitts in 1943 [1]. This model abstracts the all-or-none property of
a neuron – If the stimulus feeding to a neuron is larger enough, the neuron fires.

1.1 McCulloch-Pitts Neuron Model

Consider a neuron with n inputs and let x1, · · · , xn be the inputs. xi ∈ {0, 1}
for i = 1, · · · , n. Let y = f(x) be the neuron output. The output is defined as
follows :

f(x) = h

(
n∑

i=1

wixi − b

)

, (1)

where

h(u) =

{
1 if u > 0,
0 if u ≤ 0.

(2)

1.2 2-Input-1-Output M-P Neuron

Figure 1 shows a model with two inputs. In the figure, w1 and w2 are called
the synaptic weights. They act like scaling factors controlling the effects of
the inputs to the neuron. b is called the threshold (or bias). If the weighted
sum of the inputs is larger than the threshold b, the neuron fires (equivalently,
f(x) = 1. The h(·) in the neuron is a step function as defined in (2).

One should be noted that the inputs are all binary variables which are non-
negatives. If the value of w1 (resp. w2) is positive, the effect of x1 (resp. x2) to
the neuron is excitatory. If the value of w1 (resp. w2) is negative, the effect of
x1 (resp. x2) to the neuron is inhibitory.

1.3 Geometrical Interpretation

For a two-input-one-output neuron as shown in Figure 1, its mathematical model
can simply be given by

f(x1, x2) = h(w1x1 + w2x2 − b
︸ ︷︷ ︸

u(x1,x2)

). (3)

Here, the function u(x1, x2) inside h(·) is called a decision boundary. It par-
titions a 2-D plane into two parts. On one side of the decision boundary,
h(u(x1, x2)) > 1. On the other side, h(u(x1, x2)) < 0.

Figure 2 shows the two examples, in which

u(x1, x2) = x1 + x2 − 1.

u(x1, x2) = −2x1 +
8

3
x2 − 1.

1

u

x1

x2

w2

w1

b

f (x1, x2)

f (x1, x2) = h(w1x1 + w2x2 − b
︸ ︷︷ ︸

u

).

−

h(u)

h(u) =

1 if u > 0

0 if u ≤ 0.

Figure 1: A McCulloch-Pitts model of a neuron with two inputs. Here, w1 and
w2 are the synaptic weights; b is called the bias and h(·) is a step function. If
the value of w1 (resp. w2) is positive, the effect of x1 (resp. x2) to the neuron
is excitatory. If the value of w1 (resp. w2) is negative, the effect of x1 (resp.
x2) to the neuron is inhibitory.

x2

x1
1

1 h(u) = 1

h(u) = 0

u(x1, x2) = x1 + x2 − 1.

x2

x1
1

1 h(u) = 1

h(u) = 0

u(x1, x2) = −2x1 +
8

3
x2 − 1.

(a) (b)

Figure 2: Two exemplar decision boundaries. (a) u(x1, x2) = x1 + x2 − 1.
(b) u(x1, x2) = −2x1 + 8x2/3− 1.

2

y

x
0 1

1

0

y

x
0 1

1

0

y

x
0 1

1

0

AND OR XOR

AND OR XOR
x y z
0 0 0
0 1 0
1 0 0
1 1 1

x y z
0 0 0
0 1 1
1 0 1
1 1 1

x y z
0 0 0
0 1 1
1 0 1
1 1 0

Figure 3: Geometrical interpretation of three logical operations, namely logical
AND (left), logical OR (middle) and XOR (right), and their truth tables.

1.4 Logical Operations Realization

For a single two-input McCulloch-Pitts neuron with specified values for w1, w2

and b, one can use the neuron to perform some logical operations. Figure 3
shows the geometries of three logical operations and their truth tables.

1.4.1 AND: w1 = w2 = 1, b = 1.5

For w1 = w2 = 1, b = 1.5, the neuronal model is given by

f(x1, x2) = h(x1 + x2 − 1.5). (4)

As x1, x2 ∈ {0, 1}, f(x1, x2) = 1 if and only if x1 = x2 = 1. The neuron as
defined by (4) performs logical AND. It acts as an AND gate.

1.4.2 OR: w1 = w2 = 1, b = 0.5

For w1 = w2 = 1, b = 0.5, the neuronal model is given by

f(x1, x2) = h(x1 + x2 − 0.5). (5)

As x1, x2 ∈ {0, 1}, f(x1, x2) = 0 if and only if x1 = x2 = 0. The neuron as
defined by (5) performs logical OR. It acts as an OR gate.

1.4.3 NAND: w1 = w2 = −1, b = −1.5

For w1 = w2 = −1, b = −1.5, the neuronal model is given by

f(x1, x2) = h(−x1 − x2 + 1.5). (6)

3

As x1, x2 ∈ {0, 1}, f(x1, x2) = 0 if and only if x1 = x2 = 1. The neuron as
defined by (6) performs logical NAND. It acts as an NAND gate.

1.4.4 NOR: w1 = w2 = −1, b = −0.5

For w1 = w2 = −1, b = −0.5, the neuronal model is given by

f(x1, x2) = h(−x1 − x2 + 0.5). (7)

As x1, x2 ∈ {0, 1}, f(x1, x2) = 1 if and only if x1 = x2 = 0. The neuron as
defined by (7) performs logical NOR. It acts as an NOR gate.

1.4.5 XOR Operation

For the above logical operations, their successes rely on proper designs of their
decision boundaries given by

w1x1 + w2x2 − b = 0. (8)

For each of the above logical operations, only one decision boundary is needed.
As highlighted in [2], a single two-input McCulloch-Pitts neuron is unable to
perform XOR operation. To do so, three two-input McCulloch-Pitts neurons
are needed.

Figure 4 shows the network of three neurons which performs the XOR op-
eration. Two neurons are needed in the (so-called) hidden layer. The outputs
of the hidden neurons feed their output to the output neuron. The neurons
in the hidden layer are defined to perform logical OR and logical NAND. Let
f1(x1, x2) and f2(x1, x2) be the outputs of the hidden neurons. By (4), (5) and
(6), we get that

f1(x1, x2) = h(x1 + x2 − 0.5),

f2(x1, x2) = h(−x1 − x2 + 1.5),

f(x1, x2) = h(x1 + x2 − 1.5).

That is to say, with the settings of w11 = w12 = 1, b1 = 0.5, w21 = w22 = −1,
b2 = −1.5, α1 = α2 = 1, β = 1.5 for the three two-input McCulloch-Pitts
neurons as shown in Figure 4, XOR can be implemented.

1.5 Network of McCulloch-Pitts Neurons

To go beyond, one can claim that all multiple-input-multiple-output binary sys-
tem can be implemented by a network of two-input McCulloch-Pitts neurons.
In view of the processing in each neuron, these networks are basically computa-
tional models. Given an input x, the network simply computes the outputs in
accordance with the computations of the neurons in the network. A network of
two-input McCulloch-Pitts neurons is essentially a computational model. Pre-
cisely, it is amultiple-binary-input-multiple-binary-output computational model1.

1Note that this model is a special class of models. For the input (resp. output) value is not
limited to binary, the model is simply called multiple-input-multiple-output (MIMO) model

4

x1

x2

f (x1, x2)

w11

w22

w12

w21

b1

b2

α1

α2

β

Hidden

(OR)

(NAND)

Figure 4: A network of three two-input McCulloch-Pitts neurons performs XOR
operation. The neurons in the hidden layer are defined to perform logical OR
and logical NAND. The parameters of the model are set to be w11 = w12 = 1,
b1 = 0.5, w21 = w22 = −1, b2 = −1.5, α1 = α2 = 1, β = 1.5

1.5.1 Decision Network

To play Tic-Tac-Toe, one needs to block the opponent to fill up a line. If a line
has already filled up with two opponent symbols, we should fill in the reminding
un-filled cell with our symbol. To make this decision, Figure 5 shows a network
of McCulloch-Pitts neurons for this decision making – Should a symbol be put

on the cell corresponding to x1, x2 or x3?

1.5.2 3-Input-4-Output Neuronal Network

To accomplish this, an AI model with three inputs and four outputs can be
designed. In it, there are even types of neurons. Some of them are single-input-
single-output neurons (a-type and b-type). Some of them are two-input-single-
output neurons (f-type and g-type) and some of them are three-input-single-
output neurons (c-type, d-type and e-type). Their mathematical models are
given as follows :

fa(xi) = h(−xi − 0.5), (9)

fb(xi) = h(xi − 0.5), (10)

fc(y1, y2, y3) = h(y1 + y2 + y3 − 1.5), (11)

fd(y1, y2, y3) = h(−y1 − y2 − y3 + 2.5), (12)

fe(y1, y2, y3) = h(y1 + y2 + y3 − 1.5), (13)

ff (fc, fd) = h(fc + fd − 1.5), (14)

fg(ff , zi) = h(fe − zi − 0.5), (15)

(equi. system).

5

for i = 1, 2, 3. The outputs are defined as follows :

o1 = fg(ff , z1), o2 = fg(ff , z2), o3 = fg(ff , z3), o4 = fe(y1, y2, y3). (16)

If oi = 1, fill in the cell xi with a symbol. If o4 = 1, the game is over.
While there are one-input-one-output neurons and two-input-one-output

neurons in this network, we can replace them by using three-input-one-output
neurons. The idea is straight forward. To implement an one-input-one-output
neuron, we can set the weights of two inputs to zeros as shown in Figure 6. This
idea can be extended to N-input-one-output neuron. The network as shown in
Figure 5 can be implemented as a multilayered network as shown in Figure 7.
With proper design on the values for the weights and biases, this network is able
to (but not limited to) replicate the functionalities of the network as shown in
Figure 5.

1.5.3 9-Input-10-Output Neuronal Network

Note that there are eight lines to be diagnosed – three rows, three columns and
two diagonals. Decision on the next move in a tic-tac-toe game can be solved by
a (bigger) network consisting of nine inputs and ten outputs. This big network
is basically a consolidation of eight of the above network of McCulloch-Pitts
neurons. Each network makes decision on the next possible move for a line.

1.6 Model Complexity

The complexity of a neuronal model is normally determined by the number
of neurons and the number of parameters in the model. For comparison, the
number of neurons and the number of parameters in the neuronal networks
presented above are depicted in Table 1.

For the model denoted as (N0 −N1 − · · · −NL) in Table 1 is a multilayered
network with N0 inputs and NL outputs. N1, · · · , NL−1 are the number of

neurons in each layers. The total number of neurons is clearly
∑L

k=1 Nk and

the total number of parameters is
∑N

k=1 Nk (Nk−1 + 1). In which, NkNk−1 is
the number of connections (i.e. parameters) between the k-layer neurons and
the (k − 1)-layer neurons.

1.7 Digital Computer and M-P Networks

Note that a computer is essentially constructed by a network of AND, OR,
NAND, NOR and XOR logic gates to perform both logical and arithmetics
operations. As a network of two-input McCulloch-Pitts neurons can perform
the operations as the logic gates, a digital computer can thus be implemented by
these two-input McCulloch-Pitts neurons. In this regard, a connection between
computer and brain was established. A human brain can do more than a digital

computer.

6

a

a

a

b

b

b

c

d

e

f

g

g

g

x1

x2

x3

o1

o2

o3

o4

x1, x2, x3 ∈ {−1, 0, 1}. o1, o2, o3, o4 ∈ {0, 1}.

x1 x2 x3

z1

z2

z3

y1

y2

y3

Figure 5: A network of McCulloch-Pitts Neurons could make decision for a step
in a Tic-Tac-Toe game – Should a symbol be put on the cell corresponding
to x1, x2 or x3? In this network, there are seven different types of neurons.
Some of them are single-input-single-output neurons (a-type and b-type). Some
of them are two-input-single-output neurons (f-type and g-type) and some of
them are three-input-single-output neurons (c-type, d-type and e-type). Here,
if o4 = 1, it means game over. Note that there are eight lines to be diagnosed
– three rows, three columns and two diagonals. Decision on the next move in a
tic-tac-toe game can be solved by a network consisting of eight of this network
of McCulloch-Pitts Neurons.

7

x1

x2

x3 z3

z2

z1 x1

x2

x3 z3

z2

z1

z1 = h(−x1 + 0x2 + 0x3 − 0.5)

z2 = h(0x1 − x2 + 0x3 − 0.5)

z3 = h(0x1 + 0x2 − x3 − 0.5)

Figure 6: Implementation of an one-input-one-output neuron by three-input-
one-output neuron. For the redundant weights, we simply set them to be zeros.

x1

x2

x3

o1

o2

o3

o4

Figure 7: A 3-input-4-output multilayered network of all N-input-one-output
neurons. Note that this network is also called a computational model. With
proper design on the values for the weights and biases, this network is able to
(but not limited to) replicate the functionalities of the network as shown in
Figure 5.

8

Table 1: Complexity of some McCulloch-Pitts neuronal networks. The last
model denoted as (N0 − · · · −NL) is a N0-input-NL-output network.

Model No. of Neurons No. of Parameters
AND 1 3
OR 1 3
NAND 1 3
NOR 1 3
XOR 3 9
Figure 5 13 36
Figure 7 21 125

(N0 − · · · −NL)
∑L

k=1 Nk

∑L

k=1 Nk (Nk−1 + 1)

1.7.1 Number of Processing Nodes

For a digital computer, a processing node refers to a logic gate which is a
two-input-one-output system. For a McCulloch-Pitts neuron, it is an N-input-
one-output processing node. In terms of the number of processing nodes, a
McCulloch-Pitts neuronal network could be structural simpler than a digital
computer.

An obvious example is on the number of inputs. A logic gate can only accept
two inputs, while a McCulloch-Pitts neuron can accept more than two inputs.
For the logical operation with three inputs and its output ’1’ if and only if all
three inputs are ’1’, two AND logic gates are needed for this operation. Using
McCulloch-Pitts neuron, we need only one. The network complexity could be
reduced.

1.7.2 Beyond Digital Computations

Moreover, McCulloch-Pitts neuron accepts scalar inputs instead of binary. This
neuron can be designed to solve problems with scalar inputs. Therefore, a
network of McCulloch-Pitts neurons can be designed to solve 2-class classi-
fication problems – object recognition problems in which only two classes of
objects are to be recognized. Along this line of thought, multiple networks
of McCulloch-Pitts neurons can thus be applied to general object recognition
problems with multiple classes of objects to be recognized. Furthermore, the
model of McCulloch-Pitts neuron was applied in signal processing [3].

1.8 M-P Network as a Computational Model

It is no doubt that a network of McCulloch-Pitts neurons is essentially a com-
putational model. As long as all the neuronal models have been defined, the
operations of the network are defined accordingly. Each neuron simply performs
a computation and gives results. The computational models developed along

9

Table 2: Interpretations of the variables and parameters in a M-P neuron.

Input xi = 1 Electric pulse stream of a fixed firing rate r.
Input xi = 0 No pulse stream received.
Output f(·) = 1 Electric pulse stream of a fixed firing rate r.
Output f(·) = 0 No pulse stream generated.
wi > 0 Excitatory synapse.
wi = 0 No connection.
wi < 0 Inhibitory synapse.

this line are called Perceptrons which are developed and advocated by Frank
Rosenblatt in the 1950s to 1960s [4, 5, 6].

In the example delineated in Figure 5, all parameters in the network are
pre-defined by me. One question is then aroused. What if the parameters are

not given, is it possible to develop a learning algorithm for this model to get

these parameters? The answer is clearly YES. The learning rule associated with
Perceptrons were later named as Perceptron learning rule in [2].

1.9 Interpretation of an M-P Neuron

One question regarding the M-P neuron is on the interpretations of the input
and the output. If x1 = 1, the McCulloch-Pitts receives a electric pulse stream
of a fixed firing rate, say r. If the output of a McCulloch-Pitts neuron is one, the
neuron generates a stream of electric pulses with firing rate r to the subsequent
neurons. Table 2 summaries the physical meanings of the parameters in an M-P
neuron.

1.10 Learning Classification

Figure 8 shows the use of a single 2-input-1-output McCulloch-Pitts neuron for
data classification. The data in Group I is indicated by a circle and the data in
Group II is indicated by a square. The main problem is to find the parameters
w1, w2 and b for the decision boundary u(x1, x2).

1.10.1 Step 1: Indexing, labeling and assessment

To solve this classification problem, the first step is to assign indices and labels
for the data.

Indexing and labeling. Suppose the total number of data is N . We as-
sign each data a unique index. For the kth data, xk = (xk1, xk2) and dk be
respectively the coordinate and label of the kth data. Its label dk is defined as

10

x1

x2

u(x1, x2) = w1x1 + w2x2 − b

Group I

Group II

Figure 8: Use of a single 2-input-1-output McCulloch-Pitts neuron for data
classification. The data in Group I is indicated by a circle and the data in
Group II is indicated by a square.

follows2 :

dk =

{
1 if xk is in Group I,
0 if xk is in Group II.

(17)

Assessment. To assess how good a neuron with parameters w1, w2 and b can
perform, we need to define a reasonable assessment measure. One can define
the measure as the total prediction errors3.

E(w1, w2, b) =
N∑

k=1

|dk − f(xk)|, (18)

where f(xk) is the prediction of the neuron on the group to which the data
xk belongs. If the prediction is identical to the actual label, |dk − f(xk)| = 0.
Otherwise, |dk − f(xk)| = 1. The values of |dk − f(xk)| = 1 are depicted in
Table 3 for clarification. In other words, dk−f(xk)| = 0 if only if the prediction

is correct. So, E(w1, w2, b) is the total prediction errors of a neuron with model
parameters w1, w2 and b. If E(w1, w2, b) = 0, the neuron with parameters w1, w2

and b is an optimal model.

2Note that this labelling is arbitrary. One can define dk = 0 if xk is in Group I and dk = 1
if xk is in Group II.

3One should be noted that the total prediction errors E(w1, w2, b) is a non-differentiable
function. Obtaining a learning rule which minimizes this function is not easy.

11

Table 3: Values of |dk − f(xk)|.

dk f(xk) |dk − f(xk)|
0 0 0
0 1 1
1 0 1
1 1 0

Next, in search of (w1, w2, b). With the above labelling, the second step is
to develop a method to find the values w1, w2 and b their corresponding total

prediction errors E(w1, w2, b) is a minimum. Here, two methods are introduced,
namely brute-force search and Perceptron learning.

1.10.2 Step 2: Brute-force search

Its key idea is to search all possible combinations of (w1, w2, b). For instance,

w1 = −5,−4.99,−4.98, · · · , 4.98, 4.99, 5.

w2 = −5,−4.99,−4.98, · · · , 4.98, 4.99, 5.

b = −5,−4.99,−4.98, · · · , 4.98, 4.99, 5.

In such case, the total number of combinations of (w1, w2, w3) is 10013. It is
more than 109 combinations. For each (w1, w2, b), we feed in the data one by
one to the inputs of the neuron and then calculate the neuronal output. Finally,
the performance of this neuron E(w1, w2, b) is calculated. Repeating the process
for all 10013 combinations, we will have 10013 values of E(w1, w2, b). In the end,
those models with zero prediction error are the optimal models.

It is clear that brute-force search is not an efficient method to obtain an
optimal model. For the number of parameters is larger, this method is infeasible.
However, for some learning problems, this method is still a key for the search
of model parameters.

1.10.3 Step 2: Perceptron learning

Long in the history, developing an efficient learning rule for a network of M-P
neurons has been a challenging problem. Perceptron learning is one learning
developed by Frank Rosenblatt in the 1950s [4, 5, 6]. For Perceptron learning,
there are two modes of learning : batch mode and online mode.

Batch mode. For the batch mode, the M-P neuron predicts the labels for all
N data. That is to say, the M-P neuron calculates f(xk) for k = 1, · · · , N . Then,
these predictions are then compared with the actual labels to get (dk − f(xk))
for k = 1, · · · , N . Subseqently, the parameters w1, w2 and b are updated based

12

on the following equations.

w1(t+ 1) = w1(t) + µ

N∑

k=1

(dk − f(xk))xk1, (19)

w2(t+ 1) = w2(t) + µ

N∑

k=1

(dk − f(xk))xk2, (20)

b(t+ 1) = b(t)− µ
N∑

k=1

(dk − f(xk)), (21)

where w1(0), w2(0) and b(0) are arbitrary numbers. In (19), (20) and (21), the
factor µ is called the learning step size which value is usually set to be a small
number, say µ = 0.001.

Online mode. In contrast to the batch mode learning, the update of w1, w2

and b is conducted one data at a time. Once a data (xt, dt) is randomly selected

from the dataset, the M-P neuron calculates the prediction f(xt) and then
(dt − f(xt)). Subsequently, the parameters w1, w2 and b are updated based on
the following equations.

w1(t+ 1) = w1(t) + µt(dt − f(xt))xt1, (22)

w2(t+ 1) = w2(t) + µt(dt − f(xt))xt2, (23)

b(t+ 1) = b(t)− µt(dt − f(xt)), (24)

where µt is a small number corresponding for the learning step size at time t,
say µt = 0.01/t. Besides, w1(0), w2(0) and b(0) are arbitrary numbers. It can
be shown that with proper setting4 on µt, the online learning rule as stated in
(22), (23) and (24) is able to get (precisely, converge to) an optimal model for
the classification problem.

1.10.4 Reinforcement Interpretation

Let w(t) = (w1(t), w2(t), b(t))
T and xt = (xt1, xt2,−1)

T . The online learning
rule can be rewritten in a compact form.

w(t+ 1) = w(t) + µt(dt − f(xt,w(t)))xt. (25)

As dt, f(xt,w(t)) ∈ {0, 1}, w(t) only updates when dt and f(xt,w(t)) are dif-
ferent. Therefore, we can get that

w(t+ 1) =

w(t) if dt = f(xt,w(t)),
w(t) + µtxt if dt = 1 and f(xt,w(t)) = 0,
w(t)− µtxt if dt = 0 and f(xt,w(t)) = 1.

(26)

The model is reinforced to change if its answer is not correct. This is a rein-
forcement learning interpretation for the online Perceptron learning.

4The conditions are that
∑

∞

t=1
µt = ∞ and

∑
∞

t=1
µ2
t
< ∞.

13

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

Group I

Group II

Figure 9: Two groups of data which are separable.

1.11 Illustrative Examples

Either for the batch mode learning as stated in (19), (20) and (21) or the online
mode learning as stated in (22), (23) and (24), one should see that the update
of the model parameters is relied on those data whose predictions are incorrect.

1.11.1 Separable data

To illustrate the behavior of the Perceptron learning rule, a set of two groups of
data are randomly generated and shown in Figure 9. In this dataset, 100 data
are belongs to Group I and 100 data are belongs to Group II. It is clear from
Figure 9 that these two groups of data are separable.

1.11.2 Settings

To determine the model parameters w1, w2 and b, the online mode Perceptron
learning rule as stated in (22), (23) and (24) is applied with µt = 0.005 for all
t and the maximum of iteration is set to be 2000. Two initial conditions are
simulated : (a) w1(0) = w2(0) = b = 1 and (b) w1(0) = w2(0) = b = 0.

1.11.3 Results

Figure 10(Top) shows the changes of the parameters w1, w2 and b obtained by
the online Perceptron learning rule over time t = 1, · · · , 2000. Figure 10(Middle)

14

shows the changes of the prediction errors
∑t

k=1 |dk−f(xk)| over time from k =
1 to k = t. The decision boundaries obtained are shown in Figure 10(Bottom).

It should be noted that the results shown in Figure 10 could be slightly
difference if the same experiment is repeated. It is because of the online learning.
In each step, the data to be selected is random. Therefore, sequence of data
being selected for update in an experiment is clearly different from the sequence
of data being selected in another experiment. The results shown in Figure 10(a)
or Figure 10(b) are corresponding to one experiment, not for all.

1.11.4 Comments

Applying Perceptron learning rule for a single M-P neuron, one needs to set the
values for the initial conditions of w1, w2 and b. Besides, the learning rate µ and
the maximum number of iterations have to be set. Different initial conditions
of w1, w2 and b might give different values of the convergent w1, w2 and b,
i.e. different models. For the learning rate µ and the maximum number of
iteration, the smaller the value of µ will lead to larger number of iterations.
The settings of all these factors are basically determined by trial-and-error, i.e.
by the experience of the developer.

1.12 Pitfall of a Network of M-P Neurons

A pitfall of the network of McCulloch-Pitts neurons is clearly on the development
of a learning rule for multilayered M-P neuronal networks. For the case of
single M-P neuron, the learning rule as stated in (22), (23) and (24) is able to
let the neuron to attain an optimal for two-class linear separable classification
problems. For a classification problem which is not linear separable, learning
rule is difficult to be developed as the neuronal output is a step function.

Figure 11 shows two examples. For either example, a good 1-input-1-output
M-P neuron can be defined as follows :

f(x) = h(x), i.e. w = 1, b = 0.

For the dataset as shown in Figure 11a, this model gives perfect predictions to
all data, i.e. E(1, 0) = 0. However, for the dataset as shown in Figure 11b,
E(1, 0) > 0.

1.13 Network of M-P Neurons for 3-Class Data

Applying the network of M-P neurons, it could be difficult to get a learning
rule for a 3-class data classification problem. Figure 12 shows the distributions
of the three classes of data and the Perceptron model which is able to solve
this classification problem. The M-P neurons in the first layer perform the two
decisions as indicated in Figure 12(a). Once the decision boundaries have been
obtained, the neurons at the output layer simply perform the logical operations
depicted below.

15

0 500 1000 1500 2000

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

w
2

w
1

b

0 500 1000 1500 2000
-0.04

-0.02

0

0.02

0.04

w
1

‘

b
w

2

0 500 1000 1500 2000
0

10

20

30

40

50

0 500 1000 1500 2000
0

1

2

3

4

5

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

(a) w1(0) = w2(0) = b(0) = 1. (b) w1(0) = w2(0) = b(0) = 0.

Figure 10: Changes of the parameters w1, w2 and b over time for the dataset as
shown in Figure 9. (a) With the initial condition (w1(0), w2(0), b(0)) = (1, 1, 1),
the parameters converge to (0.8019,−0.2029, 1.2500) after t ≥ 750. (b) With
the initial condition (w1(0), w2(0), b(0)) = (0, 0, 0), the parameters converge to
(0.0286,−0.0322, 0.0025) after t ≥ 100. Top: Changes of parameters. Middle:
Prediction errors. Bottom: Decision boundary.

16

-10 -5 0 5 10
0

10

20

30

40

50

60
Group II Group I

-10 -5 0 5 10
0

10

20

30

40

50

60
Group II Group I

(a) Separable. (b) Non-Separable.

Figure 11: Separable and non-separable data. For separable dataset, it is able
to find an M-P neuron its total prediction errors is zero. For non-separable
dataset, the minimum total prediction errors must be non-zero.

Group I

Group II

Group III

x1

x2

o1

o2

o3

f1

f2

(a) Three classes. (b) Perceptron model.

Figure 12: Three-Class classification problem. (a) Geometrical illustration of
the distributions of the three classes of data. (b) The Perceptron model which
can solve this classification problem.

f1(x) f2(x) o1 o2 o3 Group
0 0 0 0 0 –
0 1 1 0 0 I
1 0 0 0 1 III
1 1 0 1 0 II

It is clear that the Perceptron model as shown in Figure 12(b) can be de-
signed to solve the 3-class classification problem. However, the learning rule for
the update of the model parameters is not easily defined. Nevertheless, learning
rule for the update of the model parameters in a multilayered M-P neuronal
network is even difficult.

17

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

T = 0.01

T = 0.05

T = 0.1

Figure 13: Sigmoid function could be considered as a relaxation of the step
function in the McCulloch-Pitts model. The plots show the output versus the
value of u. If T → 0, the output is identical to a step function as in the
McCulloch-Pitts model.

2 Sigmoidal Neuronal Networks

For a multilayered network of McCulloch-Pitts neurons, as shown in Figure 7,
developing a learning rule for this network is difficult as the neuronal function
is non-differentiable. Techniques from functional approximation and parametric
estimation are not applicable, as those techniques require the (transfer function)
model is differentiable.

In this regard, Paul Werbos in 1974 [7] suggested replacing the McCulloch-
Pitts neuron by a differentiable function its shape is similar to an M-P neuron.
Later, Rumelhart, Hinton and Williams [8] independently in 1986 suggested
the same replacement. While Paul Werbos did not specify which differentiable
function for a neuron model, Rumelhart, Hinton and Williams specifically in-
troduced the sigmoid function as the neuron model. By that, the output of a
neuron is given by

f(x1, x2) =
1

1 + exp (−u(x1, x2)/T)
(27)

=
1

1 + exp (−(w1x1 + w2x2 − b)/T)
(28)

where u(x1, x2) = w1x1 + w2x2 − b as usual and the factor T is called the
temperature. Figure 13 shows the plots of the output of a neuron against the
input u for T = 0.01, T = 0.05 and T = 0.1.

18

2.1 Sigmoid Neuron

For a neuron with n inputs, i.e. x = (x1, · · · , xn)
T , the output of a neuron is

modeled as follows :

f(x) =
1

1 + exp (−(
∑n

i=1 wixi − b))
. (29)

It should be noted that the temperature factor T is absorbed (redundant) in
the parameters, i.e. wi ← wi/T and b← b/T .

2.2 Interpretation of a Sigmoid Neuron

Similar to that of a McCulloch-Pitts neuron, the physical meaning of the inputs,
the outputs and the weights can be interpreted. In contrast to the M-P neuron,
the value of an input to a sigmoid neuron is the firing rate of the impulse
stream received from the input neuron. The sign of a weight wi indicates if the
connection is excitatory or inhibitory. The output of a neuron is the firing rate

of the impulse steam to be generated. This interpretation is usually called the
rate coding system.

2.3 Multilayered Perceptron (MLP)

Therefore, the multilayered neuronal network with this sigmoid neuron is then
called a multilayered Percertron (MLP) or back-propagation network (BPN).
From a mathematical function point of view, MLP is just a multiple-input-
multiple-output function which can be denoted as f(x,w), where x is the input
and w is the vector of the function parameters.

2.4 Backpropagation (BP) Learning

For a sigmoid multilayered Percetron (MLP), the learning algorithm as proposed
by Rumelhart et al is called backpropagation (BP). The learning algorithm is
basically a gradient descent algorithm in search of the model parameters w)
in which its prediction errors E(w) is a minimum. Here, the parameters of an
MLP is denoted as a vector w. Thus, the online learning for an MLP is given
as follows :

w(t+ 1) = w(t) − µ
∂E(w(t))

∂w
, (30)

where E(w(t)) is the total prediction errors as follows :

E(w) =

N∑

k=1

(dk − f(xk,w))2. (31)

Here, one should be noted that the total prediction errors as stated in (31) is
different from that defined in (18). The prediction errors as stated in (31) is the
sum-square-errors (SSE).

19

2.4.1 Batch Mode

Given a set of N data, the update of the parametric vector w can be conducted
by the following algorithm. At step t, the outputs and their gradient vectors
of the MLP for the N data are calculated. The update of w(t) to w(t + 1) is
obtained by the following update equation.

w(t+ 1) = w(t) + µ

N∑

k=1

(dk − f(xk,w(t)))
∂f(xk ,w(t))

∂w
, (32)

where µ is a small constant namely the learning step size.

2.4.2 Online Mode

For the online mode learning, a data (xt, dt) is randomly selected from the
dataset. The update of w(t) to w(t + 1) is obtained by the following update
equation.

w(t+ 1) = w(t) + µt(dt − f(xt,w(t)))
∂f(xt,w(t))

∂w
, (33)

where µt is a small constant namely the learning step size. As the online Per-
ceptron learning, this online learning converges if µt satisfies the conditions that

(i)

∞∑

t=1

µt =∞ and (ii)

∞∑

t=1

µ2
t <∞. (34)

2.4.3 Online Learning for a 2-Input-1-Output Neuron

For a two-input-one-output neuron, w = (w1, w2, b), the learning algorithm as
stated in (30) can be stated as follows :

w1(t+ 1) = w1(t) + µte(t)f
′(xt,w(t))xt1 (35)

w2(t+ 1) = w2(t) + µte(t)f
′(xt,w(t))xt2 (36)

b(t+ 1) = b(t)− µte(t)f
′(xt,w(t)), (37)

where

e(t) = dt − f(xt,w(t)

f ′(xt,w(t)) = f(xt,w(t))(1 − f(xt,w(t))).

In vector form,

w1(t+ 1)
w2(t+ 1)
b(t+ 1)

︸ ︷︷ ︸

w(t+1)

=

w1(t)
w2(t)
b(t)

︸ ︷︷ ︸

w(t)

+µte(t)f
′(xt,w(t))

xt1

xt2

−1

 . (38)

Again, the factor µt is the learning step at the time t. If µt satisfies the con-
ditions as stated in (34), it can be shown that BP learning can obtain a model
(w1, w2, b) such that its E(w) is a minimum.

20

2.4.4 Illustrative Examples

Here, we apply the above 2-input-1-output neuron for the two-class classifica-
tion problem as presented in Section 1.11. As sigmoid function is continuous
function, the decision boundary is defined as follows :

w1x1 + w2x2 − b = 0. (39)

By (39), we can get that

f(x,w)

> 1/2 if w1x1 + w2x2 − b > 0,
= 1/2 if w1x1 + w2x2 − b = 0,
< 1/2 if w1x1 + w2x2 − b < 0.

(40)

Thus, we can label the data by the output value of the sigmoidal neuron.
Again, we investigate the results for the cases that w1(0) = w2(0) = b(0)) = 1

and w1(0) = w2(0) = b(0)) = 0. The changes of w(t), cumulative errors and
the decision boundary are shown in Figure 14.

2.5 Comments on Sigmoid MLP

Here, let me present a few comments regarding this sigmoidal neuron.

2.5.1 Logistic Regression

As a matter of fact, the sigmoidal neuronal function is in essence the logis-
tic function which is widely used in statistical analysis. Applying multiple-
input-one-output sigmoid neuron for solving a two-class classification problem
is equivalent to solving a logistic regression problem.

2.5.2 Divergence of w(t)

As shown in Figure 14(Middle), the parameters do not converge as t increases.
In contrast to a multiple-input-one-output McCulloch-Pitts neuron, its param-
eters converge as t increases. A reason for the divergence of the parameters is
due to the fact that the number of feasible multiple-input-one-output neurons
for solving the two-class classification is infinite. If a decision boundary given
by

w1x1 + w2x2 − b = 0

is able to solve the problem, all the decision boundary given by

κ(w1x1 + w2x2 − b) = 0 (κ > 0)

must be able to solve the same problem.

21

0 500 1000 1500 2000
-0.5

0

0.5

1

1.5

w
1

w
2

b

0 500 1000 1500 2000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

w
1

w
2

b

0 500 1000 1500 2000
0

50

100

150

200

250

SSE

SAE

0 500 1000 1500 2000
0

10

20

30

40

50

SSE

SAE

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

(a) w1(0) = w2(0) = b(0) = 1. (b) w1(0) = w2(0) = b(0) = 0.

Figure 14: Changes of the parameters w1, w2 and b over time for the dataset as
shown in Figure 9. (a) With the initial condition (w1(0), w2(0), b(0)) = (1, 1, 1).
(b) With the initial condition (w1(0), w2(0), b(0)) = (0, 0, 0). Here, µ = 0.01.
Top: Changes of parameters. Middle: Prediction errors. Bottom: Decision
boundary. One should be noted that the sum of absolute errors (SAE) converges
but the parameters w1(t), w2(t) and b(t) do not converge in both cases.

22

2.5.3 Weight Decay (Forgetting Factor)

To solve the divergence problem, one simple approach is to design the learning
rule with weight decay as follows :

w1(t+ 1) = (1− α)w1(t) + µte(t)f
′(xt,w(t))xt1 (41)

w2(t+ 1) = (1− α)w2(t) + µte(t)f
′(xt,w(t))xt2 (42)

b(t+ 1) = (1− α)b(t) − µte(t)f
′(xt,w(t)), (43)

where

e(t) = dt − f(xt,w(t)

f ′(xt,w(t)) = f(xt,w(t))(1 − f(xt,w(t))).

Normally, the decay factor α is set to be a very small number, say α = 0.0001.

2.5.4 Trial-and-Error Factors

From the context presented in this section, one should realize that the success
of an MLP learning rule relies on at least six factors. They are

1. the network structure,

2. the objective function (respectively, assessment measure) to be minimized,

3. the number of iterations (resp. stopping criteria),

4. the learning step µt,

5. the weight decay (equivalently, forgetting) factor and

6. the initial condition of the parameters, i.e. w(0).

All these factors can only be obtained by trial-and-error.

3 Beyond Decision Making

The above presentations focus on the use of a multilayered network for solving
a decision problem5. It is interesting to ask if these computational models are
able to learn to generate a time sequence of outputs. Two types of sequence
generations are usually considered.

1. Fixed number of outputs, say y(t + 1), y(t + 2), · · · , y(t + N). N is a
predefined fixed number. In time series analysis, this problem is called
N -step prediction. Predicting the average daily temperatures (resp. stock
price) in the future seven days is one example.

2. Dynamic number of outputs. Text generation by an LLM is an example
of this type.

5Here, a decision problem under our definition is that its outputs are binary numbers, i.e.
oi ∈ {0, 1} for i = 1, · · · , n. As a matter fact, either multilayered McCulloch-Pitts neuronal
network or multilayered Perceptron could be applied in some multiple-input-multiple-output
function approximation problems.

23

f (pt,w) f (p̂t+1,w) · · · f (p̂t+N−1,w)pt

p̂t+1 p̂t+2 p̂t+N

f (pt,w)

f (pt,w)

f (pt,w)

pt

p̂t+1

p̂t+2

p̂t+N

... ...

Figure 15: Computational model for a time sequence data prediction. pt is the
true value at time t. Based on this value, the computational model is applied
to predict the values p̂t+1 to p̂t+N .

3.1 Time Sequence Prediction/Generation

Let say, we have collected a sequence of closing prices of a stock in a consecutive
N trading days. We would like to find a computational model which is able to
predict the upcoming T trading days closing prices given the historical closing
prices up to today. To do so, one approach is to design a computational model
as shown in Figure 15.

3.2 Sequence Generation

By the same token, generation a sequence of data can be accomplished by ap-
plying a computational model f(p,w), as shown in Figure 16.

3.3 Text Generation

From Figure 16, one can note that a computational model f(·,w) could be
designed (equivalently, trained) to generate a sequence of texts if p is a sequence
of text-input (i.e. prompt) of M words. The outputs is a sequence of N words.
The key idea is to design a computational model with recurrent connections, as
shown in Figure 17.

3.3.1 Word Embedding

For text generation problems, one key problem is how to encode a word in a
numerical value(s). For more than a decade, this problem has been a tough
research problem. Eventually, word embedding algorithms for English words

24

f (p,w)

f (p,w)

f (p,w)

pk

p̂1

p̂2

p̂N

... ...

p1

pM

...

...

Figure 16: A computational model for sequence generation. Here, p =
(p1 · · · pM)T are inputs to the model. The computational model thus gener-
ates the outputs p̂1 · · · p̂N in response to the inputs p.

f (x(t),y(t− 1),w)
y(t)x(t)

Figure 17: A simple recurrent network in which the output of the network is fed
back to the input of the network. Again, the key is to find the parameters for
the computational model so that the network is able to generate the sequence
of data. The computational model structure of all LLMs is typically designed
along this idea.

25

and Chinese words have been developed. Each word is encoded by a multi-
dimensional numerical vector.

3.3.2 Language Dependent

Word embedding algorithms for different languages are clearly end up with
different large language models (LLMs). As a word embedding algorithm is
designed for a particular language, different word embedding algorithms are
needed to be design for different languages. It could be reason why an English-
oriented LLM performs different from a Chinese-oriented LLM.

3.3.3 Non-Explainable

From its text generation ability, each LLM could demonstrate that it has learnt
some regularities in text generation. However, these regularities cannot be found
or explained by the structure and the parameters of the computational model.
Thus, these LLMs are not explainable.

4 Deep Neural Networks

Sigmoid neuronal networks as introduced in Section 2 have been a major type
of AI models for use in the 1980s to the 1990s. While the idea of multiple layers
was introduced, the models for applications could only be designed as a single
layer or two layers network; and the number of neurons in a layer is not large.

4.1 Multiple Layers

Owing to the advancement in computational power of a computer from the late
1990s to the 2010s, larger scale neural network models were introduced from the
late 1990s to the 2010s [9, 10, 11, 12]. These models have normally more than
five layers and some might have more than ten layers. The number of neurons
in a layer can have more than hundreds neurons. These models are called deep

neural networks [13, 14] and the learning theory for these deep neural networks
is called deep learning.

4.2 Large-Scale

For application purposes, these deep neural networks have some structures which
are different from the multilayered Perceptrons (MLP). First, the scale of a deep
neural network is much larger than a conventional MLP in the 1990s. A deep
neural network could consist of ten thousands or even millions number of model
parameters. The neural network consists of large number of layers and the
number of neurons in a layer could be hundreds to thousands.

26

F1 F2 F3 F4 F6 F7

Image

C1 S2
C3

S4

C5

Average Pooling MLP

(120)

(84)

(10)

(400)

(32× 32)

(28× 28)× 6

(14× 14)× 6

(10× 10)× 16

F5

Figure 18: Model structure of the LeNet 5 in [9]. The F1, F3 and F5 layers
perform convolution. So, these layers are called convolution layers as well. Note
that only the neurons in the F5 and F6 layers are sigmoidal neurons. The
neurons in the other layers are not.

4.3 Convolution Layers

Second, convolution layers are usually added in a deep neural network for solving
image processing or pattern recognition problems. These convolution layers
mimic the biological properties of the early image processing in a human visual
system. This idea was first appeared in Cognitron and Neocognitron introduced
in [15, 16] in the 1970s, in LeNet6 introduced in [9] in the 1990s and later in
AlexNet introduced in [11] in the 2010s.

4.4 Rectified Linear Neurons

Third, a new neuron model called rectified linear neuron as shown in Figure 19
is employed. Rectified linear neuron was first investigated in [17, 18] and later
applied in the neural network models for pattern recognitions [15, 16]. The
mathematical model for a rectified linear neuron is given by

f(x) = max{0, x}. (44)

6Its structure is shown in Figure 18.

27

f (x)

x

Figure 19: A rectified linear unit neuron. Its transfer function is defined as
f(x) = max{0, x}.

Table 4: Comparisons of different neuron models.

Model Input Output
McCulloch-Pitts Pulses of firing rate r Pulses of firing rate r
Sigmoid neuron Pulses of firing rate x Pulses of firing rate y
ReLU neuron Pulses of firing rate x Pulses of firing rate y

Electronic neuron Voltage x Voltage y

As a comparison, the interpretations of the input and output values of different
neurons are depicted in Table 4.

4.5 Tackling Vanishing Gradient Problem

In the research of deep neural network, the main reason for using rectified linear
neuron is to tackle the so-called vanishing gradient problem. Consider a MLP
with structure as shown in Figure 20. The output is given by

f(x1, x2) = φ(α1z1(x1, x2) + α2z2(x1, x2)− β) (45)

z1(x1, x2) = φ(w11x1 + w12x2 − b1) (46)

z2(x1, x2) = φ(w21x1 + w22x2 − b2), (47)

where φ(·) is the sigmoid function defined as follows :

φ(s) =
1

1 + exp(−s)
.

28

x1

x2

f (x1, x2)

w11

w22

w12

w21

b1

b2

α1

α2

β

Figure 20: A MLP with three neurons.

Consider the online model learning for the update the parameter wij in the
input layer, one needs to compute the following learning equation.

wij(t+ 1) = wij(t) + µte(t)g0(t)αi(t)

2∑

i=1

g1i(t)xtj

= wij(t) + µt

2∑

i=1

e(t)g0(t)αi(t)g1i(t)xtj (48)

where

e(t) = (dt − f(xt,w(t))) (49)

g0(t) = φ(u0(t))(1 − φ(u0(t))) (50)

g1i(t) = φ(ui(t))(1 − φ(ui(t))) (51)

for i = 1, 2 and

u0(t) = α1(t)z1(xt1, xt2) + α2(t)z2(xt1, xt2)− β(t),

u1(t) = w11xt1 + w12(t)xt2 − b1(t),

u2(t) = w21xt1 + w22(t)xt2 − b2(t).

Note that
0 ≤ φ(s)(1 − φ(s)) ≤ 1/4.

The value g0(t) and g1i(t) must be smaller than 1/4. Hence, the factor g0(t)g11(t)
or g0(t)g12(t) must be smaller than 1/16. Subsequently, the update of a param-
eter deep in the network might be vanished if the number of layers is large.

Take LeNet 5, Figure 18, as an example. If all neurons in the model are
sigmoidal neurons, the parameters at the F6 and F7 layers (closer to output
layer) will bigger changes in each step of learning. The parameters at the F1
and F2 (closer to the inputs) will get very small changes in each step of learning.

29

4.6 Application of GPU

While the rectified linear neurons are applied and the convolution layers are
defined, the learning algorithm developed for a deep neural network is still com-
putational intensive. In the end, training a deep neural network and sometimes
in the use of a deep neural network require the use of GPU(s). Application of
(multiple) GPU becomes a critical factor.

5 Brain, Electronic Brain and Computer

Long in the history, many scholars have attempted to make an artificial brain
which can replicate the behaviors of a human brain. Pereceptron is one of them.
Perceptron could be considered as an electronic brain. For the current released
LLMs, the artificial brain is made of computers. Therefore, it is needed to make
comparisons among a human brain, an electronic brain and a computer. Their
comparisons are depicted in Table 5.

5.1 Processing Unit

In a human brain, the processing units are clearly the biological neurons. For
those electronic brains, the processing units are electronic neurons. An elec-
tronic neuron is basically an electric circuit with electronic components. An
electronic neuron is usually designed to implement the behavior of a sigmoid
neuron as stated in (29) and shown in Figure 13. For an AI system implemented
on a computer, its processing units are clearly the logic gates in the computer.

5.2 Model Structure

In regard to the model structure, human brain is a network of biological neu-
rons. For an electronic brain, it is a network of electronic components which
implements a pre-designed computational model. For an AI system running on
a computer, its structure is also a (software) computational model.

5.3 Detail Structure & Signal Flow

While a human brain is a network of biological neurons, its detail structure
and signal flow are largely unknown. They are still under research. On the
other hand, the detail structure and signal flow in an electronic brain (resp. a
computer) are known as an electronic brain is designed by engineers based on
pre-designed circuits.

5.4 Speak, Listen and See

Today, an electronic brain (resp. computer) can be designed to connect with
loudspeaker, microphone and camera to speak, listen and see. In terms of

30

Table 5: Comparisons among human brain, electronic brain and computer.

Human Brain Electronic Brain Computer
Processing unit Neuron Electronic neuron Logic gate
Structure Net. of neurons Comp. model Comp. model
Detail structure Under research Known Known
Detail signal flow Under research Known Known
Speak Yes Yes Yes
Listen Yes Yes Yes
See Yes Yes Yes
Intelligence Yes Programmed Programmed
Learning Under research Programmed Programmed

During learning, the properties of some synapses in a human brain change.
For an electronic brain, physical properties of some electronic components
might change. However, there is nothing change in a computer even an AI

model is under learning.

environmental interactions, an electronic brain and a computer can behave the
same as a human brain.

5.5 Intelligence

From intelligence point of view, it is commonly agreed that a human brain is
intelligent. For an electronic brain or a computer, they are pre-designed or pre-
programmed for solving problems. Thus, an electronic brain and a computer
should not be considered as having intelligence.

5.6 Learning Mechanism

For a human brain, actual neuron-level learning mechanism is still under re-
search. One common believe is that the properties of some synapses might
change during a learning process. However, the changes in a (biological level)
neuronal network in relation to a (psychological level) reinforcement learning is
still unclear and under research.

For an electronic brain and a computer, their learning mechanisms are pre-
designed and hence programmed. For an electronic brain, some changes might
be found in some electronic components if it is in the process of learning. For
a computer, there is no any change in the properties of the logic gates during
learning.

31

References

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[2] M. Minsky and S. Papert, Perceptrons : An introduction to computational

geometry. MIT Press, 1969.

[3] B. Widrow, “Generalization and information storage in networks of Adaline
neurons,” in Self-Organizing Systems. Spartan Books, 1962, pp. 435–461.

[4] F. Rosenblatt, “The Perceptron: a probabilistic model for information stor-
age and organization in the brain.” Psychological Review, vol. 65, no. 6, p.
386, 1958.

[5] ——, “Perceptron simulation experiments,” Proceedings of the IRE, vol. 48,
no. 3, pp. 301–309, 1960.

[6] ——, Principles of Neurodynamics: Perceptions and the theory of brain

mechanisms. Spartan, 1962.

[7] P. Werbos, “Beyond regression: New tools for prediction and analysis in
the behavioral sciences,” PhD Dissertation, Harvard University, 1974.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, 2012, pp. 1097–1105.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 770–778.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[14] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT
press Cambridge, 2016, vol. 1.

32

[15] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,”
Biological Cybernetics, vol. 20, no. 3-4, pp. 121–136, 1975.

[16] ——, “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position,” Biological

Cybernetics, vol. 36, pp. 193–202, 1980.

[17] H. K. Hartline and C. H. Graham, “Nerve impulses from single receptors
in the eye.” Journal of Cellular & Comparative Physiology, vol. 1, no. 2,
pp. 277–295, 1932.

[18] H. K. Hartline, “Intensity and duration in the excitation of single photore-
ceptor units.” Journal of Cellular & Comparative Physiology, pp. 229–247,
1934.

33

