
Computational (AI) Models : Concepts,

Developments and Beyond∗

John Sum

Institute of Technology Management

National Chung Hsing University

Taichung 402, Taiwan

April 11, 2025

Abstract

One should be noted that an AI model is in essence a computational
model. Given an input vector with numbers, the AI model computes the
output vector with numbers. In this article, the key concepts on compu-
tational models are presented with introducing a few computational AI
models. Perceptron learning rule and backpropagation learning rule are
introduced. Simulation results are shown to illustrate the properties of
those learning rules which are associated with their computational mod-
els, namely simple Perceptron and multilayered Perceptron (MLP). The
concepts of model complexity and weight decay are remarked. Further-
more, recurrent networks are introduced and highlighted their potential
applications in problems regarding sequence generations. For the applica-
tions of language processing, the difficulties in getting a numerical vector
for a word or a phrase is highlighted. Subsequently, aspects of deep neural
networks are introduced with highlights on the introduction of rectified
linear unit (ReLU) as neurons in the model and the Softmax as the out-
put neurons. The development process of a computational model and its
applications is presented. Finally, comparisons among a human brain, an
electronic brain and a computer are delineated.

∗This report is prepared for the MBA and EMBA students in the National Chung Hsing
University who have minimum mathematical foundation and who have taken either the course
on AI and Machine Learning (MBA) or the course on Intelligent Technology Management

(EMBA) in 2025 Spring.

1

Contents

1 McCulloch-Pitts Neuronal Networks 1
1.1 McCulloch-Pitts Neuron Model 1
1.2 2-Input-1-Output M-P Neuron 1
1.3 Geometrical Interpretation . 1
1.4 Logical Operations Realization 3

1.4.1 AND: w1 = w2 = 1, b = 1.5 3
1.4.2 OR: w1 = w2 = 1, b = 0.5 3
1.4.3 NAND: w1 = w2 = −1, b = −1.5 3
1.4.4 NOR: w1 = w2 = −1, b = −0.5 4
1.4.5 XOR Operation . 4

1.5 Network of McCulloch-Pitts Neurons 4
1.5.1 Decision Network . 5
1.5.2 3-Input-4-Output Neuronal Network 5
1.5.3 9-Input-10-Output Neuronal Network 6

1.6 Model Complexity . 6
1.6.1 Number of Model Parameters 6
1.6.2 Other Factors . 6

1.7 Digital Computer and M-P Networks 9
1.7.1 Number of Processing Nodes 9
1.7.2 Beyond Digital Computations 9

1.8 M-P Network as a Computational Model 10
1.9 Interpretation of an M-P Neuron 10
1.10 Learning Classification . 10

1.10.1 Step 1: Indexing, labeling and assessment 12
1.10.2 Step 2: Brute-force search 13
1.10.3 Step 2: Perceptron learning 13
1.10.4 Reinforcement Interpretation 14

1.11 Illustrative Examples . 14
1.11.1 Separable data . 14
1.11.2 Settings . 15
1.11.3 Results . 15
1.11.4 Comments . 15

1.12 Pitfall of a Network of M-P Neurons 17
1.13 Network of M-P Neurons for 3-Class Data 17

2 Sigmoidal Neuronal Networks 18
2.1 Sigmoid Neuron . 19
2.2 Interpretation of a Sigmoid Neuron 19
2.3 Multilayered Perceptron (MLP) 20
2.4 Backpropagation (BP) Learning 20

2.4.1 Batch Mode . 20
2.4.2 Online Mode . 21
2.4.3 Online Learning for a 2-Input-1-Output Neuron 21
2.4.4 Illustrative Examples . 22

i

2.5 Model Complexity . 22
2.5.1 Numbers of Neurons and Parameters 22
2.5.2 Forward Pass Computation Complexity 22
2.5.3 Forward Pass Memory Complexity 25
2.5.4 Backward Pass Memory Complexity 25

2.6 Comments on Sigmoid MLP . 25
2.6.1 Logistic Regression . 25
2.6.2 Divergence of w(t) . 26
2.6.3 Weight Decay (Forgetting Factor) 26
2.6.4 MSE Versus No. of Data 28
2.6.5 MSE Versus No. of Data for an MLP for MNIST 28
2.6.6 Scaling Law for (Stochastic) Gradient Descent 28
2.6.7 Trial-and-Error Factors 29

3 Beyond Decision Making 30
3.1 Time Sequence Prediction/Generation 30
3.2 Sequence Generation . 30
3.3 Time Window . 30
3.4 Text Generation . 32

3.4.1 Word Embedding . 32
3.4.2 Language Dependent . 32
3.4.3 Non-Explainable . 32

4 Deep Neural Networks 34
4.1 Multiple Layers . 34
4.2 Large-Scale . 34
4.3 Convolution Layers . 36
4.4 Rectified Linear Neuron (ReLU) 36
4.5 Tackling Vanishing Gradient by ReLU 37

4.5.1 Derivative of φ(s) . 37
4.5.2 Learning for a Two-Layer MLP 38
4.5.3 Vanishing Gradient . 38
4.5.4 ReLU . 38

4.6 Softmax Output Neurons . 39
4.7 Application of GPU . 40
4.8 Dedicated Processing Unit . 40

4.8.1 XPU . 41
4.8.2 Support Real-Time Applications 41

5 Computational (AI) Model Development 41
5.1 The Model & The Performance Criteria 41

5.1.1 Predictive Model . 41
5.1.2 Generative Model . 43

5.2 Learning Algorithm Development 43
5.2.1 Gradient Descent (GD) 44
5.2.2 Gradient Descent with Momentum (GDM) 44

ii

5.2.3 Pseudo Brute-Force Search 44
5.3 Training . 44
5.4 Implementations of a Pre-Trained Model 45

5.4.1 Software Implementation 45
5.4.2 Hardware Implementation 45

5.5 Application System Development 45
5.5.1 User Interface Design . 45
5.5.2 Transfer Learning for Fine-Tune 45
5.5.3 Mixture of Experts (MoE) 49

6 Brain, Electronic Brain and Computer 50
6.1 Processing Unit . 50
6.2 Model Structure . 50
6.3 Detail Structure & Signal Flow 50
6.4 Speak, Listen and See . 51
6.5 Intelligence . 51
6.6 Learning Mechanism . 51
6.7 Electronic Brain . 51

Appendix A MLP as a CNN 54
A.1 Convolution in the First Layer 54
A.2 Convolution in the Second layer 54
A.3 Convolution in the Output Layer 55
A.4 MLP vs CNN . 55

Appendix B Limitation of a Simple ReLU Pereptron 55
B.1 Model and Learning . 55
B.2 Settings . 55
B.3 Result Highlights . 56
B.4 1D Data Illustration . 56

Appendix C Network of ReLUs 58
C.1 Saturating Linear Neuron . 58
C.2 Logical Operations Realization 59

C.2.1 AND: w1 = w2 = 1, b = 1.5, ∆ = 0.01 59
C.2.2 OR: w1 = w2 = 1, b = 0.5, ∆ = 0.01 59
C.2.3 NAND: w1 = w2 = −1, b = −1.5, ∆ = 0.01 60
C.2.4 NOR: w1 = w2 = −1, b = −0.5, ∆ = 0.01 60
C.2.5 XOR Operation . 60
C.2.6 Digital Computer Implementation 60

C.3 Classification Problems . 60
C.3.1 Learning Algorithm . 61
C.3.2 Illustrative Examples . 61

C.4 Nonlinear Decision Boundary Problems 62

iii

List of Figures

1 A McCulloch-Pitts model of a neuron with two inputs. Here, w1

and w2 are the synaptic weights; b is called the bias and h(·) is a
step function. If the value of w1 (resp. w2) is positive, the effect
of x1 (resp. x2) to the neuron is excitatory. If the value of w1

(resp. w2) is negative, the effect of x1 (resp. x2) to the neuron is
inhibitory. 2

2 Two exemplar decision boundaries. (a) u(x1, x2) = x1 + x2 − 1.
(b) u(x1, x2) = −2x1 + 8x2/3− 1. 2

3 Geometrical interpretation of three logical operations, namely
logical AND (left), logical OR (middle) and XOR (right), and
their truth tables. 3

4 A network of three two-input McCulloch-Pitts neurons performs
XOR operation. The neurons in the hidden layer are defined to
perform logical OR and logical NAND. The parameters of the
model are set to be w11 = w12 = 1, b1 = 0.5, w21 = w22 = −1,
b2 = −1.5, α1 = α2 = 1, β = 1.5 5

5 A network of McCulloch-Pitts Neurons could make decision for
a step in a Tic-Tac-Toe game – Should a symbol be put on the
cell corresponding to x1, x2 or x3? In this network, there are
seven different types of neurons. Some of them are single-input-
single-output neurons (a-type and b-type). Some of them are
two-input-single-output neurons (f-type and g-type) and some of
them are three-input-single-output neurons (c-type, d-type and
e-type). Here, if o4 = 1, it means game over. Note that there
are eight lines to be diagnosed – three rows, three columns and
two diagonals. Decision on the next move in a tic-tac-toe game
can be solved by a network consisting of eight of this network of
McCulloch-Pitts Neurons. 7

6 Implementation of three one-input-one-output neurons by three-
input-three-output network. For the redundant weights, we sim-
ply set them to be zeros. 8

7 A three-input-four-output multilayered network of all N-input-
one-output neurons. Note that this network is also called a
computational model. With proper design on the values for the
weights and biases, this network is able to (but not limited to)
replicate the functionalities of the network as shown in Figure 5. 8

8 Use of a single 2-input-1-output McCulloch-Pitts neuron for data
classification. The data in Group I is indicated by a circle and the
data in Group II is indicated by a square. The data indicated by
a cross is an unlabelled data. One purpose of getting the decision
boundary is to use it to label those unlabelled data. 11

9 Two groups of data which are separable. 15

iv

10 Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. (a) With the initial condition w1(0) =
w2(0) = b(0) = 1, the parameters converge to w1 = 0.8019,
w2 = −0.2029 and b = 1.2500 after t ≥ 750. (b) With the initial
condition w1(0) = w2(0) = b(0) = 0, the parameters converge to
w1 = 0.0286, w2 = −0.0322 and b = 0.0025 after t ≥ 100. Top:
Changes of parameters. Middle: Prediction errors. Bottom:
Decision boundary. 16

11 Separable and non-separable data. For separable dataset, it is
able to find an M-P neuron its total prediction errors is zero. For
non-separable dataset, the minimum total prediction errors must
be non-zero. 17

12 Three-Class classification problem. (a) Geometrical illustration
of the distributions of the three classes of data. (b) The Percep-
tron model which can solve this classification problem. 18

13 Sigmoid function could be considered as a relaxation of the step
function in the McCulloch-Pitts model. The plots show the out-
put versus the value of u. If T → 0, the output is identical to a
step function as in the McCulloch-Pitts model. 19

14 Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. (a) With the initial condition w1(0) =
w2(0) = b(0) = 1. (b) With the initial condition w1(0) = w2(0) =
b(0) = 0. Here, µ = 0.01. Top: Changes of parameters. Middle:
Prediction errors. Bottom: Decision boundary. One should be
noted that the sum of absolute errors (SAE) converges but the
parameters w1(t), w2(t) and b(t) do not converge in both cases. . 23

15 A MLP with N0 input and NL output. This model consists of
∑L

k=1 Nk neurons and
∑L

k=1 Nk(Nk−1+1) number of parameters.
For a forward pass to get an output, the computational time TC

is proportional to the number of parameters. 24
16 Changes of the parameters w1, w2 and b over time for the dataset

as shown in Figure 9. Here, µt = 0.001, α = 0.0001 and the total
number of learning steps is 10000 × 20 × 200 = 4 × 107. The
initial conditions are set to be (a) w1(0) = w2(0) = b(0) = 1 and
(b) w1(0) = w2(0) = b(0) = 0. The results shown in the mid-
dle panel are mean absolute errors (MAE) and mean square er-
rors (MSE) over every 4000 steps. Top: Changes of parameters.
Middle: Mean prediction errors. Bottom: Decision boundary.
One should be noted that the horizontal axis in both the top and
the middle panels is in log-scale. 27

17 The log(MSE) against the log(epoch) for a training of the MLP
in the MNIST handwritten character recognition problem. Here
the network is an MLP of the structure 784-100-100-10. The on-
line learning rate is 0.01. In each epoch, 60, 000 training samples
are fed in. Therefore, the total number of steps in this online
training is 6× 104 × 104. 29

v

18 Computational model for a time sequence data prediction. pt is
the true value at time t. Based on this value, the computational
model is applied to predict the values from p̂t+1 to p̂t+N given
the value of pt. The prediction window width is fixed at N 31

19 A computational model for sequence generation. Here, p =
(p1 · · · pM)T are inputs to the model. The computational model
thus generates the outputs p̂1 · · · p̂N in response to the inputs
p1, · · · , pM . The prediction window width is fixed at M 31

20 The block diagram of a recurrent network (a), with output feeding
back to the input of the network. The precise model in the square
box in (a) can be any model. If the model is defined as an MLP,
its structure is shown in (b). This structure is commonly called a
recurrent MLP (RMLP). Its learning rule is simple as compared
with other recurrent networks. The symbol w is the model para-
metric vector referring the collections of all model parameters.
Again, the key is to find the parameters for the computational
model so that the network is able to generate the sequence of data
{x(t), y(t)}Tt=1 and the initial condition y(0). The computational
model structure of all LLMs is typically designed along this idea. 33

21 Each word or each phrase is converted to a vector of multiple
numerical numbers to be input to the computational model. The
method of converting each word or phrase to a vector of num-
bers is called word embedding. Note that word embedding has
been a research topic in natural language processing. Many word
embedding methods have thus been developed. Clearly, word
embedding is language-specific. 34

22 Model structure of the LeNet 5 in [1]. The F1, F3 and F5 layers
perform convolution. So, these layers are called convolution layers
as well. Note that only the neurons in the F5 and F6 layers are
sigmoidal neurons. The neurons in the other layers are not. . . . 35

23 The working principle of a convolution layer with ReLU neurons.
Here, the receptive field of a convolution filter is of size 3× 3. . . 36

24 A rectified linear unit neuron. Its transfer function is defined as
f(x) = max{0, x}. 37

25 A MLP with three neurons. Note that f(x,w) = φ0(x,w). . . . 39
26 A MLP with four neurons, in which two of them are ReLU neu-

rons and the other two are Softmax neurons. Note that f1(x,w)
and f2(x,w) are the outputs. 40

vi

27 Development process for an AI computational model. Initially,
a thought computational model is hypothesized. Together with
the model, a performance criteria is defined for the problem. De-
pending on the nature of the model, the criteria could be the
mean square errors (MSE) or maximum likelihood. Once the
performance criteria has been defined, the learning algorithm for
the model can be derived. Training is clearly yet another com-
putational task which can be conducted by a computer with or
without GPUs. After the learning process is completed success-
fully, a numerical computational model is obtained. If not, search
for another computational model and then repeat the process. If
using a computer (resp. a cloud) is not efficient enough to use
the trained model, a hardware computational model might be
built. Finally, application systems can be built on top of these
computational model. 42

28 System architecture of AI applications deployment. On the cloud
or server side, in which the computational models are installed,
specialized computing platforms with large number of GPUs are
needed. Here, LLM stands for large language model and AS
stands for application system. The edge corresponds to a user
device. It could be a desktop computer, a notebook computer, a
pad, a cell phone, a car system, the devices in a home network
or any device being used in the user side. 48

29 Idea behind mixture of experts computational models. Here, the
computational model is applied in three domains, namely med-
ical, physics and finance. During the fine-time stage, the corre-
sponding dataset is fed in to train the specific fine-tune model.
During fine-tune of an expert, the general LLM is considered as
a fixed model. Finally, the selector (the circle) is trained to give
correct selection of expert(s) to generate the output. 49

30 Structure of an MLP for MNIST handwritten digit recognition.
The input image is of size 28×28. This MLP could be considered
as a specialized convolution neural network (CNN), in which the
first layer consists of 100 convolution filters of size 28 × 28. The
second layer consists of 100 convolution filters of size 10× 10 and
the output layer consists of 10 convolution filters of size 10× 10. 54

31 Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. Here, µt = 0.01 and the total number
of learning steps is 10000 × 200 = 2 × 106. The initial condi-
tions are set to be w1(0) = w2(0) = b(0) = 1. For the case
that w1(0) = w2(0) = b(0) = 0, the model is unable to learn.
The results shown in the middle panel are mean absolute errors
(MAE) and mean square errors (MSE) over every 4000 steps.
Top: Changes of parameters. Middle: Mean prediction errors.
Bottom: Decision boundary. One should be noted that the hor-
izontal axis in both the top and the middle panels is in log-scale. 57

vii

32 The transfer function of a ReLU with parameters b and ∆. . . . 58
33 The shape of the saturating linear function g(u, b,∆) as stated in

(86) or (87). 59
34 An application of a network of three ReLU neurons in 2-class

classification problem. Here, ∆ is a predefined small positive
number, say ∆ = 0.01. The parameters w1, w2 and b1 are shared
among the neurons in the hidden layer. z1 and z2 are the out-
put of the neurons in the hidden layer. The parameters of the
output neuron are fixed. f(x1, x2) = max{0, z1 − z2}, where
z1 = g(x1, x2, w1, w2, b,∆) and z2 = g(x1, x2, w1, w2, b+∆,∆). . 61

35 Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. Here, ∆ = 0.01, µt = 0.005 and the
total number of learning steps is 10000. The initial conditions
are set to be (a) w1(0) = w2(0) = b(0) = 1 and (b) w1(0) =
w2(0) = b(0) = 0. The value of MAE(t) is defined as MAE(t) =
t−1

∑t
τ=1 |dτ − f(xτ ,w(τ)|. The value of MSE(t) is defined as

MSE(t) = t−1
∑t

τ=1(dτ − f(xτ ,w(τ))2. Top: Changes of pa-
rameters. Middle: Mean prediction errors. Bottom: Decision
boundary. One should be noted that the horizontal axis in both
the top and the middle panels is in log-scale. 63

viii

List of Tables

1 Complexity of some McCulloch-Pitts neuronal networks. The
last model denoted as (N0 − · · · −NL) is a N0-input-NL-output
network. 9

2 Interpretations of the variables and parameters in a M-P neuron. 10
3 Values of |dk − f(xk)|. 12
4 Different types of sequence generation problems. 32
5 Comparisons of different neuron models. 37
6 List of pre-trained computational models (Update: April 5, 2025). 46
7 Exemplar computational models and their applications. Devel-

opment of an application system on top of these computational
models could be a difficult task. The development is not just user
interface development. It might involve the processes of fine-tune,
transfer learning, hardware design and others. 47

8 Comparisons among a human brain, an electronic brain and a
computer. 52

ix

1 McCulloch-Pitts Neuronal Networks

McCulloch-Pitts model is the first mathematical model proposed by W. McCul-
loch and W. Pitts in 1943 [2]. This model abstracts the all-or-none property of
a neuron – If the stimulus feeding to a neuron is larger enough, the neuron fires.

1.1 McCulloch-Pitts Neuron Model

Consider a neuron with n inputs and let x1, · · · , xn be the inputs. xi ∈ {0, 1}
for i = 1, · · · , n. Let y = f(x) be the neuron output. The output is defined as
follows :

f(x) = h

(
n∑

i=1

wixi − b

)

, (1)

where

h(u) =

{
1 if u > 0,
0 if u ≤ 0.

(2)

1.2 2-Input-1-Output M-P Neuron

Figure 1 shows a model with two inputs. In the figure, w1 and w2 are called
the synaptic weights. They act like scaling factors controlling the effects of
the inputs to the neuron. b is called the threshold (or bias). If the weighted
sum of the inputs is larger than the threshold b, the neuron fires (equivalently,
f(x) = 1. The h(·) in the neuron is a step function as defined in (2).

One should be noted that the inputs are all binary variables which are non-
negatives. If the value of w1 (resp. w2) is positive, the effect of x1 (resp. x2) to
the neuron is excitatory. If the value of w1 (resp. w2) is negative, the effect of
x1 (resp. x2) to the neuron is inhibitory.

1.3 Geometrical Interpretation

For a two-input-one-output neuron as shown in Figure 1, its mathematical model
can simply be given by

f(x1, x2) = h(w1x1 + w2x2 − b
︸ ︷︷ ︸

u(x1,x2)

). (3)

Here, the function u(x1, x2) inside h(·) is called a decision boundary. It par-
titions a 2-D plane into two parts. On one side of the decision boundary,
h(u(x1, x2)) > 1. On the other side, h(u(x1, x2)) < 0.

Figure 2 shows the two examples, in which

u(x1, x2) = x1 + x2 − 1.

u(x1, x2) = −2x1 +
8

3
x2 − 1.

1

u

x1

x2

w2

w1

b

f (x1, x2)

f (x1, x2) = h(w1x1 + w2x2 − b
︸ ︷︷ ︸

u

).

−

h(u)

h(u) =







1 if u > 0

0 if u ≤ 0.

Figure 1: A McCulloch-Pitts model of a neuron with two inputs. Here, w1 and
w2 are the synaptic weights; b is called the bias and h(·) is a step function. If
the value of w1 (resp. w2) is positive, the effect of x1 (resp. x2) to the neuron
is excitatory. If the value of w1 (resp. w2) is negative, the effect of x1 (resp.
x2) to the neuron is inhibitory.

x2

x1
1

1 h(u) = 1

h(u) = 0

u(x1, x2) = x1 + x2 − 1.

x2

x1
1

1 h(u) = 1

h(u) = 0

u(x1, x2) = −2x1 +
8

3
x2 − 1.

(a) (b)

Figure 2: Two exemplar decision boundaries. (a) u(x1, x2) = x1 + x2 − 1.
(b) u(x1, x2) = −2x1 + 8x2/3− 1.

2

y

x
0 1

1

0

y

x
0 1

1

0

y

x
0 1

1

0

AND OR XOR

AND OR XOR
x y z
0 0 0
0 1 0
1 0 0
1 1 1

x y z
0 0 0
0 1 1
1 0 1
1 1 1

x y z
0 0 0
0 1 1
1 0 1
1 1 0

Figure 3: Geometrical interpretation of three logical operations, namely logical
AND (left), logical OR (middle) and XOR (right), and their truth tables.

1.4 Logical Operations Realization

For a single two-input McCulloch-Pitts neuron with specified values for w1, w2

and b, one can use the neuron to perform some logical operations. Figure 3
shows the geometries of three logical operations and their truth tables.

1.4.1 AND: w1 = w2 = 1, b = 1.5

For w1 = w2 = 1, b = 1.5, the neuronal model is given by

f(x1, x2) = h(x1 + x2 − 1.5). (4)

As x1, x2 ∈ {0, 1}, f(x1, x2) = 1 if and only if x1 = x2 = 1. The neuron as
defined by (4) performs logical AND. It acts as an AND gate.

1.4.2 OR: w1 = w2 = 1, b = 0.5

For w1 = w2 = 1, b = 0.5, the neuronal model is given by

f(x1, x2) = h(x1 + x2 − 0.5). (5)

As x1, x2 ∈ {0, 1}, f(x1, x2) = 0 if and only if x1 = x2 = 0. The neuron as
defined by (5) performs logical OR. It acts as an OR gate.

1.4.3 NAND: w1 = w2 = −1, b = −1.5
For w1 = w2 = −1, b = −1.5, the neuronal model is given by

f(x1, x2) = h(−x1 − x2 + 1.5). (6)

3

As x1, x2 ∈ {0, 1}, f(x1, x2) = 0 if and only if x1 = x2 = 1. The neuron as
defined by (6) performs logical NAND. It acts as an NAND gate.

1.4.4 NOR: w1 = w2 = −1, b = −0.5
For w1 = w2 = −1, b = −0.5, the neuronal model is given by

f(x1, x2) = h(−x1 − x2 + 0.5). (7)

As x1, x2 ∈ {0, 1}, f(x1, x2) = 1 if and only if x1 = x2 = 0. The neuron as
defined by (7) performs logical NOR. It acts as an NOR gate.

1.4.5 XOR Operation

For the above logical operations, their successes rely on proper designs of their
decision boundaries given by

w1x1 + w2x2 − b = 0. (8)

For each of the above logical operations, only one decision boundary is needed.
As highlighted in [3], a single two-input McCulloch-Pitts neuron is unable to
perform XOR operation. To do so, three two-input McCulloch-Pitts neurons
are needed.

Figure 4 shows the network of three neurons which performs the XOR op-
eration. Two neurons are needed in the (so-called) hidden layer. The outputs
of the hidden neurons feed their output to the output neuron. The neurons
in the hidden layer are defined to perform logical OR and logical NAND. Let
f1(x1, x2) and f2(x1, x2) be the outputs of the hidden neurons. By (4), (5) and
(6), we get that

f1(x1, x2) = h(x1 + x2 − 0.5),

f2(x1, x2) = h(−x1 − x2 + 1.5),

f(x1, x2) = h(x1 + x2 − 1.5).

That is to say, with the settings of w11 = w12 = 1, b1 = 0.5, w21 = w22 = −1,
b2 = −1.5, α1 = α2 = 1, β = 1.5 for the three two-input McCulloch-Pitts
neurons as shown in Figure 4, XOR can be implemented.

1.5 Network of McCulloch-Pitts Neurons

To go beyond, one can claim that all multiple-input-multiple-output binary sys-
tem can be implemented by a network of two-input McCulloch-Pitts neurons.
In view of the processing in each neuron, these networks are basically computa-
tional models. Given an input x, the network simply computes the outputs in
accordance with the computations of the neurons in the network. A network of
two-input McCulloch-Pitts neurons is essentially a computational model. Pre-
cisely, it is amultiple-binary-input-multiple-binary-output computational model1.

1Note that this model is a special class of models. For the input (resp. output) value is not
limited to binary, the model is simply called multiple-input-multiple-output (MIMO) model

4

x1

x2

f (x1, x2)

w11

w22

w12

w21

b1

b2

α1

α2

β

Hidden

(OR)

(NAND)

Figure 4: A network of three two-input McCulloch-Pitts neurons performs XOR
operation. The neurons in the hidden layer are defined to perform logical OR
and logical NAND. The parameters of the model are set to be w11 = w12 = 1,
b1 = 0.5, w21 = w22 = −1, b2 = −1.5, α1 = α2 = 1, β = 1.5

1.5.1 Decision Network

To play Tic-Tac-Toe, one needs to block the opponent to fill up a line. If a line
has already filled up with two opponent symbols, we should fill in the reminding
un-filled cell with our symbol. To make this decision, Figure 5 shows a network
of McCulloch-Pitts neurons for this decision making – Should a symbol be put

on the cell corresponding to x1, x2 or x3?

1.5.2 3-Input-4-Output Neuronal Network

To accomplish this, an AI model with three inputs and four outputs can be
designed. In it, there are even types of neurons. Some of them are single-input-
single-output neurons (a-type and b-type). Some of them are two-input-single-
output neurons (f-type and g-type) and some of them are three-input-single-
output neurons (c-type, d-type and e-type). Their mathematical models are
given as follows :

fa(xi) = h(−xi − 0.5), (9)

fb(xi) = h(xi − 0.5), (10)

fc(y1, y2, y3) = h(y1 + y2 + y3 − 1.5), (11)

fd(y1, y2, y3) = h(−y1 − y2 − y3 + 2.5), (12)

fe(y1, y2, y3) = h(y1 + y2 + y3 − 1.5), (13)

ff (fc, fd) = h(fc + fd − 1.5), (14)

fg(ff , zi) = h(fe − zi − 0.5), (15)

(equi. system).

5

for i = 1, 2, 3. The outputs are defined as follows :

o1 = fg(ff , z1), o2 = fg(ff , z2), o3 = fg(ff , z3), o4 = fe(y1, y2, y3). (16)

If oi = 1, fill in the cell xi with a symbol. If o4 = 1, the game is over.
While there are one-input-one-output neurons and two-input-one-output

neurons in this network, we can replace them by using three-input-one-output
neurons. The idea is straight forward. To implement an one-input-one-output
neuron, we can set the weights of two inputs to zeros as shown in Figure 6. This
idea can be extended to N-input-one-output neuron. The network as shown in
Figure 5 can be implemented as a multilayered network as shown in Figure 7.
With proper design on the values for the weights and biases, this network is able
to (but not limited to) replicate the functionalities of the network as shown in
Figure 5.

1.5.3 9-Input-10-Output Neuronal Network

Note that there are eight lines to be diagnosed – three rows, three columns and
two diagonals. Decision on the next move in a tic-tac-toe game can be solved by
a (bigger) network consisting of nine inputs and ten outputs. This big network
is basically a consolidation of eight of the above network of McCulloch-Pitts
neurons. Each network makes decision on the next possible move for a line.

1.6 Model Complexity

The complexity of a neuronal model is normally determined by the number
of neurons and the number of parameters in the model. For comparison, the
number of neurons and the number of parameters in the neuronal networks
presented above are depicted in Table 1.

1.6.1 Number of Model Parameters

For the model denoted as (N0 − N1 − · · · − NL) in Table 1 is a multilayered
network with N0 inputs and NL outputs. N1, · · · , NL−1 are the number of

neurons in each layers. The total number of neurons is clearly
∑L

k=1 Nk and

the total number of parameters is
∑N

k=1 Nk (Nk−1 + 1). In which, NkNk−1 is
the number of connections (i.e. parameters) between the k-layer neurons and
the (k − 1)-layer neurons.

1.6.2 Other Factors

It should be noted that number of parameters is just one issue concerning the
model complexity. To figure out how complexity a model, computational time
and the memory space required for a model to get an output given an input are
two factors. The computational time and memory space required for a model
to learn from a data are another two factors. These factors will be delineated
in Section 2.5.

6

a

a

a

b

b

b

c

d

e

f

g

g

g

x1

x2

x3

o1

o2

o3

o4

x1, x2, x3 ∈ {−1, 0, 1}. o1, o2, o3, o4 ∈ {0, 1}.

x1 x2 x3

z1

z2

z3

y1

y2

y3

Figure 5: A network of McCulloch-Pitts Neurons could make decision for a step
in a Tic-Tac-Toe game – Should a symbol be put on the cell corresponding
to x1, x2 or x3? In this network, there are seven different types of neurons.
Some of them are single-input-single-output neurons (a-type and b-type). Some
of them are two-input-single-output neurons (f-type and g-type) and some of
them are three-input-single-output neurons (c-type, d-type and e-type). Here,
if o4 = 1, it means game over. Note that there are eight lines to be diagnosed
– three rows, three columns and two diagonals. Decision on the next move in a
tic-tac-toe game can be solved by a network consisting of eight of this network
of McCulloch-Pitts Neurons.

7

x1

x2

x3 z3

z2

z1 x1

x2

x3 z3

z2

z1

z1 = h(−x1 + 0x2 + 0x3 − 0.5)

z2 = h(0x1 − x2 + 0x3 − 0.5)

z3 = h(0x1 + 0x2 − x3 − 0.5)

Figure 6: Implementation of three one-input-one-output neurons by three-input-
three-output network. For the redundant weights, we simply set them to be
zeros.

x1

x2

x3

o1

o2

o3

o4

Figure 7: A three-input-four-output multilayered network of all N-input-one-
output neurons. Note that this network is also called a computational model.
With proper design on the values for the weights and biases, this network is able
to (but not limited to) replicate the functionalities of the network as shown in
Figure 5.

8

Table 1: Complexity of some McCulloch-Pitts neuronal networks. The last
model denoted as (N0 − · · · −NL) is a N0-input-NL-output network.

Model No. of Neurons No. of Parameters
AND 1 3
OR 1 3
NAND 1 3
NOR 1 3
XOR 3 9
Figure 5 13 36
Figure 7 21 125

(N0 − · · · −NL)
∑L

k=1 Nk

∑L

k=1 Nk (Nk−1 + 1)

1.7 Digital Computer and M-P Networks

Note that a computer is essentially constructed by a network of AND, OR,
NAND, NOR and XOR logic gates to perform both logical and arithmetics
operations. As a network of two-input McCulloch-Pitts neurons can perform
the operations as the logic gates, a digital computer can thus be implemented by
these two-input McCulloch-Pitts neurons. In this regard, a connection between
computer and brain was established. A human brain can do more than a digital

computer.

1.7.1 Number of Processing Nodes

For a digital computer, a processing node refers to a logic gate which is a
two-input-one-output system. For a McCulloch-Pitts neuron, it is an N-input-
one-output processing node. In terms of the number of processing nodes, a
McCulloch-Pitts neuronal network could be structural simpler than a digital
computer.

An obvious example is on the number of inputs. A logic gate can only accept
two inputs, while a McCulloch-Pitts neuron can accept more than two inputs.
For the logical operation with three inputs and its output ’1’ if and only if all
three inputs are ’1’, two AND logic gates are needed for this operation. Using
McCulloch-Pitts neuron, we need only one. The network complexity could be
reduced.

1.7.2 Beyond Digital Computations

Moreover, McCulloch-Pitts neuron accepts scalar inputs instead of binary. This
neuron can be designed to solve problems with scalar inputs. Therefore, a
network of McCulloch-Pitts neurons can be designed to solve 2-class classi-
fication problems – object recognition problems in which only two classes of
objects are to be recognized. Along this line of thought, multiple networks

9

Table 2: Interpretations of the variables and parameters in a M-P neuron.

Input xi = 1 Electric pulse stream of a fixed firing rate r.
Input xi = 0 No pulse stream received.
Output f(·) = 1 Electric pulse stream of a fixed firing rate r.
Output f(·) = 0 No pulse stream generated.
wi > 0 Excitatory synapse.
wi = 0 No connection.
wi < 0 Inhibitory synapse.

of McCulloch-Pitts neurons can thus be applied to general object recognition
problems with multiple classes of objects to be recognized. Furthermore, the
model of McCulloch-Pitts neuron was applied in signal processing [4].

1.8 M-P Network as a Computational Model

It is no doubt that a network of McCulloch-Pitts neurons is essentially a com-
putational model. As long as all the neuronal models have been defined, the
operations of the network are defined accordingly. Each neuron simply performs
a computation and gives results. The computational models developed along
this line are called Perceptrons which are developed and advocated by Frank
Rosenblatt in the 1950s to 1960s [5, 6, 7].

In the example delineated in Figure 5, all parameters in the network are
pre-defined by me. One question is then aroused. What if the parameters are

not given, is it possible to develop a learning algorithm for this model to get

these parameters? The answer is clearly YES. The learning rule associated with
Perceptrons were later named as Perceptron learning rule in [3].

1.9 Interpretation of an M-P Neuron

One question regarding the M-P neuron is on the interpretations of the input
and the output. If x1 = 1, the McCulloch-Pitts receives a electric pulse stream
of a fixed firing rate, say r. If the output of a McCulloch-Pitts neuron is one, the
neuron generates a stream of electric pulses with firing rate r to the subsequent
neurons. Table 2 summaries the physical meanings of the parameters in an M-P
neuron.

1.10 Learning Classification

Figure 8 shows the use of a single 2-input-1-output McCulloch-Pitts neuron for
data classification. The data in Group I is indicated by a circle and the data in
Group II is indicated by a square. The main problem is to find the parameters
w1, w2 and b for the decision boundary u(x1, x2).

10

x1

x2

u(x1, x2) = w1x1 + w2x2 − b

Group I

Group II

Figure 8: Use of a single 2-input-1-output McCulloch-Pitts neuron for data
classification. The data in Group I is indicated by a circle and the data in
Group II is indicated by a square. The data indicated by a cross is an unlabelled
data. One purpose of getting the decision boundary is to use it to label those
unlabelled data.

11

Table 3: Values of |dk − f(xk)|.

dk f(xk) |dk − f(xk)|
0 0 0
0 1 1
1 0 1
1 1 0

1.10.1 Step 1: Indexing, labeling and assessment

To solve this classification problem, the first step is to assign indices and labels
for the data.

Indexing and labeling. Suppose the total number of data is N . We as-
sign each data a unique index. For the kth data, xk = (xk1, xk2) and dk be
respectively the coordinate and label of the kth data. Its label dk is defined as
follows2 :

dk =

{
1 if xk is in Group I,
0 if xk is in Group II.

(17)

Assessment (Performance Criteria). To assess how good a neuron with
parameters w1, w2 and b can perform, we need to define a reasonable assessment
measure. One can define the measure as the total prediction errors3.

E(w1, w2, b) =

N∑

k=1

|dk − f(xk)|, (18)

where f(xk) is the prediction of the neuron on the group to which the data
xk belongs. If the prediction is identical to the actual label, |dk − f(xk)| = 0.
Otherwise, |dk − f(xk)| = 1. The values of |dk − f(xk)| = 1 are depicted in
Table 3 for clarification. In other words, dk−f(xk)| = 0 if only if the prediction

is correct. So, E(w1, w2, b) is the total prediction errors of a neuron with model
parameters w1, w2 and b. If E(w1, w2, b) = 0, the neuron with parameters w1, w2

and b is an optimal model.

Next, in search of (w1, w2, b). With the above labelling, the second step is
to develop a method to find the values w1, w2 and b their corresponding total

prediction errors E(w1, w2, b) is a minimum. Here, two methods are introduced,
namely brute-force search and Perceptron learning.

2Note that this labelling is arbitrary. One can define dk = 0 if xk is in Group I and dk = 1
if xk is in Group II.

3One should be noted that the total prediction errors E(w1, w2, b) is a non-differentiable
function. Obtaining a learning rule which minimizes this function is not easy.

12

1.10.2 Step 2: Brute-force search

Its key idea is to search all possible combinations of (w1, w2, b). For instance,

w1 = −5,−4.99,−4.98, · · · , 4.98, 4.99, 5.
w2 = −5,−4.99,−4.98, · · · , 4.98, 4.99, 5.
b = −5,−4.99,−4.98, · · · , 4.98, 4.99, 5.

In such case, the total number of combinations of (w1, w2, w3) is 10013. It is
more than 109 combinations. For each (w1, w2, b), we feed in the data one by
one to the inputs of the neuron and then calculate the neuronal output. Finally,
the performance of this neuron E(w1, w2, b) is calculated. Repeating the process
for all 10013 combinations, we will have 10013 values of E(w1, w2, b). In the end,
those models with zero prediction error are the optimal models.

It is clear that brute-force search is not an efficient method to obtain an
optimal model. For the number of parameters is larger, this method is infeasible.
However, for some learning problems, this method is still a key for the search
of model parameters.

1.10.3 Step 2: Perceptron learning

Long in the history, developing an efficient learning rule for a network of M-P
neurons has been a challenging problem. Perceptron learning is one learning
developed by Frank Rosenblatt in the 1950s [5, 6, 7]. For Perceptron learning,
there are two modes of learning : batch mode and online mode.

Batch mode. For the batch mode, the M-P neuron predicts the labels for all
N data. That is to say, the M-P neuron calculates f(xk) for k = 1, · · · , N . Then,
these predictions are then compared with the actual labels to get (dk − f(xk))
for k = 1, · · · , N . Subseqently, the parameters w1, w2 and b are updated based
on the following equations.

w1(t+ 1) = w1(t) + µ

N∑

k=1

(dk − f(xk))xk1, (19)

w2(t+ 1) = w2(t) + µ

N∑

k=1

(dk − f(xk))xk2, (20)

b(t+ 1) = b(t)− µ

N∑

k=1

(dk − f(xk)), (21)

where w1(0), w2(0) and b(0) are arbitrary numbers. In (19), (20) and (21), the
factor µ is called the learning step size which value is usually set to be a small
number, say µ = 0.001.

13

Online mode. In contrast to the batch mode learning, the update of w1, w2

and b is conducted one data at a time. Once a data (xt, dt) is randomly selected

from the dataset, the M-P neuron calculates the prediction f(xt) and then
(dt − f(xt)). Subsequently, the parameters w1, w2 and b are updated based on
the following equations.

w1(t+ 1) = w1(t) + µt(dt − f(xt))xt1, (22)

w2(t+ 1) = w2(t) + µt(dt − f(xt))xt2, (23)

b(t+ 1) = b(t)− µt(dt − f(xt)), (24)

where µt is a small number corresponding for the learning step size at time t,
say µt = 0.01/t. Besides, w1(0), w2(0) and b(0) are arbitrary numbers. It can
be shown that with proper setting4 on µt, the online learning rule as stated in
(22), (23) and (24) is able to get (precisely, converge to) an optimal model for
the classification problem.

1.10.4 Reinforcement Interpretation

Let w(t) = (w1(t), w2(t), b(t))
T and xt = (xt1, xt2,−1)T . The online learning

rule can be rewritten in a compact form.

w(t+ 1) = w(t) + µt(dt − f(xt,w(t)))xt. (25)

As dt, f(xt,w(t)) ∈ {0, 1}, w(t) only updates when dt and f(xt,w(t)) are dif-
ferent. Therefore, we can get that

w(t+ 1) =







w(t) if dt = f(xt,w(t)),
w(t) + µtxt if dt = 1 and f(xt,w(t)) = 0,
w(t)− µtxt if dt = 0 and f(xt,w(t)) = 1.

(26)

The model is reinforced to change if its answer is not correct. This is a rein-
forcement learning interpretation for the online Perceptron learning.

1.11 Illustrative Examples

Either for the batch mode learning as stated in (19), (20) and (21) or the online
mode learning as stated in (22), (23) and (24), one should see that the update
of the model parameters is relied on those data whose predictions are incorrect.

1.11.1 Separable data

To illustrate the behavior of the Perceptron learning rule, a set of two groups of
data are randomly generated and shown in Figure 9. In this dataset, 100 data
are belongs to Group I and 100 data are belongs to Group II. It is clear from
Figure 9 that these two groups of data are separable.

4The conditions are that
∑

∞

t=1
µt = ∞ and

∑
∞

t=1
µ2
t
< ∞.

14

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

Group I

Group II

Figure 9: Two groups of data which are separable.

1.11.2 Settings

To determine the model parameters w1, w2 and b, the online mode Perceptron
learning rule as stated in (22), (23) and (24) is applied with µt = 0.005 for all
t and the maximum of iteration is set to be 2000. Two initial conditions are
simulated : (a) w1(0) = w2(0) = b = 1 and (b) w1(0) = w2(0) = b = 0.

1.11.3 Results

The top panel of the Figure 10 shows the changes of the parameters w1, w2 and
b obtained by the online Perceptron learning rule over time t = 1, · · · , 2000.
The middle panel of the Figure 10 shows the changes of the prediction errors
∑t

k=1 |dk − f(xk)| over time from k = 1 to k = t. The decision boundaries
obtained are shown in the bottom panel of the Figure 10.

It should be noted that the results shown in Figure 10 could be slightly
difference if the same experiment is repeated. It is because of the online learning.
In each step, the data to be selected is random. Therefore, sequence of data
being selected for update in an experiment is clearly different from the sequence
of data being selected in another experiment. The results shown in Figure 10(a)
or Figure 10(b) are corresponding to one experiment, not for all.

1.11.4 Comments

Applying Perceptron learning rule for a single M-P neuron, one needs to set the
values for the initial conditions of w1, w2 and b. Besides, the learning rate µ and

15

0 500 1000 1500 2000

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

w
2

w
1

b

0 500 1000 1500 2000
-0.04

-0.02

0

0.02

0.04

w
1

‘

b
w

2

0 500 1000 1500 2000
0

10

20

30

40

50

0 500 1000 1500 2000
0

1

2

3

4

5

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

(a) w1(0) = w2(0) = b(0) = 1. (b) w1(0) = w2(0) = b(0) = 0.

Figure 10: Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. (a) With the initial condition w1(0) = w2(0) = b(0) =
1, the parameters converge to w1 = 0.8019, w2 = −0.2029 and b = 1.2500
after t ≥ 750. (b) With the initial condition w1(0) = w2(0) = b(0) = 0,
the parameters converge to w1 = 0.0286, w2 = −0.0322 and b = 0.0025 after
t ≥ 100. Top: Changes of parameters. Middle: Prediction errors. Bottom:
Decision boundary.

16

-10 -5 0 5 10
0

10

20

30

40

50

60
Group II Group I

-10 -5 0 5 10
0

10

20

30

40

50

60
Group II Group I

(a) Separable. (b) Non-Separable.

Figure 11: Separable and non-separable data. For separable dataset, it is able
to find an M-P neuron its total prediction errors is zero. For non-separable
dataset, the minimum total prediction errors must be non-zero.

the maximum number of iterations have to be set. Different initial conditions
of w1, w2 and b might give different values of the convergent w1, w2 and b,
i.e. different models. For the learning rate µ and the maximum number of
iteration, the smaller the value of µ will lead to larger number of iterations.
The settings of all these factors are basically determined by trial-and-error, i.e.
by the experience of the developer.

1.12 Pitfall of a Network of M-P Neurons

A pitfall of the network of McCulloch-Pitts neurons is clearly on the development
of a learning rule for multilayered M-P neuronal networks. For the case of
single M-P neuron, the learning rule as stated in (22), (23) and (24) is able to
let the neuron to attain an optimal for two-class linear separable classification
problems. For a classification problem which is not linear separable, learning
rule is difficult to be developed as the neuronal output is a step function.

Figure 11 shows two examples. For either example, a good 1-input-1-output
M-P neuron can be defined as follows :

f(x) = h(x), i.e. w = 1, b = 0.

For the dataset as shown in Figure 11a, this model gives perfect predictions to
all data, i.e. E(1, 0) = 0. However, for the dataset as shown in Figure 11b,
E(1, 0) > 0.

1.13 Network of M-P Neurons for 3-Class Data

Applying the network of M-P neurons, it could be difficult to get a learning
rule for a 3-class data classification problem. Figure 12 shows the distributions
of the three classes of data and the Perceptron model which is able to solve
this classification problem. The M-P neurons in the first layer perform the two

17

Group I

Group II

Group III

x1

x2

o1

o2

o3

f1

f2

(a) Three classes. (b) Perceptron model.

Figure 12: Three-Class classification problem. (a) Geometrical illustration of
the distributions of the three classes of data. (b) The Perceptron model which
can solve this classification problem.

decisions as indicated in Figure 12(a). Once the decision boundaries have been
obtained, the neurons at the output layer simply perform the logical operations
depicted below.

f1(x) f2(x) o1 o2 o3 Group
0 0 0 0 0 –
0 1 1 0 0 I
1 0 0 0 1 III
1 1 0 1 0 II

It is clear that the Perceptron model as shown in Figure 12(b) can be de-
signed to solve the 3-class classification problem. However, the learning rule for
the update of the model parameters is not easily defined. Nevertheless, learning
rule for the update of the model parameters in a multilayered M-P neuronal
network is even difficult.

2 Sigmoidal Neuronal Networks

For a multilayered network of McCulloch-Pitts neurons, as shown in Figure 7,
developing a learning rule for this network is difficult as the neuronal function
is non-differentiable. Techniques from functional approximation and parametric
estimation are not applicable, as those techniques require the (transfer function)
model is differentiable.

In this regard, Paul Werbos in 1974 [8] suggested replacing the McCulloch-
Pitts neuron by a differentiable function its shape is similar to an M-P neuron.
Later, Rumelhart, Hinton and Williams [9] independently in 1986 suggested
the same replacement. While Paul Werbos did not specify which differentiable
function for a neuron model, Rumelhart, Hinton and Williams specifically in-
troduced the sigmoid function as the neuron model. By that, the output of a

18

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

T = 0.01

T = 0.05

T = 0.1

Figure 13: Sigmoid function could be considered as a relaxation of the step
function in the McCulloch-Pitts model. The plots show the output versus the
value of u. If T → 0, the output is identical to a step function as in the
McCulloch-Pitts model.

neuron is given by

f(x1, x2) =
1

1 + exp (−u(x1, x2)/T)
(27)

=
1

1 + exp (−(w1x1 + w2x2 − b)/T)
(28)

where u(x1, x2) = w1x1 + w2x2 − b as usual and the factor T is called the
temperature. Figure 13 shows the plots of the output of a neuron against the
input u for T = 0.01, T = 0.05 and T = 0.1.

2.1 Sigmoid Neuron

For a neuron with n inputs, i.e. x = (x1, · · · , xn)
T , the output of a neuron is

modeled as follows :

f(x) =
1

1 + exp (−(∑n

i=1 wixi − b))
. (29)

It should be noted that the temperature factor T is absorbed (redundant) in
the parameters, i.e. wi ← wi/T and b← b/T .

2.2 Interpretation of a Sigmoid Neuron

Similar to that of a McCulloch-Pitts neuron, the physical meaning of the inputs,
the outputs and the weights can be interpreted. In contrast to the M-P neuron,
the value of an input to a sigmoid neuron is the firing rate of the impulse
stream received from the input neuron. The sign of a weight wi indicates if the
connection is excitatory or inhibitory. The output of a neuron is the firing rate

19

of the impulse steam to be generated. This interpretation is usually called the
rate coding system.

2.3 Multilayered Perceptron (MLP)

Therefore, the multilayered neuronal network with this sigmoid neuron is then
called a multilayered Percertron (MLP) or back-propagation network (BPN).
From a mathematical function point of view, MLP is just a multiple-input-
multiple-output function which can be denoted as f(x,w), where x is the input
and w is the vector of the function parameters.

2.4 Backpropagation (BP) Learning

For a sigmoid multilayered Percetron (MLP), the learning algorithm as proposed
by Rumelhart et al is called backpropagation (BP). The learning algorithm is
basically a gradient descent algorithm in search of the model parameters w)
in which its prediction errors E(w) is a minimum. Here, the parameters of an
MLP is denoted as a vector w.

Without loss of generality, we assume that there is only one output neuron
in the MLP in the following presentation. The gradient descent learning for an
MLP is given as follows :

w(t+ 1) = w(t) − µ
∂E(w(t))

∂w
, (30)

where E(w(t)) is the total prediction errors as follows :

E(w) =
N∑

k=1

(dk − f(xk,w))2. (31)

Here, one should be noted that the total prediction errors as stated in (31) is
different from that defined in (18). The prediction errors as stated in (31) is the
sum-square-errors (SSE).

2.4.1 Batch Mode

Given a set of N data, the update of the parametric vector w can be conducted
by the following algorithm. At step t, the outputs and their gradient vectors
of the MLP for the N data are calculated. The update of w(t) to w(t + 1) is
obtained by the following update equation.

w(t+ 1) = w(t) + µ

N∑

k=1

(dk − f(xk,w(t)))
∂f(xk ,w(t))

∂w
, (32)

where µ is a small constant namely the learning step size. Batch mode learning
is suitable for a small size MLP with small size of dataset5.

5Batch mode learning is applicable to the case that (i) the number of model parameters
is not large and (ii) the number of data in the dataset, i.e. N , is not large. If the number

20

2.4.2 Online Mode

For the online mode learning, a data (xt, dt) is randomly selected from the
dataset. The update of w(t) to w(t + 1) is obtained by the following update
equation.

w(t+ 1) = w(t) + µt(dt − f(xt,w(t)))
∂f(xt,w(t))

∂w
, (33)

where µt is a small constant namely the learning step size. As the online Per-
ceptron learning, this online learning converges if µt satisfies the conditions that

(a)

∞∑

t=1

µt =∞ and (b)

∞∑

t=1

µ2
t <∞. (34)

Two points should be remarked. First, as the memory and computational
requirement for a step of online learning is small, it is suitable for handling a
larger scale MLP with large scale dataset. Second, the online learning as stated
in (33) is also called the stochastic gradient descent algorithm.

2.4.3 Online Learning for a 2-Input-1-Output Neuron

For a two-input-one-output neuron, w = (w1, w2, b), the learning algorithm as
stated in (30) can be stated as follows :

w1(t+ 1) = w1(t) + µte(t)f
′(xt,w(t))xt1 (35)

w2(t+ 1) = w2(t) + µte(t)f
′(xt,w(t))xt2 (36)

b(t+ 1) = b(t)− µte(t)f
′(xt,w(t)), (37)

where

e(t) = dt − f(xt,w(t)

f ′(xt,w(t)) = f(xt,w(t))(1 − f(xt,w(t))).

In vector form,





w1(t+ 1)
w2(t+ 1)
b(t+ 1)





︸ ︷︷ ︸

w(t+1)

=





w1(t)
w2(t)
b(t)





︸ ︷︷ ︸

w(t)

+µte(t)f
′(xt,w(t))





xt1

xt2

−1



 . (38)

Again, the factor µt is the learning step at the time t. If µt satisfies the con-
ditions as stated in (34), it can be shown that BP learning can obtain a model
(w1, w2, b) such that its E(w) is a minimum.

of model parameters is large, say millions, or the number of data in the dataset is large, say
millions, batch model learning is normally not applicable as the RAM or main memory might
not be large enough to support such batch mode learning.

21

2.4.4 Illustrative Examples

Here, we apply the above 2-input-1-output neuron for the two-class classifica-
tion problem as presented in Section 1.11. As sigmoid function is continuous
function, the decision boundary is defined as follows :

w1x1 + w2x2 − b = 0. (39)

By (39), we can get that

f(x,w)







> 1/2 if w1x1 + w2x2 − b > 0,
= 1/2 if w1x1 + w2x2 − b = 0,
< 1/2 if w1x1 + w2x2 − b < 0.

(40)

Thus, we can label the data by the output value of the sigmoidal neuron.
Again, we investigate the results for the cases that w1(0) = w2(0) = b(0)) = 1

and w1(0) = w2(0) = b(0)) = 0. The changes of w(t), cumulative errors and
the decision boundary are shown in Figure 14.

2.5 Model Complexity

In essence, the model complexity of a multiple-input-multiple-output MLP is
the same as a multiple-input-multiple-output McCulloch-Pitts Perceptron. For
clarification, Figure 15 shows a MLP with N0 input nodes andNL output nodes.

2.5.1 Numbers of Neurons and Parameters

For the model as shown in Figure 15, the number of neurons is given by

No. of Neurons =

L∑

k=0

Nk. (41)

The number of parameters is given by

No. of Parameters =

L∑

k=1

Nk(Nk−1 + 1). (42)

2.5.2 Forward Pass Computation Complexity

As for the kth layer, where k = 1, · · · , L, there are Nk−1 multiplications and
Nk−1 additions for computing the ukl in the lth neuron in the kth layer. Then,
the value ukl is passed to the sigmoid function φ(ukl) for get the output of this
neuron. For scalar computation, the total time spent in a forward pass is given
by

TC =

L∑

k=1

NkNk−1 (TM + TA) +

L∑

k=1

NkT0, (43)

22

0 500 1000 1500 2000
-0.5

0

0.5

1

1.5

w
1

w
2

b

0 500 1000 1500 2000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

w
1

w
2

b

0 500 1000 1500 2000
0

50

100

150

200

250

SSE

SAE

0 500 1000 1500 2000
0

10

20

30

40

50

SSE

SAE

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

(a) w1(0) = w2(0) = b(0) = 1. (b) w1(0) = w2(0) = b(0) = 0.

Figure 14: Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. (a) With the initial condition w1(0) = w2(0) = b(0) = 1.
(b) With the initial condition w1(0) = w2(0) = b(0) = 0. Here, µ = 0.01.
Top: Changes of parameters. Middle: Prediction errors. Bottom: Decision
boundary. One should be noted that the sum of absolute errors (SAE) converges
but the parameters w1(t), w2(t) and b(t) do not converge in both cases.

23

N0 N1 NL−1 NL

Figure 15: A MLP with N0 input and NL output. This model consists of
∑L

k=1 Nk neurons and
∑L

k=1 Nk(Nk−1+1) number of parameters. For a forward
pass to get an output, the computational time TC is proportional to the number
of parameters.

24

where TM is the time for a floating point multiplication, TA is the time for a
floating point addition (resp. subtraction) and T0 is the time for get the value
of φ(ukl). In practice, TM ≈ TA and T0 can be ignored. We can get that

TC ≈ 2TM × (No. of Parameters)

= 2× FLOPS−1 × (No. of Parameters) , (44)

where FLOPS is the number of floating point computations per second. The
computational time TC for a forward pass is proportional to the number of
parameters.

2.5.3 Forward Pass Memory Complexity

In a forward pass, it is clear that memory space is needed for storing the pa-
rameters, i.e.

∑L

k=1 Nk(Nk−1 + 1) × 4 bytes. Given an input xt, the memory
space for storing the neuronal outputs for the kth layer is clear Nk × 4 bytes.
Therefore, the minimum number of memory space for a forward pass is given
by

Mmin = 4×
(

1 +

L∑

k=1

Nk(Nk−1 + 1) + max
k=0,··· ,L

{Nk}
)

, (45)

where the unit is in byte.

2.5.4 Backward Pass Memory Complexity

While learning, the memory space needed is a lot more as all neuronal outputs
have to be stored. In this regard, the size of the memory space is given by

Mmax = 4×
(

N0 + 1 +

L∑

k=1

Nk(Nk−1 + 2)

)

, (46)

where N0 is the number of inputs.

2.6 Comments on Sigmoid MLP

Here, let me present a few comments regarding this sigmoidal neuron.

2.6.1 Logistic Regression

As a matter of fact, the sigmoidal neuronal function is in essence the logis-
tic function which is widely used in statistical analysis. Applying multiple-
input-one-output sigmoid neuron for solving a two-class classification problem
is equivalent to solving a logistic regression problem.

25

2.6.2 Divergence of w(t)

As shown in Figure 14(Middle), the parameters do not converge as t increases.
In contrast to a multiple-input-one-output McCulloch-Pitts neuron, its param-
eters converge as t increases. A reason for the divergence of the parameters is
due to the fact that the number of feasible multiple-input-one-output neurons
for solving the two-class classification is infinite. If a decision boundary given
by

w1x1 + w2x2 − b = 0

is able to solve the problem, all the decision boundary given by

κ(w1x1 + w2x2 − b) = 0 (κ > 0)

must be able to solve the same problem.
That is to say, for a good decision boundary w′, κw′ will give better results

if κ > 1. To this end, the optimal parametric vector w∗ must be κw′ with
κ→∞. This is one reason why w(t) must diverge.

2.6.3 Weight Decay (Forgetting Factor)

To solve the divergence problem, one simple approach is to design the learning
rule with so-called weight decay as follows :

w1(t+ 1) = w1(t) + µt (e(t)f
′(xt,w(t))xt1 − αw1(t)) (47)

w2(t+ 1) = w2(t) + µt (e(t)f
′(xt,w(t))xt2 − αw2(t)) (48)

b(t+ 1) = b(t)− µt (e(t)f
′(xt,w(t)) − α b(t)) , (49)

where

e(t) = dt − f(xt,w(t)

f ′(xt,w(t)) = f(xt,w(t))(1 − f(xt,w(t))).

Normally, the decay factor α is set to be a small positive number.
We investigate the results for the case that w1(0) = w2(0) = b(0)) = 1.

The changes of w(t), prediction errors and the decision boundary are shown in
Figure 16. In the figure, MAE and MSE stand for the mean absolute errors and
mean square errors as defined as follows :

MAE(k) =
1

T

kT∑

t=(k−1)T+1

|dt − y(xt,w(t))|, (50)

MSE(k) =
1

T

kT∑

t=(k−1)T+1

(dt − f(xt,w(t)))2, (51)

where

y(xt,w(t)) =

{
1 if f(xt,w(t)) > 0.5
0 if f(xt,w(t)) ≤ 0.5

(52)

and T is the size of the time-window.

26

100 101 102 103 104
-1.5

-1

-0.5

0

0.5

1

1.5

2

w
1

w
2

b

100 101 102 103 104
-1.5

-1

-0.5

0

0.5

1

1.5

w
1

w
2 b

100 101 102 103 104
10-4

10-3

10-2

10-1

100

MAE

MSE

100 101 102 103 104
10-4

10-3

10-2

10-1

MSE

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

(a) w1(0) = w2(0) = b(0) = 1. (b) w1(0) = w2(0) = b(0) = 0.

Figure 16: Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. Here, µt = 0.001, α = 0.0001 and the total number of
learning steps is 10000× 20× 200 = 4× 107. The initial conditions are set to be
(a) w1(0) = w2(0) = b(0) = 1 and (b) w1(0) = w2(0) = b(0) = 0. The results
shown in the middle panel are mean absolute errors (MAE) and mean square
errors (MSE) over every 4000 steps. Top: Changes of parameters. Middle:
Mean prediction errors. Bottom: Decision boundary. One should be noted
that the horizontal axis in both the top and the middle panels is in log-scale.

27

2.6.4 MSE Versus No. of Data

From the middle panels in Figure 16, one should observe that the prediction
error of a model decreases as the number of training steps increases. As each
update requires a data to be fed in, the number of training steps can be in
analog to the number of data fed.

Thus, the middle panels in Figure 16 could be showing the performance of
a model with respect to the size of a dataset. In between t = 101 to 102, the
performance drops in accordance with the so-called Power Law6, i.e.

log(MSE(N)) = κ0 − κ1 log(N), (53)

where κ0 and κ1 are constants.
Clearly, Power Law can only be observed when the model has not yet learnt

enough. Once the model has learnt enough, say after t = 103, the change of the
model performance does not fit for (53).

2.6.5 MSE Versus No. of Data for an MLP for MNIST

Power law manifests in the training of an MLP of the structure 784-100-100-10
for the MNIST dataset. Figure 17 shows the log(MSE) against the log(epoch)
for a training of the MLP in the MNIST handwritten character recognition
problem. The changes of training MSE follows scaling law in between the 2nd

epoch to the 30th epoch. That is to say,

log(MSE(epoch)) = κ0 − κ1 log(epoch),

where κ0 and κ1 are constants. For epoch ≥ 100,MSE(epoch) has no significant
change.

2.6.6 Scaling Law for (Stochastic) Gradient Descent

In Section 2.6.4 and Section 2.6.5, one should realize that the changes of the
training MSE follows the so-called scaling law. Precisely, it is the power law.
As a matter of fact, the property of power law has long been mentioned in the
learning algorithms which are developed based on (stochastic) gradient descent7.
It is known that the convergence rate of a (stochastic) gradient descent isO(1/t).
That is to say,

MSE(t) ≤MSE(t) = O(1/t). (54)

In other words, the upper bound on the change ofMSE(t), denoted asMSE(t),
is given by

log(MSE(t)) = κ0 − κ1 log(t), (55)

where κ0 and κ1 are constants.

6It should be noted that power law is one so-called scaling law. There are many scaling

law in the literatures. Another one is called Moore’s Law. For a fixed area, the number of
transistors (N) could be made double in every fixed number of months, i.e. log(N(Y ear)) =
const. + γYear.

7Power law is a common statistical property that can be found in many naturally evolved
social networks [10], such as friendship network and Internet.

28

100 101 102 103 104
10-3

10-2

10-1

Figure 17: The log(MSE) against the log(epoch) for a training of the MLP in
the MNIST handwritten character recognition problem. Here the network is an
MLP of the structure 784-100-100-10. The online learning rate is 0.01. In each
epoch, 60, 000 training samples are fed in. Therefore, the total number of steps
in this online training is 6× 104 × 104.

2.6.7 Trial-and-Error Factors

From the context presented in this section, one should realize that the success
of an MLP learning rule relies on at least seven factors. They are

1. the structure of the computational model, i.e. the network structure which
includes the number of layers, the number of neurons in each layer and
the mathematical model of a neuron;

2. the objective function (respectively, assessment measure or performance
criteria) to be minimized;

3. the learning algorithm which can be developed by the method of gradient
descent, the method of gradient descent with momentum or others;

4. the number of iterations (resp. stopping criteria) and the validation

method;

5. the learning step µt;

6. the weight decay (equivalently, forgetting) factor and

7. the initial conditions of the model parameters, i.e. w(0).

All these factors can only be determined by many (or even numerous) trial-
and-errors. For the stopping criteria, it can be a fixed number or it can be
determined by the validation error.

29

3 Beyond Decision Making

The above presentations focus on the use of a multilayered network for solving
a decision problem8. It is interesting to ask if these computational models are
able to learn to generate a time sequence of outputs. Two types of sequence
generations are usually considered.

1. Fixed number of outputs, say y(t + 1), y(t + 2), · · · , y(t + N). N is a
predefined fixed number. In time series analysis, this problem is called
N -step prediction. Predicting the average daily temperatures (resp. stock
price) in the future seven days is one example.

2. Dynamic number of outputs. Text generation by an LLM is an example
of this type.

3.1 Time Sequence Prediction/Generation

Let say, we have collected a sequence of closing prices of a stock in a consecutive
N trading days. We would like to find a computational model which is able to
predict the upcoming T trading days closing prices given the historical closing
prices up to today. To do so, one approach is to design a computational model
as shown in Figure 18.

3.2 Sequence Generation

By the same token, generation a sequence of data can be accomplished by ap-
plying a computational model f(p,w), as shown in Figure 19.

3.3 Time Window

For sequence generation problems, two factors determine the complexity of a
problem to be investigated. They are the input time window width and the
output time window width. Normally, the term time window width is simply
called the time window. For a model with input window M and output window
N , it needs M previous inputs to predict N future outputs.

Let say, in the time t, the model is going to predict values of the upcoming
N instance. The inputs to the model are pt, pt−1, · · · , pt−M+1. The predictions
are denoted by p̂t+1 to p̂t+N .

Accordingly, many types of sequence generation problems can be defined
and depicted in Table 4.

8Here, a decision problem under our definition is that its outputs are binary numbers, i.e.
oi ∈ {0, 1} for i = 1, · · · , n. As a matter fact, either multilayered McCulloch-Pitts neuronal
network or multilayered Perceptron could be applied in some multiple-input-multiple-output
function approximation problems.

30

f (pt,w) f (p̂t+1,w) · · · f (p̂t+N−1,w)pt

p̂t+1 p̂t+2 p̂t+N

f (pt,w)

f (pt,w)

f (pt,w)

pt

p̂t+1

p̂t+2

p̂t+N

... ...

Figure 18: Computational model for a time sequence data prediction. pt is the
true value at time t. Based on this value, the computational model is applied
to predict the values from p̂t+1 to p̂t+N given the value of pt. The prediction
window width is fixed at N .

f (p,w)

f (p,w)

f (p,w)

pk

p̂1

p̂2

p̂N

... ...

p1

pM

...

...

Figure 19: A computational model for sequence generation. Here, p =
(p1 · · · pM)T are inputs to the model. The computational model thus gener-
ates the outputs p̂1 · · · p̂N in response to the inputs p1, · · · , pM . The prediction
window width is fixed at M .

31

Table 4: Different types of sequence generation problems.

Input Output Example Problem Complexity
1 1 Stock price prediction Simple
M 1 Stock price prediction Simple
1 N N-Step prediction Difficult
M N Temperature prediction Medium
M N Text generation Difficult

Dynamic N Text generation V Difficult
M Dynamic Text generation VV Difficult

Dynamic Dynamic Text generation VVVVV Difficult
If a number is shown for an input (resp. output), the window is fixed.

3.4 Text Generation

From Figure 19, one can note that a computational model f(·,w) could be
designed (equivalently, trained) to generate a sequence of texts if p is a sequence
of text-input (i.e. prompt) of M words. The outputs is a sequence of N words.
The key idea is to design a computational model with recurrent connections, as
shown in Figure 20.

3.4.1 Word Embedding

For text generation problems, one key problem is how to encode a word in a
numerical value(s). For more than a decade, this problem has been a tough
research problem. Eventually, word embedding algorithms for English words
and Chinese words have been developed. Each word is encoded by a multi-
dimensional numerical vector, Figure 21.

3.4.2 Language Dependent

Word embedding algorithms for different languages are clearly end up with
different large language models (LLMs). As a word embedding algorithm is
designed for a particular language, different word embedding algorithms are
needed to be design for different languages. It could be reason why an English-
oriented LLM performs different from a Chinese-oriented LLM.

3.4.3 Non-Explainable

From its text generation ability, each LLM could demonstrate that it has learnt
some regularities in text generation. However, these regularities cannot be found
or explained by the structure and the parameters of the computational model.
Thus, these LLMs are not explainable.

32

f (x(t),y(t− 1),w)
y(t)x(t)

(a) Block diagram.

x1(t)

x2(t) f (x1(t), x2(t), y(t− 1))

w11

w23

w12

w21

b1

b2

α1

α2

β

w22

w13

y(t− 1)

y(t) = f (x1(t), x2(t), y(t− 1))

(b) Simple recurrent MLP.

Figure 20: The block diagram of a recurrent network (a), with output feeding
back to the input of the network. The precise model in the square box in (a) can
be any model. If the model is defined as an MLP, its structure is shown in (b).
This structure is commonly called a recurrent MLP (RMLP). Its learning rule is
simple as compared with other recurrent networks. The symbol w is the model
parametric vector referring the collections of all model parameters. Again, the
key is to find the parameters for the computational model so that the network
is able to generate the sequence of data {x(t), y(t)}Tt=1 and the initial condition
y(0). The computational model structure of all LLMs is typically designed along
this idea.

33

Prompt: John Sum is an idot.

John Sum is an idot ’.’ ?? ??

Computational Model

Numbers Please !

Figure 21: Each word or each phrase is converted to a vector of multiple numeri-
cal numbers to be input to the computational model. The method of converting
each word or phrase to a vector of numbers is called word embedding. Note that
word embedding has been a research topic in natural language processing. Many
word embedding methods have thus been developed. Clearly, word embedding
is language-specific.

4 Deep Neural Networks

Sigmoid neuronal networks as introduced in Section 2 have been a major type
of AI models for use in the 1980s to the 1990s. While the idea of multiple layers
was introduced, the models for applications could only be designed as a single
layer or two layers network; and the number of neurons in a layer is not large.

4.1 Multiple Layers

Owing to the advancement in computational power of a computer from the late
1990s to the 2010s, larger scale neural network models were introduced from
the late 1990s to the 2010s [1, 11, 12, 13, 14]. These models have normally
more than five layers and some might have more than ten layers. The number
of neurons in a layer can have more than hundreds neurons. These models are
called deep neural networks [15, 16] and the learning theory for these deep neural
networks is called deep learning.

4.2 Large-Scale

For application purposes, these deep neural networks have some structures which
are different from the multilayered Perceptrons (MLP). First, the scale of a deep
neural network is much larger than a conventional MLP in the 1990s. A deep
neural network could consist of ten thousands or even millions number of model
parameters. The neural network consists of large number of layers and the
number of neurons in a layer could be hundreds to thousands.

34

F1 F2 F3 F4 F6 F7

Image

C1 S2
C3

S4

C5

Average Pooling MLP

(120)

(84)

(10)

(400)

(32× 32)

(28× 28)× 6

(14× 14)× 6

(10× 10)× 16

F5

Figure 22: Model structure of the LeNet 5 in [1]. The F1, F3 and F5 layers
perform convolution. So, these layers are called convolution layers as well. Note
that only the neurons in the F5 and F6 layers are sigmoidal neurons. The
neurons in the other layers are not.

35

25 101520

25

25

25

20

20

20

20

20

15

15

1510

2

2

2

−1

−1

−1

−1

−1

−1

Conv Filter

40

40

10

10

40

40

10

10

ReLU

Convolution Layer

Figure 23: The working principle of a convolution layer with ReLU neurons.
Here, the receptive field of a convolution filter is of size 3× 3.

4.3 Convolution Layers

Second, convolution layers are usually added in a deep neural network for solving
image processing or pattern recognition problems. These convolution layers
mimic the biological properties of the early image processing in a human visual
system. This idea was first appeared in Cognitron and Neocognitron introduced
in [17, 18] in the 1970s, in LeNet9 introduced in [1] in the 1990s and later in
AlexNet introduced in [12] in the 2010s.

Figure 23 shows the working principle of a convolution layer with ReLU
neurons. Here, the receptive field of a convolution filter is of size 3 × 3. For an
image with size M ×M , the output image after convolution is of size (M − 2)×
(M − 2). In the example as shown in Figure 23, the size of the input image is
4× 4. Thus, the output image is of size 2× 2.

4.4 Rectified Linear Neuron (ReLU)

Third, a new neuron model called rectified linear neuron as shown in Figure 24
is employed. Rectified linear neuron was first investigated in [19, 20] and later
applied in the neural network models for pattern recognitions [17, 18]. The
mathematical model for a rectified linear neuron is given by

f(x) = max{0, x}. (56)

As a comparison, the interpretations of the input and output values of different
neurons are depicted in Table 5.

9Its structure is shown in Figure 22.

36

f (x)

x

Figure 24: A rectified linear unit neuron. Its transfer function is defined as
f(x) = max{0, x}.

Table 5: Comparisons of different neuron models.

Model Input Output
McCulloch-Pitts Pulses of firing rate r Pulses of firing rate r
Sigmoid neuron Pulses of firing rate x Pulses of firing rate y
ReLU neuron Pulses of firing rate x Pulses of firing rate y

Electronic neuron Voltage x Voltage y

4.5 Tackling Vanishing Gradient by ReLU

In the research of deep neural network, the main reason for using rectified linear
neuron is to tackle the so-called vanishing gradient problem. Consider a MLP
with structure as shown in Figure 25. The output is given by

f(x1, x2) = φ(α1z1(x1, x2) + α2z2(x1, x2)− β) (57)

z1(x1, x2) = φ(w11x1 + w12x2 − b1) (58)

z2(x1, x2) = φ(w21x1 + w22x2 − b2), (59)

where φ(·) is the sigmoid function defined as follows :

φ(s) =
1

1 + exp(−s) .

4.5.1 Derivative of φ(s)

One should note that the derivative of φ(s) with respect to s is given as follows :

φ′(s) =
−1

(1 + exp(−s))2
(− exp(−s))

=
exp(−s)

(1 + exp(−s))2

= φ(s)(1 − φ(s)).

37

As 0 ≤ φ(s) ≤ 1, we can get that

0 ≤ φ′(s) ≤ 1/4. (60)

The derivative of φ(s) is bounded by 0 and 1/4. This property on φ(s) and
φ′(s) becomes the key reason leading to the vanishing gradient problem in a
deep sigmoid network.

4.5.2 Learning for a Two-Layer MLP

Consider the online model learning for the update the parameter wij in the
input layer, one needs to compute the following learning equation.

wij(t+ 1) = wij(t) + µte(t)g0(t)αi(t)

2∑

i=1

gi(t)xtj

= wij(t) + µt

2∑

i=1

e(t)g0(t)αi(t)gi(t)xtj

= wij(t) + µt

2∑

i=1

[g0(t)g1i(t)] e(t)αi(t)xtj , (61)

where

e(t) = (dt − f(xt,w(t))) (62)

g0(t) = φ(u0(t))(1 − φ(u0(t))) (63)

gi(t) = φ(ui(t))(1 − φ(ui(t))) (64)

for i = 1, 2 and

u0(t) = α1(t)z1(xt1, xt2) + α2(t)z2(xt1, xt2)− β(t),

u1(t) = w11(t)xt1 + w12(t)xt2 − b1(t),

u2(t) = w21(t)xt1 + w22(t)xt2 − b2(t).

4.5.3 Vanishing Gradient

Recall from (60) that 0 ≤ φ(s)(1−φ(s)) ≤ 1/4. Thus, the values g0(t) and gi(t)
must be smaller than 1/4. Thus, g0(t)g1(t) or g0(t)g2(t) must be smaller than
1/16. Subsequently, the update of a parameter deep in the network might be
vanished if the number of layers is large.

4.5.4 ReLU

Take LeNet 5, Figure 22, as an example. If all neurons in the model are sigmoidal
neurons, the parameters at the F6 and F7 layers (closer to output layer) will
bigger changes in each step of learning. The parameters at the F1 and F2 (closer
to the inputs) will get very small changes in each step of learning.

38

x1

x2

f (x1, x2)

w11

w22

w12

w21

b1

b2

α1

α2

β

φ1(x,w)

φ2(x,w)

φ0(x,w)

Figure 25: A MLP with three neurons. Note that f(x,w) = φ0(x,w).

If the neurons in the Figure 25 are replaced by ReLUs, the update of wij

stated in (61) is replaced by the following update equation.

wij(t+ 1) = wij(t) + µt

2∑

i=1

[g0(t)gi(t)] e(t)αi(t)xtj , (65)

where

q0(t) =

{
1 if α1(t)φ1(t) + α2(t)φ2(t)− β(t) > 0,
0 if α1(t)φ1(t) + α2(t)φ2(t)− β(t) ≤ 0,

(66)

and

qi(t) =

{
1 if wi1(t)xt1 + wi2(t)xt2(t)− b(t) > 0,
0 if wi1(t)xt1 + wi2(t)xt2(t)− b(t) ≤ 0,

(67)

for i = 1, 2. in this regard, the update of wij(t) can be written as follows :

wij(t+ 1) =

{

wij(t) + µt

∑2
i=1 e(t)αi(t)xtj if q0(t) = qi(t) = 1,

wij(t) if q0(t) = 0 or qi(t) = 0.
(68)

A weight wij updates if and only if the output of φi(t) > 0 and φ0(t) > 0.

4.6 Softmax Output Neurons

Apart from application of ReLU neurons, Softmax neurons are applied in the
output layer of a deep neural network. To illustrate the processing of Softmax
neurons, Figure 26 shows a network with four neurons. The neurons in the first
layer are ReLU neurons. The neurons in the output layer are Softmax neurons.
The definition of a Softmax neuron is defined as follow :

fi(x,w) =
exp(−φi(x,w))

∑n
j=1 exp(−φj(x,w))

. (69)

It is clear 0 ≤ fi(x,w) ≤ 1 for i = 1, · · · , n if there are n outputs.

39

x1

x2

w11

w22

w12

w21

b1

b2

φ1(x,w)

φ2(x,w) Softmax

f1(x,w)

f2(x,w)

Figure 26: A MLP with four neurons, in which two of them are ReLU neurons
and the other two are Softmax neurons. Note that f1(x,w) and f2(x,w) are
the outputs.

Applying Softmax neurons for a n-class classification problem, the label dk

of the input vectors xk has to be defined as follows :

dk = (0, · · · , 0, 1
︸︷︷︸

i

, 0, · · · , 0)T (70)

if xk is belongs to the ith class.

4.7 Application of GPU

While the rectified linear neurons are applied and the convolution layers are
defined, the learning algorithm developed for a deep neural network is still com-
putational intensive. In the end, training a deep neural network and sometimes
in the use of a deep neural network require the use of GPU(s). Application of
(multiple) GPU becomes a critical factor. For a large-scale deep neural network,
GPU might also be applied in application.

Typically, the time spent on a floating point multiplication in a CPU is
hundreds time longer than the time spent on a floating point multiplication
in a GPU. If an GPU is able to support vector and matrix computation, the
computational time will be much shorter.

4.8 Dedicated Processing Unit

For some deep neural networks with complicated architectures, specialized pro-
cessing units are sometimes designed and implemented for applications. Those
applications include the usages of object recognition models for auto-driving.

40

4.8.1 XPU

Those specialized processing units are named tensor processing unit (TPU),
image processing unit (IPU) and neural processing unit (NPU). Those processing
units are designed not specific for graphical processing. Thus, their designs are
clearly different from the design of a GPU.

4.8.2 Support Real-Time Applications

No matter what, the ultimate purpose of these dedicated processing units is to
accelerate the processing power of a computational model when it is being used
for real-time applications.

5 Computational (AI) Model Development

To summary, Figure 27 shows the key steps in a computational (AI) model
development. It includes at least three important steps, namely the hypothetical
computational model, the performance criteria and the learning algorithm.

5.1 The Model & The Performance Criteria

The initial step is clearly on the computational model hypothesized. Two dif-
ferent types of models can be hypothesized, namely predictive model and gen-
erative model. These models are usually associated with different performance
criterion.

5.1.1 Predictive Model

For a model simply for predicting the output f(x,w) given an input x, a predic-
tive (resp. decision) model like MLP is good enough. For this type of models,
the performance criteria can simply be defined as the mean square errors given
by

L(w) =
1

N

N∑

k=1

‖dk − f(xk,w)‖2, (71)

where {(xk,dk)}Nk=1 is the given training dataset. In practice, a computational
model with smaller ‖w‖ usually gives better results. In this regard, the perfor-
mance criteria can be defined as follows :

L(w) =
1

N

N∑

k=1

‖dk − f(xk,w)‖2 + κ1‖w‖2, (72)

where 0 < κ1 ≪ 1 is a positive constant (equivalently, weighting factor).

41

Computational
Model

Performance
Criteria

Learning
Algorithm

Computational
Model

(Numerical)

Computational
Model

(Hardware)

Dataset

Training

Success ?

Yes

No

Application
System

Application
System

Application
System

Application
System

Application
System

Figure 27: Development process for an AI computational model. Initially, a
thought computational model is hypothesized. Together with the model, a per-
formance criteria is defined for the problem. Depending on the nature of the
model, the criteria could be the mean square errors (MSE) or maximum likeli-
hood. Once the performance criteria has been defined, the learning algorithm
for the model can be derived. Training is clearly yet another computational
task which can be conducted by a computer with or without GPUs. After the
learning process is completed successfully, a numerical computational model is
obtained. If not, search for another computational model and then repeat the
process. If using a computer (resp. a cloud) is not efficient enough to use
the trained model, a hardware computational model might be built. Finally,
application systems can be built on top of these computational model.

42

5.1.2 Generative Model

For a generative AI model, it could be a stochastic model like factor analysis

(FA) and structural equation model (SEM). With the model, a performance
criteria is defined. Depending on the nature of the model, the criteria could
be the mean square errors (MSE) for a deterministic model or the maximum

likelihood for a stochastic model.
A generative model is essentially a probabilistic model. Given set of training

data, say {(xk,dk)}Nk=1, we can have the distribution of the samples over a high-
dimensional space, denoted as P ({(xk,dk)}Nk=1). The purpose of a generative
model with parametric vectorw is to generate a set ofN data whose distribution
P ({(x′

k,y
′

k)}Nk=1,w) is identical to the distribution of the samples.
The probability of the model giving output y is given by P (y|x,w). The like-

lihood of a generative model with w giving dk with input xk is thus P (dk|xk,w).
Therefore, the likelihood of the generative model given dk with input xk is thus
P (dk|xk,w) for k = 1, · · · , N is given by

Likelihood = P
(

{(xk,dk)}Nk=1

∣
∣
∣w
)

=
N∏

k=1

P (dk|xk,w). (73)

Hence, the performance criteria can be defined as the log-likelihood function.

L(w) =

N∑

k=1

logP (dk|xk,w). (74)

The meaning of likelihood could be understood in the following. If a generative
model is with parametric vector w, its probability (i.e. likelihood) of generating

the dataset {(xk,dk)}Nk=1 is given by (73).
If it is assumed that the model parameters follow certain probability distri-

bution P (w), the performance criteria L(w) can be re-defined as follows :

L(w) =

N∑

k=1

logP (dk|xk,w) + κ1 log (P (w) , (75)

where 0 < κ1 ≪ 1 is a weighting factor.

5.2 Learning Algorithm Development

Once the performance criteria L(w) has been defined, the problem of getting a
w in which L(w) is a local minimum is equivalent to an optimization problem.
Thus, numerical algorithms for optimization problems can thus be applied to
design the learning algorithms. Two common approaches for the development
of a large computational model learning are gradient descent (GD) and gradient

descent with momentum (GDM).

43

5.2.1 Gradient Descent (GD)

With the performance criteria defined, a learning algorithm can be defined based
on the ideas of gradient descent (GD) or gradient descent with momentum
(GDM). The learning algorithm developed by gradient descent is given by

w(t+ 1) = w(t)− µt

∂L(w(t))

∂w
, (76)

where µt is the learning step size at time t.

5.2.2 Gradient Descent with Momentum (GDM)

The learning algorithm developed by GDM is given by

v(t) = (1− κt)v(t− 1) + κt

∂L(w(t))

∂w
(77)

w(t+ 1) = w(t) − µtv(t), (78)

where κt and µt are learning step sizes at time t.

5.2.3 Pseudo Brute-Force Search

Gradient descent and gradient descent with momentum are commonly applied
in very large scale computational model, say the number of parameters is larger.
For a small scale computational model, pseudo brute-force search like stochastic
search and MCMC methods can be applied.

Before 2010s, the idea of stochastic search or MCMC method could only
be applied in small size computational model. With the application of GPU
in AlexNet [12], many text-to-image computational models like generative ad-

versarial network (GAN) [21, 22] are subsequently developed based on this ap-
proach.

5.3 Training

Training is clearly yet another computational task which can be conducted by a
computer with or without GPUs. If the learning algorithm is computationally
intensive, special computing platform might be needed. In this regard, building
a platform with many computers and GPUs might be needed.

In the end of training, the model obtained can be implemented for use. If the
model obtained cannot meet an acceptance level of performance, the developer
needs to re-design the computational model and go through the previous steps
again10.

10The time in search of a computational model which can give acceptable performance is
highly uncertain. It could range from days to years. During the search period, developers
have to go through many trial-and-error. The number of trial-and-errors is not anticipated.

44

5.4 Implementations of a Pre-Trained Model

After the training process is completed and the acceptance level of performance
has achieved, a numerical computational model is obtained.

5.4.1 Software Implementation

The numerical computational model with the trained parameters can thus be
implemented as a program running in a cloud platform as a service for the
application developers to develop application systems. Today, many object
recognition CNNs and LLMs are deployed as software on a cloud.

Apart from deploying a CNN dor LLM on a cloud, some CNNs and LLMs
can be installed in a powerful desktop computer if their model sizes are small
and they are open-source programs. A disadvantage is that a user will need to
manually download the latest version of the computational model.

5.4.2 Hardware Implementation

It is clear that software implementation of a computational model with millions
of parameters can support non-real-time applications. However, for a real-time
application like auto-driving, software implementation is definitely not efficient
as the decision of the computational model must be made in less than 0.01s
or less. In this regard, specialised hardware must be built to implement the
computational model. A disadvantage of hardware implementation is that the
version of the hardware computational model cannot be updated once it has
been made. Exemplar models include those CNNs which are applied in object
recognition for auto-driving systems.

5.5 Application System Development

Once a stable computational model has been released. Application system can
be developed by using the computational model as its core. Today, many pre-
trained computational models are available and many of them have been applied
in applications. Some of these computational models are depicted in Table 6.
Some exemplar computational models and their applications are depicted in
Table 7.

5.5.1 User Interface Design

For the applications like Google Assistant, Amazon Alexa and Microsoft Copi-
lot, their system architectures are shown in Figure 28. To support the intelli-
gent services, specialized computing platforms with large number of GPUs are
needed.

5.5.2 Transfer Learning for Fine-Tune

For certain applications, application system developers might need to fine-tune

the so-called pre-trained computational model fitting for such applications. For

45

T
a
b
le

6
:
L
is
t
o
f
p
re
-t
ra
in
ed

co
m
p
u
ta
ti
o
n
a
l
m
o
d
el
s
(U

p
d
a
te
:
A
p
ri
l
5
,
2
0
2
5
).

D
ev
el
o
p
er

F
o
u
n
d
ed

T
ex
t
(L

L
M
)

Im
a
g
e

V
id
eo

M
u
si
c

R
ea
so
n
in
g

A
g
en
tb

A
d
o
b
e

1
9
8
2

–
F
ir
efl
y

–
–

–
??

A
m
a
zo
n

1
9
9
4

T
it
a
n

T
it
a
n

T
it
a
n

–
–

??
A
n
th
ro
p
ic

2
0
2
1

C
la
u
d
e

–
–

–
–

C
la
u
d
e
3
.5

S
o
n
n
et

B
ig
S
ci
en
ce

a
2
0
2
1

B
lo
o
m

–
–

–
–

??
C
a
n
va

2
0
1
3

–
M
a
g
ic

S
tu
d
io

–
–

–
??

C
o
h
er
e

2
0
1
9

C
o
h
er
e

–
–

–
–

??
D
ee
p
A
I

2
0
1
7

√
√

√
√

–
??

D
ee
d
S
ee
k

2
0
2
3

D
ee
d
S
ee
k
V
3

–
–

–
D
ee
k
S
ee
k
R
3

??
G
o
o
g
le

1
9
9
8

G
em

in
i

Im
a
g
en

V
eo

M
u
si
cL

M
G
em

in
i
P
ro

??
M
et
a

2
0
0
4

L
la
m
a

Im
a
g
in
e

E
m
u
V
id
eo

M
u
si
cG

en
L
la
m
a
3
.2

??
M
id
jo
u
rn
ey

2
0
2
2

–
M
id
jo
u
rn
ey

–
–

–
??

M
is
tr
a
l
A
I

2
0
2
3

M
is
tr
a
l

–
–

–
–

??
O
p
en
A
I

2
0
1
5

C
h
a
tG

P
T

D
A
L
L
-E

S
o
ra

J
u
k
eb

ox
o
3

O
p
er
a
to
r

S
ta
b
il
it
y
A
I

2
0
1
9

S
ta
b
le
L
M

S
ta
b
le

D
iff
u
si
o
n

√
√

–
??

T
II

b
2
0
2
0

F
a
lc
o
n

–
–

–
–

??
x
A
I

2
0
2
3

G
ro
k
-3

A
u
ro
ra

–
–

G
ro
k
-3

??

a
B
ig
S
ci
en
ce

C
o
ll
a
b
o
ra
ti
v
e
In
it
ia
ti
v
e.

b
T
ec
h
n
o
lo
g
y
In
n
ov
a
ti
o
n
In
st
it
u
te
(T

II
),

U
A
E
.

b
It

is
cl
ea
r
th
a
t
a
g
en
ti
c
A
I
m
o
d
el

d
ev
el
o
p
m
en
t
is
a
n
in
ev
it
a
b
le

tr
en
d
.
W

it
h
a
g
en
ti
c
A
I
sy
st
em

,
a
m
a
n
a
g
er

o
f
a
fi
rm

is
a
b
le

to
d
es
ig
n
th
e
ta
sk

to
b
e
co
m
p
le
te
d
b
y
a
n
a
g
en
ti
c
A
I.
If
it
su
cc
ee
d
s,
a
d
m
in
st
ra
ti
o
n
a
n
d
o
p
er
a
ti
o
n
a
l
st
a
ff
s
w
h
o
a
re

w
o
rk
in
g
fo
r

su
rv
ey
,
a
n
a
ly
si
s
a
n
d
d
o
cu
m
en
ta
ti
o
n
co
u
ld

b
e
la
rg
el
y
el
im

in
a
te
d
.

46

Table 7: Exemplar computational models and their applications. Development
of an application system on top of these computational models could be a dif-
ficult task. The development is not just user interface development. It might
involve the processes of fine-tune, transfer learning, hardware design and others.

Model (Developer) Application (Developer)

Image Processing

AlexNet (UoT) Auto-Drive (Tesla)(a)

VGG (Oxford) Auto-Drive (Tesla)(a)

ResNet (Microsoft) Auto-Drive (Tesla)(a)

GoogLeNet (Google) Auto-Drive (Tesla)(a)

AlexNet (UoT) Medical Image Diagnosis(b)

VGG (Oxford) Medical Image Diagnosis(b)

ResNet (Microsoft) Medical Image Diagnosis(b)

GoogLeNet (Google) Medical Image Diagnosis(b)

Natural Language Processing

Neural Machine Translation (Google) Google Translate (Google)(d)

DeepSeek (DeepSeek) LM Studio (LM Studio)(c)

Llama-7B (Meta) LM Studio (LM Studio)(c)

Mistral-7B (Mistral) LM Studio (LM Studio)(c)

ChatGPT (OpenAI) Copilot (Microsoft)(d)

Amazon LLM (Amazon) Alexa (Amazon)(d)

Gemini (Google) Search (Google)(d)

Gemini (Google) Google Assistant (Google)(d)

Text-to-Image

DALL·E (OpenAI) Copilot (Microsoft)(d)

(a) Specialized processors are built to implement such computational model.
(b) Many research groups have developed application systems for medical

image diagnosis. (c) Apart from LM Studio, many tech firms have developed
similar application systems for use in a powerful desktop computer like AIPC.

(d) Those application systems are developed in a cloud-based platform.

47

LLM

AS

AS

AS

Cloud

Edge

Edge

Edge

Edge

Edge

Edge

Figure 28: System architecture of AI applications deployment. On the cloud or
server side, in which the computational models are installed, specialized com-
puting platforms with large number of GPUs are needed. Here, LLM stands for
large language model and AS stands for application system. The edge corre-
sponds to a user device. It could be a desktop computer, a notebook computer,
a pad, a cell phone, a car system, the devices in a home network or any device
being used in the user side.

48

General LLM

Medical

Physics

Finance

Fine-Tune

Figure 29: Idea behind mixture of experts computational models. Here, the
computational model is applied in three domains, namely medical, physics and
finance. During the fine-time stage, the corresponding dataset is fed in to train
the specific fine-tune model. During fine-tune of an expert, the general LLM is
considered as a fixed model. Finally, the selector (the circle) is trained to give
correct selection of expert(s) to generate the output.

a computational model with multiple layers, a developer could fine-tune the
parameters at the few layers near the output instead of fine-tune the whole
computational model. Besides, a developer can simply apply a partial pre-
trained computational model as a foundation and add a MLP as a output model
to generate the required outputs.

5.5.3 Mixture of Experts (MoE)

Clearly, an AI computational model should be applied to a wider range of ap-
plications. Training a wide-range applicable computational model is time con-
suming and even not performance well. Therefore, one approach is to apply a
pre-trained model to adapt to specific expert domains, say in the area of cancer
and in the area of financial investment. Figure 29 shows the generic idea of a
computational model with mixture of experts.

Fine-Tune an expert : As a result, multiple fine-tune experts can be ob-
tained. Each expert, i.e. again an AI model, can tackle the problems specialized
in its own domain. Once a question has been asked to the AI system, the system
could identify the domain in which the question is belongs to and then trigger

49

the corresponding expert AI subsystem to response to the question.

Training time reduction : As each fine-tune training is limited to a specific
domain, the time spent could be shortened. Besides, fine-tune training for all
expert subsystems can be conducted in parallel. In the end, the time spent on
training a model with mixture of experts scenario is much shortened than a
single general model.

Old idea : One should be noted that the idea of MoE has been applied in many
engineering system designs long before 1970s [23, 24]. A key design challenge is
to determine under what input condition which expert has to take action.

6 Brain, Electronic Brain and Computer

Long in the history, many scholars have attempted to make an artificial brain
which can replicate the behaviors of a human brain. Pereceptron is one of them.
Perceptron could be considered as an electronic brain. For the current released
LLMs, the artificial brain is made of computers. Therefore, it is needed to make
comparisons among a human brain, an electronic brain and a computer. Their
comparisons are depicted in Table 8.

6.1 Processing Unit

In a human brain, the processing units are clearly the biological neurons. For
those electronic brains, the processing units are electronic neurons. An elec-
tronic neuron is basically an electric circuit with electronic components. An
electronic neuron is usually designed to implement the behavior of a sigmoid
neuron as stated in (29) and shown in Figure 13. For an AI system implemented
on a computer, its processing units are clearly the logic gates in the computer.

6.2 Model Structure

In regard to the model structure, human brain is a network of biological neu-
rons. For an electronic brain, it is a network of electronic components which
implements a pre-designed computational model. For an AI system running on
a computer, its structure is also a (software) computational model.

6.3 Detail Structure & Signal Flow

While a human brain is a network of biological neurons, its detail structure
and signal flow are largely unknown. They are still under research. On the
other hand, the detail structure and signal flow in an electronic brain (resp. a
computer) are known as an electronic brain is designed by engineers based on
pre-designed circuits.

50

6.4 Speak, Listen and See

Today, an electronic brain (resp. computer) can be designed to connect with
loudspeaker, microphone and camera to speak, listen and see. In terms of
environmental interactions, an electronic brain and a computer can behave the
same as a human brain.

6.5 Intelligence

From intelligence point of view, it is commonly agreed that a human brain is
intelligent. For an electronic brain or a computer, they are pre-designed or pre-
programmed for solving problems. Thus, an electronic brain and a computer
should not be considered as having intelligence.

6.6 Learning Mechanism

For a human brain, actual neuron-level learning mechanism is still under re-
search. One common believe is that the properties of some synapses might
change during a learning process. However, the changes in a (biological level)
neuronal network in relation to a (psychological level) reinforcement learning is
still unclear and under research.

For an electronic brain and a computer, their learning mechanisms are pre-
designed and hence programmed. For an electronic brain, some changes might
be found in some electronic components if it is in the process of learning. For
a computer, there is no any change in the properties of the logic gates during
learning.

6.7 Electronic Brain

One should be noted that the issues depicted in this table are not just inter-
ested in the area of AI, they are interested in the areas of psychology, cognitive
science, neuroscience, brain science and philosophy. It is not to mention the
area in electrical engineering and computer science which are willing to build
an electronic brain (resp. non-biological brain) functioning as a human brain.

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[2] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[3] M. Minsky and S. Papert, Perceptrons : An introduction to computational

geometry. MIT Press, 1969.

51

Table 8: Comparisons among a human brain, an electronic brain and a com-
puter.

Human Brain Electronic Brain Computer
Processing unit Neuron Electronic neuron Logic gate
Structure Net. of neurons Comp. model Comp. model
Detail structure Under research Known Known
Detail signal flow Under research Known Known
Speak Yes Yes Yes
Listen Yes Yes Yes
See Yes Yes Yes
Intelligence Under research Programmed Programmed
Learning Under research Programmed Programmed

During learning, the properties of some synapses in a human brain change. For
an electronic brain, physical properties of some electronic components might
change. However, there is nothing change in a computer even an AI model
is under learning. One should be noted that the issues depicted in this table
are not just interested in the area of AI, they are interested in the areas of
psychology, cognitive science, neuroscience, brain science and philosophy. It is
not to mention the area in electrical engineering and computer science which
are willing to build an electronic brain functioning as a human brain.

[4] B. Widrow, “Generalization and information storage in networks of Adaline
neurons,” in Self-Organizing Systems. Spartan Books, 1962, pp. 435–461.

[5] F. Rosenblatt, “The Perceptron: a probabilistic model for information stor-
age and organization in the brain.” Psychological Review, vol. 65, no. 6, p.
386, 1958.

[6] ——, “Perceptron simulation experiments,” Proceedings of the IRE, vol. 48,
no. 3, pp. 301–309, 1960.

[7] ——, Principles of Neurodynamics: Perceptions and the theory of brain

mechanisms. Spartan, 1962.

[8] P. Werbos, “Beyond regression: New tools for prediction and analysis in
the behavioral sciences,” PhD Dissertation, Harvard University, 1974.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[10] A.-L. Barabási and E. Bonabeau, “Scale-free networks,” Scientific Ameri-

can, vol. 288, no. 5, pp. 50–9, 2003.

[11] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

52

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, 2012, pp. 1097–1105.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 770–778.

[14] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learning,” arXiv preprint

arXiv:1602.07261, 2016.

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[16] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT
press Cambridge, 2016, vol. 1.

[17] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,”
Biological Cybernetics, vol. 20, no. 3-4, pp. 121–136, 1975.

[18] ——, “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position,” Biological

Cybernetics, vol. 36, pp. 193–202, 1980.

[19] H. K. Hartline and C. H. Graham, “Nerve impulses from single receptors
in the eye.” Journal of Cellular & Comparative Physiology, vol. 1, no. 2,
pp. 277–295, 1932.

[20] H. K. Hartline, “Intensity and duration in the excitation of single photore-
ceptor units.” Journal of Cellular & Comparative Physiology, pp. 229–247,
1934.

[21] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Ad-

vances in Neural Information Processing Systems, vol. 27, 2014.

[22] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial
training,” arXiv preprint arXiv:1612.07828, 2016.

[23] D. G. Lainiotis, “Partitioning: A unifying framework for adaptive systems,
I: Estimation,” Proceedings of the IEEE, vol. 64, no. 8, pp. 1126–1143,
1976.

[24] ——, “Partitioning: A unifying framework for adaptive systems, II: Con-
trol,” Proceedings of the IEEE, vol. 64, no. 8, pp. 1182–1198, 1976.

53

784

100 100

10

Figure 30: Structure of an MLP for MNIST handwritten digit recognition. The
input image is of size 28 × 28. This MLP could be considered as a specialized
convolution neural network (CNN), in which the first layer consists of 100 con-
volution filters of size 28 × 28. The second layer consists of 100 convolution
filters of size 10 × 10 and the output layer consists of 10 convolution filters of
size 10× 10.

Appendix

A MLP as a CNN

Applying an MLP with structure 784-100-100-10 for handwritten digit recogni-
tion problem, the inputs is a small image of size 28 × 28 gray scale pixels. To
recognize the digit, the image is fed to the inputs. Then, the 100 neurons in
the first layer calculate their neuronal outputs and pass the outputs to the next
layer. Figure 30 shows the structure of the MLP.

A.1 Convolution in the First Layer

Essentially, these 100 neurons are 100 convolution filters. The receptive field
of each filter is of size 28 × 28. Its parameters determine the property of its
convolutionary property. In contrast to a convolution neural network (CNN)
like LeNet5 and AlexNet, he receptive field of a convolution filter is of size
M ×M , where M is 3 or typically 5. Besides, the number of convolution filters
is much smaller than 100.

A.2 Convolution in the Second layer

The neurons in the second layer in the MLP can also be considered as performing
100 convolutionary filtering. Each neuron gets 10×10 inputs from the first layer
and then calculates the convolutionary result for its output.

54

A.3 Convolution in the Output Layer

Finally, the neurons at the output layer again perform convolutionary filtering
on the 10× 10 outputs from the second layer.

A.4 MLP vs CNN

By that, one should realize that the difference between a MLP and a CNN is
on the size of a convolution filter and the number of outputs to be generated in
a layer. Consider the image size of a handwritten digit with 28 × 28, the total
number of outputs in the first layer is 24× 24 if the size of a convolution filter
is 5× 5.

B Limitation of a Simple ReLU Pereptron

To illustrate a limitation of using ReLU as a neuronal model, a two-input-
one-output simple network is constructed and being trained to get a decision
boundary for the dataset as shown in Figure 9.

B.1 Model and Learning

The simple two-input-one-output Perceptron with ReLU output node is defined
as follows :

f(x,w) = max{0, w1x1 + w2x2 − b}, (79)

where w = (w1, w2, b)
T and x = (x1, x2, 1)

T . The learning objective is defined
as the mean square errors given by

L(w) =
1

N

N∑

k=1

(dk − f(xk,w))
2
. (80)

The learning algorithm is defined in the sense of stochastic gradient descent.

w(t+ 1) =

{
w(t) + µt(dt − f(xt,w(t)))xt if wT (t)xt > 0,
w(t) if wT (t)xt ≤ 0,

(81)

where (xt, dt) is a data randomly selected from the dataset at time t.

B.2 Settings

In the simulations, µt = 0.01 for all t and the total number of learning steps is
10000× 200 = 2× 106. The initial conditions are set to be (a) w1(0) = w2(0) =
b(0) = 1 and (b) w1(0) = w2(0) = b(0) = 0. The results are shown in Figure 31.

55

B.3 Result Highlights

The results shown on the left column are based on the initial condition that
w1(0) = w2(0) = b(0) = 1 and the results shown on the left column are based
on the initial condition that w1(0) = w2(0) = b(0) = 0. In accordance with the
results, a few points are noted and listed below.

1. For w1(0) = w2(0) = b(0) = 0, the model is unable to learn. So that, the
results are not shown in the figure.

2. The decision boundary cuts on the dataset with label ’0’. An explanation
for this phenomena is presented shortly in the next subsection.

3. Our results reveal that the simple Perceptron with ReLU as output neuron
is unable to get the decision boundary in the same way as the simpler Per-
ceptron with either McCulloch-Pitts output neuron or sigmoidal output
neuron.

A reason why the decision boundary cuts on the dataset with label ’0’ is pre-
sented in the next subsection.

B.4 1D Data Illustration

From the highlights in the last subsection, one question is why the decision
boundary cuts on the dataset with label ’0’. Owing to figure out the reason,
we consider a simple classification problem with two sets of 1D data with the
following labels.

dk =

{
0 if xk ∈ [−1, 0]
1 if xk ∈ (0, 1],

(82)

for k = 1, · · · , N . Moreover, the data distributed evenly in the interval [−1, 1].
That is to say, the probability density function for x is that P (x) = 1/2.

Assume that the simple Perceptron has one input and one output. The
output node is defined as a ReLU. So, the mathematical model for this simpler
Perceptron is given by

f(x, b) = max{0, x− b}. (83)

Note that we confine the model only has one parameter to be trained. With
(83), the performance criteria is defined as the mean square error.

For −1 ≤ b ≤ 0 and N →∞, we get that

L(b) = (1/2)

∫ 0

b

(x− b)2dx + (1/2)

∫ 1

0

(x− b− 1)2dx.

=
(b+ 1)3 − 2b3

6
(84)

and its gradient is given by

∂L(b)
∂b

=

(
(b+ 1)2 − 2b2

)

2

56

100 101 102 103 104
-0.5

0

0.5

1

1.5

b

w
1

w
2

100 101 102 103 104
10-4

10-3

10-2

10-1

100

MSE

MAE

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

w1(0) = w2(0) = b(0) = 1.

Figure 31: Changes of the parameters w1, w2 and b over time for the dataset
as shown in Figure 9. Here, µt = 0.01 and the total number of learn-
ing steps is 10000 × 200 = 2 × 106. The initial conditions are set to be
w1(0) = w2(0) = b(0) = 1. For the case that w1(0) = w2(0) = b(0) = 0,
the model is unable to learn. The results shown in the middle panel are mean
absolute errors (MAE) and mean square errors (MSE) over every 4000 steps.
Top: Changes of parameters. Middle: Mean prediction errors. Bottom: De-
cision boundary. One should be noted that the horizontal axis in both the top
and the middle panels is in log-scale.

57

u
b

1

b +∆

Figure 32: The transfer function of a ReLU with parameters b and ∆.

Clearly, ∂L(b)/∂b is a decreasing function of b for −1 ≤ b ≤ 0. Thus, ∂L(b)/∂b =
0 if and only if b = 1 −

√
2 < 0. At that, the MSE is given by L(1 −

√
2) =

(3− 2
√
2)/3.

Here, one should be noted that the decision boundary specified by b is a
negative value. It cuts the group of data with label ’0’. By that, one can infer
the reason why the decision boundaries as shown in Figure 31 cut the group of
data with label ’0’, which is marked by triangle in the bottom panel.

C Network of ReLUs

To implement a network of ReLU neurons to perform a logical operation, at
least three ReLU neurons are needed. Recall that the transfer function of a
ReLU is stated in (56) and shown in Figure 24. Precisely, we can define the
ReLU with parameters.

f(x1, x2, w1, w2, b,∆) = max

{

0,
w1x1 + w2x2 − b

∆

}

. (85)

Let u = w1x1 + w2x2. The shape of max {0, (u− b)/∆} is shown in Figure 32.
By that, one can get that

g(u, b,∆) = max

{

0,
u− b

∆

}

−max

{

0,
u− (b+∆)

∆

}

= max

{

0,max

{

0,
u− b

∆

}

−max

{

0,
u− (b+∆)

∆

}}

. (86)

C.1 Saturating Linear Neuron

g(u, b,∆) is a saturating linear function given by

g(u, b,∆) =







1 if u ≥ b+∆,
(u − b)/∆ if b < u < b+∆,
0 if u ≤ b.

(87)

58

u
b

1

b +∆

Figure 33: The shape of the saturating linear function g(u, b,∆) as stated in
(86) or (87).

Its shape is shown in Figure 33. Thus, we can get a saturating linear neuron by
a network of three ReLU neurons. In this regard, realization of a logic gate can
be implemented by a network of ReLU neurons.

C.2 Logical Operations Realization

With reference to the realization of logical operations based on networks of
McCulloch-Pitts neurons as presented in Section 1.4, realization of logical op-
erations based on networks of ReLU neurons can be done similarly.

C.2.1 AND: w1 = w2 = 1, b = 1.5, ∆ = 0.01

For w1 = w2 = 1, b = 1.5 and ∆ = 0.01, the neuronal model is given by

g(x1, x2, 1, 1, 1.5, 0.01) =







1 if x1 + x2 ≥ 1.51,
100(x1 + x2 − b) if 1.5 < x1 + x2 < 1.51,
0 if x1 + x2 ≤ 1.5.

(88)

As x1, x2 ∈ {0, 1}, g(x1, x2, 1, 1, 1.5, 0.01) = 1 if and only if x1 = x2 = 1. The
neuron as defined by (88) performs logical AND. It acts as an AND gate.

C.2.2 OR: w1 = w2 = 1, b = 0.5, ∆ = 0.01

For w1 = w2 = 1, b = 0.5 and ∆ = 0.01, the neuronal model is given by

g(x1, x2, 1, 1, 0.5, 0.01) =







1 if x1 + x2 ≥ 0.51,
100(x1 + x2 − b) if 0.5 < x1 + x2 < 0.51,
0 if x1 + x2 ≤ 0.5.

(89)

As x1, x2 ∈ {0, 1}, g(x1, x2, 1, 1, 0.5, 0.01) = 0 if and only if x1 = x2 = 0. The
neuron as defined by (89) performs logical OR. It acts as an OR gate.

59

C.2.3 NAND: w1 = w2 = −1, b = −1.5, ∆ = 0.01

For w1 = w2 = −1, b = −1.5 and ∆ = 0.01, the neuronal model is given by

g(x1, x2,−1,−1,−1.5, 0.01)

=







1 if −x1 − x2 ≥ −1.49,
100(−x1 − x2 − b) if −1.5 < −x1 − x2 < −1.49,
0 if −x1 − x2 ≤ −1.5.

=







1 if x1 + x2 ≤ 1.49,
100(−x1 − x2 − b) if 1.49 < x1 + x2 < 1.5,
0 if x1 + x2 ≥ 1.5.

(90)

As x1, x2 ∈ {0, 1}, g(x1, x2,−1,−1,−1.5, 0.01) = 0 if and only if x1 = x2 = 1.
The neuron as defined by (90) performs logical NAND. It acts as an NAND
gate.

C.2.4 NOR: w1 = w2 = −1, b = −0.5, ∆ = 0.01

For w1 = w2 = −1, b = −0.5 and ∆ = 0.01, the neuronal model is given by

g(x1, x2,−1,−1,−0.5, 0.01)

=







1 if −x1 − x2 ≥ −0.49,
100(−x1 − x2 − b) if −0.5 < −x1 − x2 < −0.49,
0 if −x1 − x2 ≤ −0.5.

=







1 if x1 + x2 ≤ 0.49,
100(−x1 − x2 − b) if 0.49 < x1 + x2 < 0.5,
0 if x1 + x2 ≥ 0.5.

(91)

As x1, x2 ∈ {0, 1}, g(x1, x2,−1,−1,−0.5, 0.01) = 1 if and only if x1 = x2 = 0.
The neuron as defined by (91) performs logical NOR. It acts as an NOR gate.

C.2.5 XOR Operation

Recall from Figure 4 that an XOR can be implemented by an OR gate, an
NAND and an AND gate. As presented above, each of these logic gate can
be implemented by a network of three ReLU neurons. Thus, XOR can be
implemented by nine ReLU neurons.

C.2.6 Digital Computer Implementation

Similar to that of using McCulloch-Pitts neurons, one can infer that a digital
computer can also be implemented by entirely ReLU neurons.

C.3 Classification Problems

In principle, we can train a network of three ReLU neurons to solve a 2-class
classification problem. By fixing the value of ∆ to a small positive value, we

60

x1

x2

f (x1, x2)

w1

w2

w2

w1

b1

b2

1

−1

0

b2 = b1 +∆; 0 < ∆ ≪ 1

z1

z2

Figure 34: An application of a network of three ReLU neurons in 2-class classi-
fication problem. Here, ∆ is a predefined small positive number, say ∆ = 0.01.
The parameters w1, w2 and b1 are shared among the neurons in the hidden
layer. z1 and z2 are the output of the neurons in the hidden layer. The pa-
rameters of the output neuron are fixed. f(x1, x2) = max{0, z1 − z2}, where
z1 = g(x1, x2, w1, w2, b,∆) and z2 = g(x1, x2, w1, w2, b+∆,∆).

still need to find out nine model parameters. An efficient approach is to set the
both hidden ReLU neurons with sharing parameters, as shown Figure 34. In
this regard, the total number of model parameters is just three if ∆ is pre-set
to a small positive number. They are w1, w2 and b1. The transfer function of
the output neuron is a saturating linear function as follows :

f(x,w) = max{0, g(x1, x2, w1, w2, b,∆)
︸ ︷︷ ︸

z1

− g(x1, x2, w1, w2, b+∆,∆)
︸ ︷︷ ︸

z2

}, (92)

where x = (x1, x2)
T , w = (w1, w2, b)

T , z1 = g(x1, x2, w1, w2, b,∆) and z2 =
g(x1, x2, w1, w2, b+∆,∆).

C.3.1 Learning Algorithm

The learning algorithm for the parameters w1, w2 and b can thus be derived by
gradient descent in similar way as for the MLP.

w(t+ 1) = w(t) + µt (dt − f(xt,w(t)))

[
xt

1

]

, (93)

where (xt, dt) is a sample randomly selected from the dataset at the tth training
step. One should be noted that the learning rule stated in (93) is similar to the
online Perceptron learning rule as stated in (25).

C.3.2 Illustrative Examples

Figure 35 shows the results in which the learning rule (93) is applied with
∆ = 0.01 and µt = 0.005 for all t. Two initial conditions are investigated :
(a) w1(0) = w2(0) = b(0) = 1 and (b) w1(0) = w2(0) = b(0) = 0. The value

61

of MAE(t) is defined as MAE(t) = t−1
∑t

τ=1 |dτ − f(xτ ,w(τ)|. The value of

MSE(t) is defined as MSE(t) = t−1
∑t

τ=1(dτ − f(xτ ,w(τ))2.

C.4 Nonlinear Decision Boundary Problems

The model as stated in (92) can only solve the classification problems with
a linear decision boundary. For a 2-class classification problem with nonlinear
decision boundary, a network similar to that of MLP has to be designed. Instead
of using sigmoid neurons as the neurons, the network of ReLU neurons as stated
in (92) is applied. If the number of these neuronal networks is sufficient enough,
we can get a multi-layer network for finding the nonlinear decision boundary.

62

100 101 102 103 104
-0.5

0

0.5

1

1.5

w
1

w
2

b

100 101 102 103 104
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

w
1

w
2

b

100 101 102 103 104
10-4

10-3

10-2

10-1

100

MAE = MSE

100 101 102 103 104
10-4

10-3

10-2

10-1

100

MAE = MSE

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

-4 -2 0 2 4 6 8 10
-4

-2

0

2

4

6

8

10

(a) w1(0) = w2(0) = b(0) = 1. (b) w1(0) = w2(0) = b(0) = 0.

Figure 35: Changes of the parameters w1, w2 and b over time for the dataset as
shown in Figure 9. Here, ∆ = 0.01, µt = 0.005 and the total number of learning
steps is 10000. The initial conditions are set to be (a) w1(0) = w2(0) = b(0) = 1
and (b) w1(0) = w2(0) = b(0) = 0. The value of MAE(t) is defined as
MAE(t) = t−1

∑t

τ=1 |dτ − f(xτ ,w(τ)|. The value of MSE(t) is defined as

MSE(t) = t−1
∑t

τ=1(dτ − f(xτ ,w(τ))2. Top: Changes of parameters. Mid-
dle: Mean prediction errors. Bottom: Decision boundary. One should be
noted that the horizontal axis in both the top and the middle panels is in log-
scale.

63

